BASIC CONCEPTS IN PHYSICS

DEPUVATIONS OF EQUATIONS IN THE TEXT
BY BILL DANIEL

CHAPTER 1

BY LETTING $\Theta \rightarrow \Theta + d\Theta$, USING TRIG IDENTITIES

FOR SIM (X+B) AND COS (X+B) AND TRECOGNIZING

THAT $d\vec{\Theta} = d\Theta \hat{K}$, IT IS POSSIBLE WITH SOME

MESSY ALGEBRA TO PROVE (1.27) FROM (1.10),

BUT I THINK THIS OBSCUMES WHAT'S DEALLY

GOING ON. WHAT WE ARE TRYING TO DO IS TO

EX PRESS THE RATE OF CHANGE OF AN ARBITMAMY

VECTOR QUANTITY, F(b), AS MEASURED IN AN

INERTIAL FRAME, S, INTERMS OF ITS MATE OF CHANGE

IN A ROTATING FRAME, S'.

FIRST, WRITE FIN ITS CAMIESIAN COORDINATES

IN S: $\vec{r} = \underbrace{\vec{z}}_{i=1} \vec{e}_{i}$ [1]

THE UNIT VECTORS ÊL AME FIXED IN S, BUT

CHANGING (POTATING) IN S'. DIFFERENTIATION

W. R.T. TIME GIVES:

CIT = Z dri ê: [1.2]

dt i dt

IN FRAME S. BUT, IN S' WITH CHANGING Ê;

WE MUST WMTE $\frac{d\vec{v}}{dt} = \underbrace{Z d\vec{v} \hat{c}}_{t} + \underbrace{Z r_{t}}_{t} \left(\frac{d\hat{e}\hat{c}}{dt} \right) \left[1,3 \right]$

NOW, (1.26) TELISUS HOW TO WATE THE SELOND

TERM ON THE RIGHT. EQN (1.26) GAVE US THE

INSTANTANTON LINEAR ALOCITY (AT) OF A POINT (A) POTATING ABOUT

AN AXIS THROUGH THE ORIGIN WITH ANGULAN

VEROUTY W. THE Ê, UNIT VECTORS ARE ROTATING

WITH ANGULAR VELOUTY W, SO:

SO, COMBINING [1.2] AND [1.4] GIVES (1.27). (NOTE THAT I AM USING SQUARE BRACKETS, [],
TO INDICATE EQUATIONS IN THESE NOTES
AND PARANTHESES () TO INDICATE THOSE IN
THE TEXT.)

(1.28) THIS IS JUST ANOTHER APPLICATION OF THE ABOVE DIFFERENTIATION, DIFFERENTIATION (1.27) ANS:

 $\frac{d}{dt}\left(\frac{d\vec{r}}{dt}\right) = \frac{d}{dt}\left(\frac{d\vec{r}}{dt} + \vec{\omega} \times \vec{r}\right) \quad [1.5]$

NOTE THAT BOTH OF THE OUTER DERIVATIVES AME W. R. T. THE INDER FRAME, S, BUT THE INDER DERNATIVE ON THE PLIGHT IS W. R.T. THE POTATION FRAME, S. WE WANT TO WRITE THE SECOND DERNATE ON THE LEFT (W.R.T THE INERTIAL FRAME) IN TERMS ON THE PLIGHT ONLY W.R.T. THE ROTATION FMAME.

TO DO THIS WE ONCE ALAIN USE (1.27) TO WMTE

 $\frac{d^2\vec{r}}{dt^2} = \frac{d}{dt} \left[\frac{d\vec{r}}{dt} + \vec{\omega} \times \vec{r} \right] + \vec{\omega} \times \left[\frac{d\vec{r}}{dt} + \vec{\omega} \times \vec{r} \right] \quad [i, G]$

WHERE I'M USING of TO INDICATE DIFFERENTIATION
W. R.T. THE ROTATING FRAME.

NOTING THAT WIS CONSTANT, SO die = 0, AND

 $\frac{d^2r^2}{dt^2} = \frac{d^2r^2}{dt^2} + \frac{1}{12} \times \frac{dr^2}{dt} + \frac{dr^2}{dt} + \frac{1}{12} \times \frac{dr^2}{dt} + \frac{dr^2}{d$

OR

 $\frac{d^2\vec{r}}{dt^2} = \frac{d^2\vec{r}'}{dt^2} + 2\vec{\omega} \times \frac{d\vec{v}'}{dt} + \vec{\omega} \times \vec{\omega} \times \vec{r} \quad (1.28)$

(1,33) IN 1 DIMENSION, 9: = 9 = 4 AND 9 = 1 = V.

SINCE L= 2mv2, dL=mv AND dL=0, SO

BY EULER-LAGRANGE,

 $\frac{d}{dt}\left(\frac{\partial L}{\partial v}\right) - \frac{\partial L}{\partial x} = \frac{d}{dt}\left(mv\right) - 0 = m\frac{dv}{dt} = 0 \quad (1.33)$

(1,36) USING THE EQUATION FOR APARTICIS OF MASS M MOVING IN A POTENTIAZ V(4) GIVEN IN THE BOOK

BETWEEN (1.30) AND (1.31) AND (1.19) FOR GRANITATIONAL

POTENTIAL,

L = ZMD2+GMM

THIS BECOMES (136) WHEN WE USE (1.35) AND (1.36)

RECOGNIZE THAT UZ= Ur2+ Ve= 12+ 12 82.

(1.37) $\frac{\partial L}{\partial \dot{\theta}} = M\Gamma^2 \dot{\theta}^2, \frac{\partial L}{\partial \theta} = 0$, so E-L GIVES (1.37).

	and a second of the second						
	RECOGNIZE THAT LIN (1,36) IS L=T-V, SO						
(1.38)	$T = \frac{1}{2}M(\dot{r}^2 + r^2\dot{\theta}^2)$ AND $V = -\frac{GMm}{r}$, So $E = T + V$						
AND	AND G = C/Mr2 GIVES (1,33), THE FOLLOWING						
FOLLOWING	EQUATION FORT IS JUST AN ALGEBRANE READMANGEMENT.						
	TO GET THE NEXT EQN FOR do, USE						
	r= d1/2t = (3[] -> dt = d1/√2[] [1.7]						
	WHERE [] IS THE BLACKET IN THE						
	EQN FOR Y FOLLOWING (1-38)						
	0=d6/dt -> d0= 6dt = cdt/mr2						
	SUBSTITUTION FOR dt From [1,7]						
	do = cd/mr2 V=[] = Cdr/r2						
	VZM[]						
(1.39)	REWRITE do As:						
	T dr 7						
	do= C [Va+br+cr2 WHENE a=-C]; b=2GMm2; c=znE						
	, , , , , , , , , , , , , , , , , , ,						
	USING INTEGRAL TABLES, SINCE a <0,						
	1 / br +20 \7						
	$\int d\theta = \theta = C \left[\sqrt{\frac{br + 2a}{rVb^2 - 4ac}} \right]$						
	12GMm² -2 (12)						
	$= S'_{1}n^{-1} \left(\frac{2GMm^{2}-2C'}{r\sqrt{4G^{2}M^{2}m^{4}+8C^{2}m^{2}}} \right)$						
	(/ - GM m ² /						
	= Sin-1 (G/V - GM m ² /G)						
	AS OPPOSED TO THE COST IN (1.39). NOT SUME						
	WHY THE DIFFEMBRICS, BUT EITHER WILL GIVE THE						
	CONIC EQN IN (1.40).						
	,						
'	ı						

(1,40) JUST MESSY ALGEBRA:

$$\cos \theta = \frac{\left(\frac{1}{r} - \frac{1}{d}\right)}{\sqrt{\frac{2mE}{G^2} + \frac{1}{d^2}}} = \frac{\left(\frac{1}{r} - \frac{1}{d}\right)}{\sqrt{\frac{1}{r} + \frac{2mEd^2}{G^2}}}$$

$$= \frac{d}{r} - 1$$

$$\sqrt{1 + 2EG^2/G^2M^2m^3} = \frac{d}{E}$$

$$1 + 2 \cos \theta = \frac{d}{r} - r = \frac{d}{1 + 2 \cos \theta}$$
 (1,40)

SINCE L = Z L(q, q, t), WE FORM ITS TOTAL
DIFFERENTIAL BY THE TWIE:

drux, y, = dr.dy.dz + dx. dy.dz + dr.dy. dz.

(1.41) SINCE THE CANONICAE MOMENTA AND

P= 24/29:

THE FIRST TEAM IS FOUND FROM THE EUGA-LAZMANGE

EQN, (1.32);

$$\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_i} = \frac{d}{dt} P_i = \dot{P}_i = \frac{\partial L}{\partial q_i}.$$

THE EQN. IN THE TEXT FOLLOWING (1.41) IS DIFFERENTIATION OF A PRODUCT: d(P.q.) = P. dq. + q.dp.

(1,42)	SINCE $H = \leq P_i \dot{q}_i - L$, AND $dL = \leq \dot{\rho}_i dq_i + \leq P_i d\dot{q}_i + \frac{\partial L}{\partial t} dt$
	dH= = Pidq: + Zqidp: -dL
	= \(\rightarrow \frac{1}{2} \
	$dH = -\frac{2}{2}\dot{\rho}_{L}dq_{L} + \frac{2}{2}\dot{q}_{L}dp_{L} - \frac{\partial L}{\partial L}dt (1.42)$
(1.43)	BECAUSE L DOES NOT DEPEND EXPLICITLY ON Pi,
	$\frac{\partial H}{\partial P_i} = \frac{\partial}{\partial P_i} \left(\leq P_i \dot{q}_i - L \right) = \dot{q}_i$
	$\frac{\partial H}{\partial q_i} = \frac{\partial}{\partial q_i} \left(\leq P_i \dot{q}_i - L \right) = -\frac{\partial L}{\partial q_i} = \frac{\partial}{\partial t} \left(\frac{\partial L}{\partial \dot{q}_i} \right)$
F 2	$= -\frac{d}{dt} P_i = -\dot{P}_i$
	$\frac{\partial H}{\partial t} = \frac{\partial}{\partial t} \left(\leq \rho_i \dot{q}_i - L \right) = -\frac{\partial L}{\partial t}$
p.44	$\dot{q} = \frac{\partial H}{\partial p} = \frac{P}{m}$ AND $\ddot{p} = -\frac{\partial H}{\partial q} = -kq$
	$\dot{q}' = \frac{\dot{P}}{m} = -\frac{K}{m}2$
	THE SMPLEST SECOND ORDER O.D.E., 1/2 = -ax, HAS THE
	SOLUTION N = A SIMILAT + B COSTAT = C COS (16+4)
	WITH AAND B, ORCAND Q ARBITRAMY.
(1.44)	FOLIOWS FROM THE DEF'N OF THE TOTAL DEMUATIVE.

(, ,)	
(1.45)	SINCE $\dot{q}_i = \frac{\partial H}{\partial P_i}$ AND $\dot{p}_i = -\frac{\partial H}{\partial q_i}$, (1.44) BECOMES
	$\frac{df}{dt} = \frac{\partial f}{\partial t} + \frac{1}{2} \left(\frac{\partial f}{\partial q_i} \cdot \frac{\partial H}{\partial p_i} + \frac{\partial f}{\partial q_i} \cdot \frac{\partial H}{\partial q_i} \right)$
	dt dt i dqi dpi dpi dqi
	{ H, f}
(1,46)	SINCE p2 = Px2 + Py + P2
	$\frac{\partial H}{\partial n} = \frac{\partial V}{\partial n} \qquad \frac{\partial H}{\partial \rho_{+}} = \frac{\rho_{+}}{M} \qquad \frac{\partial L}{\partial n} = -g$
	$\frac{\partial H}{\partial y} = \frac{\partial V}{\partial y} \qquad \frac{\partial H}{\partial p_0} = \frac{P_0}{m} \qquad \frac{\partial L}{\partial y} = -P_0 \qquad \frac{\partial L}{\partial p_0} = -P_0$
	$\frac{\partial H}{\partial z} = \frac{\partial V}{\partial z} = \frac{\partial H}{\partial z} = \frac{\partial L}{\partial z} = 0$
	{H, L=} = \(\left\) \(\frac{\partial H}{\partial P_L} \right) = \frac{\partial H}{\partial P_V} \right) = \frac{\partial H}{\partial P_V} \right(-\partial Y) + \frac{\partial V}{\partial P_V} \right(-\partial Y) - \frac{\partial V}{\partial V} \left(-\partial Y) + \frac{\partial V}{\partial V} \left(-\partial Y) - \frac{\partial V}{\partial V} \left(-\partial Y) + \frac{\partial V}{\partial V} \left(-\partial Y) - \frac{\partial V}{\partial V} \left(-\partial Y) + \frac{\partial V}{\partial V} \left(-\partial Y) - \frac{\partial V}{\partial V} \left(-\partial Y) + \frac{\partial V}{\partial V} \left(-\partial Y) - \frac{\partial V}{\partial V} \left(-\partial Y) + \frac{\partial V}{\partial V} \left(-\partial Y) - \frac{\partial V}{\partial V} \left(-\partial Y) + \frac{\partial V}{\partial V} \left(-\partial Y) - \frac{\partial V}{\partial V} \left(-\partial Y) + \frac{\partial V}{\partial V} \left(-\partial Y) - \frac{\partial V}{\partial V} \left(-\partial Y) + \frac{\partial V}{\partial V} \left(-\partial Y) - \frac{\partial V}{\partial V} \left(-\partial Y) + \frac{\partial V}{\partial V} \left(-\partial Y) - \frac{\partial V}{\partial V} \left(-\partial Y) + \frac{\partial V}{\partial V} \left(-\partial Y) - \frac{\partial V}{\partial V} \left(-\partial Y) + \frac{\partial V}{\partial V} \left(-\partial Y) - \frac{\partial V}{\partial V} \left(-\partial Y) + \frac{\partial V}{\partial V} \left(-\partial Y) - \frac{\partial V}{\partial V} \left(-\partial Y) + \frac{\partial V}{\partial V} \left(-\partial Y) - \frac{\partial V}{\partial V} \left(-\partial Y) + \frac{\partial V}{\partial V} \left(-\partial Y) - \frac{\partial V}{\partial V} \left(-\partial Y) + \frac{\partial V}{\partial V} \left(-\partial Y) - \frac{\partial V}{\partial V} \left(-\partial Y) + \frac{\partial V}{\partial V} \left(-\partial Y) - \frac{\partial V}{\partial V} \left(-\partial Y) + \frac{\partial V}{\partial V} \left(-\partial Y) - \frac{\partial V}{\partial V} \left(-\partial Y) + \p
	$= y \frac{\partial V}{\partial x} - x \frac{\partial V}{\partial y} \qquad (1.46)$

	CHAPTER Z				
(2,5)	THERE IS AN ERROR IN THE CALCULATON OF				
	THE PROBABILITY THAT IN LIES IN THE				
	N + N RANGE WHEN N = 12. IT SHOULD BE P(3 < n < g) = 924 + 2(792) + 2(495) + 2(440)				
	$= \frac{3938}{4096} = 0.961.$				
	4096				
	$NOT \frac{987}{1024} = 0.964$.				
	1024				
	ALSO (2,5) APPGARS TO BE IN ERMON. CLEANLY				
,	IT'S NOT THE FOR STMMETMC DISTMBOTTONS				
	WHERE N = N/2, SINCE THE L.H.S. = 0. THE				
	FIRST UN SYMMETTIC CASE FOR N=6, THE				
	CASE OF N = 4, N'=2, GIVES:				
	$\frac{N - \frac{N}{2}}{N} = \frac{4 - \frac{6}{2}}{6} = \frac{1}{6}$				
	THEME IS NO INTERED & FOR WHICH 29=6.				
	I HAVE NOT WOMEGO THIS OUT, BUT I				
	THINK IT CANTES SHOWN THAT FOR N AN				
	EVEN INTEGEN: N				
	EVEN INTEGEN: $\frac{N-\frac{N}{2}}{N} > \frac{1}{2^{\frac{N}{2}}}$ [2,1]				
	FOR 2 < N < N. THIS 16 THE CLOSEST I				
	CAN GET TO (2.5). I'M ATTACHING 3 PAGES				
	YOU (AZMOST) TO (2.9), EQN (2.6) IN SCHMOGOGA.				

<u></u>
LGT N'->0 (N->N) AND
$P_{N,0} = \frac{N!}{0! N!} \left(\frac{1}{2}\right)^0 = 2^{-N}$
GIVEN DEF'N (2.12) WITH N ALLOWED STATES BACH
WITH AN EQUAL PROBABILITY P; = YN FOR i=1,2,,N.
S=-KZPilnPi=-KN·(TIND).
RECAU IN (N) = INN = - INN, 50
S = - KN. (N. (-INN) = KINN. [2,2]
2 (EV. (- (M.) - 1-1).
WITH SA FUNCTION OF SE, AND SEZ THIS IS
THE STATEMENT OF THE TUTA DIFFERENTIA
OF S.
I THINK THE AUTHORS OWE THE READEN A BETTER EXPLANATION
OF WHENE THIS EXPRESSION COMES FROM, SO PLUTMY TO
CIUE ONE:
IN AN 150 LATED SYSTEM, ALL MICROSTATES AND
EQUALLY PROBABLE. EN A CANONICAL ENSEMBLE, THOUGH,
THE SYSTEM IS NOT ISOLATED, IT "EXCHANGES ENGRAV
WITH A LANGE 'HEAT BATH'" THE COMBINATION OF
THE SYSTEM AND THE "BATH" IS, HOWGYER, ISOLATED, GO
ITS COMBINGS STATES HAVE THE SAME PROBABILITY.
IF THEM ARE Nº BATH MICHO STATES ASSOCIATION
WITH STATE SOFTHE SYSTEM, THEN THE PROBABILITIES

(10) SYSTEM OF STATES SI AND SO AND IN THE SAME MATIO AS THE NUMBER OF BATH STATES: $\frac{P(s)}{P(s)} = \frac{N_1}{N_2}$ [2.3] SINCE THE ENTHOPY, ASSOCIATED WITH STATE 1 ISJUST S_= KINN, THE PROBABILITES AND ALSO IN THE MATIO OF THE EXPONENTIALS OF THE BATH ENTROPIES: P(S) CSI/K = C(S,-S)/K

P(S) CSI/K = C(S,-S)/K

[2,4]

TETTLE (MAY BE ONE ATOM) IF THE SYSTEM, IS SMAN COMPANSO TO THE RESERVOIR, WE CAN WRITE! 5,-52= +[U,-U] =-+[E,-E2] SYSTEM 50 P(si) e-EI/KT . EACH EXPONGENTIAL

D(s) = P-EZ/KT (CAUGO A BOLTZMAN FACTOR) IS A FUNCTION OF THE ENERGY OF A PARTICULAR MICROSTATE & THE TEMPERATURE. SO FOR ANY PARTICULAR STATE, S, OF THE SYSTEM, P(s) = = e - E(s)/et [2.5] WHERE 12 IS A PROPORTION ALITY CONSHANT CARLOS THE PARTITION FUNCTION. (F WE NOW ALLOW THE STATES, S, TO BECOME GONTINUOUS, THE PROBABILITY BECOMES A PROBABILITY DENSITY, P, SO (P(5) = = = = = (5)/LET AND

1 1	1
11	1
	11

(2,21) EQN (2.20) GIVES THE PROBABILITY OF SOME

MICROSTATE OF THE SYSTEM. IF, INSTEAD, WE

WANT TO KNOW THE VALUE OF A MACROSCOPIC

QUANTITY LIKE THE ENGRAY OF THE SYSTEM,

OVER MICROSTATES

IT WILL SIMPLY THE SUM OF THE PRODUCTS OF

EACH MICROSTATE ENGRAY WITH ITS PROBABILITY.

EQN (2.21) IS THE GENERALIZATION OF THE SUM

TO ANINTERNAL OVER AN ALLOWED MERION OF PHASE

SPACE (d [s).

(2.22) SINCE THE SYSTEM MUST BE IN SOME STATE

(MUST HAVE SOME LOCATION IN ALLOWBO PHASE

SPACE), THE INTEGRAL OF THE PROBABILITY DENSITY

OUER ALL OF ALLOWED PHASE SPACE MUST BE 1.

 $\int P(E) d\Gamma_S = \int \frac{1}{Z} e^{-E/kT} d\Gamma_S = \frac{1}{Z} \int e^{-E/kT} d\Gamma_S = 1 \quad [2.7]$ or $\int e^{-E/kT} d\Gamma_S = Z \qquad (2.22) \quad [2.8]$

(2.23) DEFINING THE FUNCTION $W(E) = P(E) \left(\frac{c\Gamma_s}{dE}\right)$,

THEN FROM [2.7] $\int W(E) dE = 1$

TECAL THE MEAN VALUE THEOREM FOR INTEGRALS:

[IF f(x) is continuous on [a, 6], THEME EXISTS

A & IN (a, b) SUCH THAT I F(x) dx = (b-a) f(E).]

HERE b-a compressions to AE, AE to U AND F TOW.

So THEME EXISTS SOME ENERGY U, SUCH THAT

 $\int_{AE} W(E) dE = (AE)(W(U)) = 1 \qquad (2.23)$

(2,24) FOLLOWS BECAUSE DIS 15 THE ALLOWED

REGION OF PHASE SPACE. IT COMMES PONDS

TO AN ENGRUY RANGE DE.

(2.25) WE ASSUME HEAT DE IS SMALL AND

THENTONE, BELLUSE ALL MICROSTATES WITH

THE SAME ENERGY AND EQUALLY PROBABLE,

ALL MICROSTATES WITHIN DE APPROXIMATELY

EQUALLY LIEBLY.

THE PEMAINDER OF \$2.5.1 IS A DETAILED ANADISIS

OF AN IDEAL GAS THEATED AS A CANONICAL

BNSEMBLE. THE MOST IMPORTANT PESSET IS THE

EQUIPARTITION THEOREM OF CLASSICAL THEATMO

THAT STATES THAT, AT TEMPERATURE T THE

AVERAGE THERMAL ENGREY OF ANY QUADRATIC

DEGREE OF FREEDOM IS KT/2. THEY ALSO

MENTION STINLING'S FORMULA, THE SIMPLIFIED

VERSION OF WHICH IS HANDY TO KNOW:

IN(N!) & N IN N - N.

SETION 2.5.2 "DERIVES" THE MAXWEN DISTRIBUTION, EQN. (2.44), AND SHOWS IT HAS A PEAK AT $V_{MP} = \sqrt{2KT/m}$. OTHER HANDY VELOCITIES AME AUGRAGE VELOCITY: $\vec{V} = \sqrt{8KT/M}$ AND PLMS VELOCITY: $V_{RMS} = \sqrt{3KT/m}$.

\$2,5,3 DESCRIBES A GRAND CANONICAL ENSEMBLE". THE CANDNICAZ ENSEMBLE EXCHANGES ENERGY WITH A RESERVOIR AT A CONSTANT TIEMPHERATURE, A USEFUL MODER OF THINGS PANGWA FROM ATOMS TO REFMIGENATIONS. THE "GRAND" VERSION CAN ALSO EXCHANGE MASS, THOUGH NONE LEAVES OR ENTERS THE COMBINGO SYSTEM/MESERVOIR. THIS MESULTS IN "GIBBS FACTORS" (THAT ARE SUMMED INTO THE GRAND PARTITION FUNCTION" OF (2.45)), THEY AND AN EXTENSION OF THE BOLTZMAN FACTORS TO INCLUDE MASS EXCHANGE. GIBBS FACTORS AND MOST APPLICABLE TO DENSE SYSTEMS WHENE SEVENAR PARTICLES HAVE A REASONABLE CHANCE OF TRYING TO OCCUPY THE SAME STATE. THEIR SUCCESS TREPENDS ON THEIR NATURE AS BOSONS OR FERMIONS.

\$ 2.4 GUERS "SHANNON ENTROPY" AND "INFORMATION",

THAT WERE OMGINATURY APPLIED IN TELECOMMUNICATIONS.

THE INFORMATION EXTRACTION FROM A SYSTEM

(MECETUGO OVER A TELEPHONE CABLE) IS EQUAT

TO THE DECREASE IN ITS SHANNON ENTROPY.

§ 2.7 15 SEAT EXPLANATIONY.

2 The Second Law

The previous chapter explored the law of energy conservation as it applies to thermodynamic systems. It also introduced the concepts of heat, work, and temperature. However, some very fundamental questions remain unanswered: What is temperature, really, and why does heat flow spontaneously from a hotter object to a cooler object, never the other way? More generally, why do so many thermodynamic processes happen in one direction but never the reverse? This is the Big Question of thermal physics, which we now set out to answer.

In brief, the answer is this: Irreversible processes are not *inevitable*, they are just overwhelmingly *probable*. For instance, when heat flows from a hot object to a cooler object, the energy is just moving around more or less randomly. After we wait a while, the chances are overwhelming that we will find the energy distributed more "uniformly" (in a sense that I will make precise later) among all the parts of a system. "Temperature" is a way of quantifying the tendency of energy to enter or leave an object during the course of these random rearrangements.

To make these ideas precise, we need to study *how* systems store energy, and learn to count all the ways that the energy might be arranged. The mathematics of counting ways of arranging things is called **combinatorics**, and this chapter begins with a brief introduction to this subject.

2.1 Two-State Systems

Suppose that I flip three coins: a penny, a nickel, and a dime. How many possible outcomes are there? Not very many, so I've listed them all explicitly in Table 2.1. By this brute-force method, I count *eight* possible outcomes. If the coins are fair, each outcome is equally probable, so the probability of getting three heads or three tails is one in eight. There are three different ways of getting two heads and a tail, so the probability of getting exactly two heads is 3/8, as is the probability of

Penny	Nickel	Dime
H	H	H
Н	Н	\mathbf{T}
H	T	H
\mathbf{T}	Н	Н
Н	T	\mathbf{T}
T	H	\mathbf{T}
T	\mathbf{T}	H
T	T	T

Table 2.1. A list of all possible "microstates" of a set of three coins (where H is for heads and T is for tails).

getting exactly one head and two tails.

Now let me introduce some fancy terminology. Each of the eight different outcomes is called a microstate. In general, to specify the microstate of a system, we must specify the state of each individual particle, in this case the state of each coin. If we specify the state more generally, by merely saying how many heads or tails there are, we call it a macrostate. Of course, if you know the microstate of the system (say HHT), then you also know its macrostate (in this case, two heads). But the reverse is not true: Knowing that there are exactly two heads does not tell you the state of each coin, since there are three microstates corresponding to this macrostate. The number of microstates corresponding to a given macrostate is called the multiplicity of that macrostate, in this case 3.

The symbol I'll use for multiplicity is the Greek letter capital omega, Ω . In the example of the three coins, $\Omega(3 \text{ heads}) = 1$, $\Omega(2 \text{ heads}) = 3$, $\Omega(1 \text{ head}) = 3$, and $\Omega(0 \text{ heads}) = 1$. Note that the total multiplicity of all four macrostates is 1+3+3+1=8, the total number of microstates. I'll call this quantity $\Omega(\text{all})$. Then the probability of any particular macrostate can be written

probability of
$$n \text{ heads} = \frac{\Omega(n)}{\Omega(\text{all})}$$
. (2.1)

For instance, the probability of getting 2 heads is $\Omega(2)/\Omega(\text{all}) = 3/8$. Again, I'm assuming here that the coins are fair, so that all 8 microstates are equally probable.

To make things a little more interesting, suppose now that there are not just three coins but 100. The total number of *micro*states is now very large: 2^{100} , since each of the 100 coins has two possible states. The number of *macro*states, however, is only 101: 0 heads, 1 head, . . . up to 100 heads. What about the multiplicities of these macrostates?

Let's start with the 0-heads macrostate. If there are zero heads, then every coin faces tails-up, so the exact microstate has been specified, that is, $\Omega(0) = 1$.

What if there is exactly one head? Well, the heads-up coin could be the first one, or the second one, etc., up to the 100th one; that is, there are exactly 100 possible microstates: $\Omega(1) = 100$. If you imagine all the coins starting heads-down, then $\Omega(1)$ is the number of ways of *choosing* one of them to turn over.

To find $\Omega(2)$, consider the number of ways of choosing two coins to turn headsup. You have 100 choices for the first coin, and for each of these choices you have 99 remaining choices for the second coin. But you could choose any pair in either order, so the number of distinct pairs is

$$\Omega(2) = \frac{100 \cdot 99}{2}.\tag{2.2}$$

If you're going to turn three coins heads-up, you have 100 choices for the first, 99 for the second, and 98 for the third. But any triplet could be chosen in several ways: 3 choices for which one to flip first, and for each of these, 2 choices for which to flip second. Thus, the number of distinct triplets is

$$\Omega(3) = \frac{100 \cdot 99 \cdot 98}{3 \cdot 2}.\tag{2.3}$$

Perhaps you can now see the pattern. To find $\Omega(n)$, we write the product of n factors, starting with 100 and counting down, in the numerator. Then we divide by the product of n factors, starting with n and counting down to 1:

$$\Omega(n) = \frac{100 \cdot 99 \cdots (100 - n + 1)}{n \cdots 2 \cdot 1}.$$
(2.4)

The denominator is just n-factorial, denoted "n!". We can also write the numerator in terms of factorials, as 100!/(100-n)!. (Imagine writing the product of all integers from 100 down to 1, then canceling all but the first n of them.) Thus the general formula can be written

$$\Omega(n) = \frac{100!}{n! \cdot (100 - n)!} \equiv \binom{100}{n}.$$
 (2.5)

The last expression is just a standard abbreviation for this quantity, sometimes spoken "100 choose n"—the number of different ways of choosing n items out of 100, or the number of "combinations" of n items chosen from 100.

If instead there are N coins, the multiplicity of the macrostate with n heads is

$$\Omega(N,n) = \frac{N!}{n! \cdot (N-n)!} = \binom{N}{n},\tag{2.6}$$

the number of ways of choosing n objects out of N.

Problem 2.1. Suppose you flip four fair coins.

- (a) Make a list of all the possible outcomes, as in Table 2.1.
- (b) Make a list of all the different "macrostates" and their probabilities.
- (c) Compute the multiplicity of each macrostate using the combinatorial formula 2.6, and check that these results agree with what you got by brute-force counting.

Problem 2.2. Suppose you flip 20 fair coins.

- (a) How many possible outcomes (microstates) are there?
- (b) What is the probability of getting the sequence HTHHTTHTHHHTHH-HHTHT (in exactly that order)?
- (c) What is the probability of getting 12 heads and 8 tails (in any order)?