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Concrete   Hidden   Variables    __   Rev.   4 
 Dave   Peterson,   11/27/16-   12/22/16      for   Cosmo: 
 

Overview :          Bell   inequalities   and   tests   for   EPR   experiments   reveal   that    no    local   hidden   variable      can 

explain   the   observed   correlations   between   two   well-separated   EPR   detectors.      Rather   than   inequalities,   this 

study   focuses   more   on    continuous       function   plots   of   quantum   mechanical   (QM)   results   versus   hidden 

variable   correlations   as   a   function   of   polarizer   difference   angles.   Desiring   an   intuitive   model   that   might 

approximate   QM,   we   may   suppose   it   to   be   due   to   predetermined   polarizations   emitted   from   a   common 

source   (pre-established   coordination).      And,   without   familiarity   with   concrete   examples   of   what   a   hidden 

variable   could   really   be,   we   might   weakly   retain   this   wrong   idea   in   the   back   of   our   minds.   Indeed   oneλ  

hidden   variable   (HV)   example   included   here   is   fairly   close   to   the   correlation   for   real   quantum   mechanics 

(case   HV-A,   see    Fig.   A   and   Fig.   E ).   But   actual   QM   can   do   better   than    any    Bell   HV   metric. 

 

Surprisingly,   a   recent   survey   on   the   beliefs   of   physicists   [10]   showed   that   a   third   still   say   that 

physical   properties   exist   prior   to   and   independent   of   measurement,   and   only   a   third   say   that   local   HV’s   are 

impossible.   But   a   third   also   have   general   ignorance   of   Bell   tests.      The   ignorance   of   Bell   is   partly   due   to   its 

difficulty,   abstraction   and   strangeness.      QM   calculates   and   tests   say   that   a   photon   observation   in   one 

detector   immediately   “snaps”   the   other   photon   into   allignment.   Hidden   variables   says   that   a   more   contrived 

or   classical   mechanism   may   approximate   a   similar   output   going   back   to   the   state   of   the   photons   when   they 

were   emitted. 

 

John   Bell     presented   his   revolutionary   “Bell   Inequality”   for   the   Einstein-Podolsky-Rosen 

(EPR)   entanglement   paradox   in   1964.      Using   essentially   classical   and   logical   arguments,   he 

showed   that   “any   physical   theory   that   assumes   local   realism   cannot   also   predict   all   of   the 

results   of   quantum   mechanics   [1].”      He   did   this   by   introducing   abstract   local   hidden   variables 

(LHV’s)   represented      by   the   symbol   “lambda”   and   derived   special   Bell-inequalities   that   would   be 

decisively   violated   by   actual   experiments   for   entangled   EPR   particles.   His   tests   involves 

performing   one   experiment   with   a   test-pair   of   set   angles   (a,b)   and   then   another   with   a   different 

set   angle,   c,   and   then   comparing   them.      The   first   Bell   statistical   coincidence   test   looked 

something   like   this: 

                                                         Correlation   C(a, ) (b, )  C(b, )       c C a   c ≤ 1  

 

Examples   shown   below    includ e :   (1)   A   derivation   of   the    standard    quantum   mechanical 

correlation   .   (2)   A   derivation   of   the   LHV    “Triangle   Plot”    in    HV-A    and   in(V V )  cos (b )  P a b = 2
1 2  a  

Fig.   A   below.   In   figure   C,   this   is   shown   as   “overlapping   bricks.”      (3)   An   interesting   but   puzzling 

non-local   hidden   variable   beginning   with   ’s   but   ending   up   as   quantum   mechanical   in    HV-B .      (4) λ  

A   more   intuitive   LHV   “colliding   hills”   setup   in   section    HV-C    (and   not   as   good   as    HV   A ),      (5) 

“ CHSH _Bell”   theory   for   quantum   mechanics   vesus   hidden   variables   (figures   D,   and   E   for 

E(a,b)),   and   (6)   some   discussion   of   non-locality   in   QM.       All   graphs   of   figures   A   and   E   are 

derived   here. 
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An   example   of   one   of   Bell’s   early   arguments   is   available   in   a   recent   paper   for   our 

Boulder   Cosmology   group   [1].   Currently   there   are   now   many   different   types   of   test   inequalities 

(e.g.,   “CSCH”),   but   they   are   all   still   called   Bell   inequalities.      A   great   many   well-tested   and 

precise   experimental   violations   of   Bell   inequalities   show   that    all    local   hidden   variable 

approaches   expressed   by   the   symbol   are   doomed   as   a   class.      This   was   a   major   advantage   of   λ  

having   a   general    abstract    derivation.   But,   to   really   understand   it   intuitively,   we   need   to   show   and 

picture   some    concrete    possible   examples   of   what   a   hidden   variable   might   be.This   paper   largely 

avoids   Bell   inequalities   and   instead   focuses   on   continuous   graphs   (like   Figure   A)   for   QM   versus 

local   hidden   variable   mathematics   over   all   possible   difference   angles.   The    goal    is   to   derive   the 

plots   showing   in    figures   A   and   E . 

 

Figure   A :              A   standard   plot   [Ref.    2 ]   of   the   cosine   curve   for   QM   (solid)   against   the   best 

hidden   variable   estimate   (HV,   dashed   line)   showing   greatest   relative   difference      angles   of 

polarization      near   20   or   70   degrees.   Also   look   at   a   similar   plot   for   estimations   E(a,b)   in   Figure    E 
below.. 

 

The   initially   proposed   theoretical   setup   considered   two   entangled   particle   spin 

polarizations   from   a   central   singlet   state   having   total   angular   momentum      zero.   Particles   are 

directed   to   two   different   spacelike   separated   detectors   labeled   A   and   B   for   spin   measurement 

orientations   labeled   a   and   b.   For   spin,   this   might   be   Stern-Gerlach   magnets   with   different 

north-to-south   rotation   angles   (a   and   b).   But,      is   hard   to   actually   do   these   spin   angular 

momentum   experiments;   and   it   was   found   that   use   of   photon   polarizations   was   much   more 

practical.   To   date,   there   has   been   no   successful   test   of   Bell’s   theorem   using    particle    physics. 

However,   a   Bell   test   in   2015   [16]   verified   electron   spin   entanglement   for   electrons   held   in   two 

stationary   diamond   nitrogen   vacancy   centers   but   still   using   photons   propagating   between   them 

over   a   distance   of   1.3   kilometers.   This   is   not   quite   what   Bell   suggested,   but   it   is   still   interesting. 
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Almost   all   experimental   tests   to   date   have   been   done   using   photons   with   an   electric 
polarization   basis   that   can   be   labeled   as   horizontal   and   vertical,   H   and   V   [see   Fig.    B    and   the 
upper   portion   of   Fig.    D ],   and   considering   just   two   entangled   photons   and   two   polarization 
detectors   for   the   early   experiments.   For   a   frequent   convenience   here   (which   is   allowed)   we 
could   set   detector   (say   A   to   the   left   )   to   untilted   xy   polarizer   axes   (angle   a   =   0   =   vertical   V).   Bell’s 
key   new   idea   was   to   consider   rotating   the   other   detector   by   an   angle   that   is    not     the   traditional 
b=   0,   45,   90,   135   or   180   degrees   but   rather   some   angle   in-between--like    22.5   degrees    (e.g.,   see 
graph   differences   in   Fig.   A).  

Figure   B . 
 

 
Early   experiments   used   two   photon   decays   from   atoms   in   an   atomic   beam   (e.g.,   excited 

Ca-40   decaying   sequentially   to   green   and   violet   entangled   photons   [6][14]   ).   But   now   it   much 
more   convenient   to   get   entangled   photons   from   laser   beams   passing   through   nonlinear   crystals 
(e.g.,   nonlinear   crystal   Type-1   down-conversion   (DC)   sources   so   that   the   two   output   photons 
both   begin   with   the    same    polarization   HH   or   VV   or   their   superposition.   A   common   example   is   a 
specially   configured   beta   barium   borate   (BBO)   type   1   crystal   where   a   tiny   fraction   of   the   incident 

photons   (   about   )   get   photon   entanglement   by   “spontaneous   parametric   down   conversion”0  1 10  
(SPDC).   Laser   photons   passing   straight   through   the   crystal   go   into   a   beam   dump   and   are 

ignored.   To   mathematically   process   this   with   ideal   hidden   variables,   for   detectors   A   and   B   we,  λ    
need   to   specify:      a   name   for   the   hidden   variable,   its   probability   distribution 

,   explicit   functions   for   individual   measurements(λ) [which does not have to be uniform]   ρ  
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or       how    they   are   going   to   be   used   (what   are   the   rules).   We   first   require   that(λ, ) and B(λ, )    A a b  

expectation   values:       and     .ρ(λ)dλ A(λ, )  < A >   =  ∫
 

 
  a ρ(λ)dλ B(λ, )  < B >   =  ∫

 

 
  b  

And   then   for   measured   outputs   using   intuitive   hidden   variable,   ,   and    joint    settings   of   a   and   b, λ  

we   need   to   integrate   over   all   lambda’s      [Ref.      1].  

(a, )  (λ)A(a, )B(b, )dλ, where  0 (λ)   and   (λ)dλ 1. Eqn.  1  P b =∫
 

 
ρ λ λ   ≤ ρ ≤ 1 ∫

 

 
ρ =      

This   is   the   “standard”   Bell   LHV   form.      Notice   here   that   the   LHV   detector   functions   A   and 

B   only   depend   on   their   separate    local    settings   a,   b,   and      .For   averages,   we   sweep   through   an λ  

ensemble   of   hidden   variable   values   according   to   a   probability   density   .      The   hidden   variable(λ)  ρ  

here   is:   a   pre-determined   propagating   input   photon   polarization   angle      [the   very   light   lines   in   = λ  

Fig.   B]   and   possibly   use   of   sine   or   cosine   electric   vector   projections   onto   polarizer   angles.  

 

 What   makes   the   actual   quantum   mechanical   (QM)   case       different    from   intuition   is   that 

polarization   is    not    defined   prior   to   measurement   (passing   through   the   polarizer   to   a   detector). 

But   as   soon   as   one   photon   is   detected   the   other   instantaneously   and   non-locally   “is   projected 

into   a   state   of   polarization   parallel   to”   the   first   result   (V   or   H,      see   Ref   [5],   Aspect   )   .   Whether   this 

is   a   photon   on   either   A   or   on   B   is   totally   random   (collapse   is   random).   I   call   this   reduction 

“ SNAP-TO”    (as   in   a   soldier   snapping   to   attention   or   a   computer   visual   “snap   to   grid”).      This   is 

different   from   the   intuitive   but   naïve   idea   that   perhaps   the   EPR   photons   were   initially   tilted   at   the 

same   angle   from   the   source   and   kept   that   alignment   up   to   the   time   of   detection   (called   “real”). 

For   that   case,   the   initial   hidden   variable   polarizer   angle   could   be   anywhere   from   0-180   degrees 

(i.e.,0   to   radians),   a   uniform   distribution   [    radians],      so   thatπ (λ)  nst. π  ρ = c = 1/  

]   --   an   ensemble   of   all   possible   predetermined(λ)dλ (1 π)  ,  λ 2,+ 2] or [0 to π  ∫
 

 
ρ = π / = 1   [ π/ π/  

polarization   angles.   This   provides   a       concrete   example    where   the   hidden   variable   lambda   is 

merely   any   predetermined   tilt   angle   for   both   of   the   photons   per   event.  

 

 

 

QM:                 Actual   Quantum   Mechanics   Calculation             Let's   begin   by   first   looking   at 

the   actual   physical    QM    calculation   for   the   coincidence   of   detector   hits   for    vertical    polarizer 

angles      [2].      Begin   with   a   left   polarizer    A    having   angle   a   =   V   =   “|”   and   right   polarizer   B   having 

angle   b   and   V_b      “/”      and   look   at   probability   coincidence   P(VV)   meaning      V’s   being   vertical    in   the 
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tilt   angle   bases    of   their   respective   polarizers   [Fig.    B ].   Let   the   initial   polarization   state   of   two 
entangled   photons   be   given   in   a   neutral   untilted   basis:     Eqn.   2  

 |ψ (1  [ |V V |H H ] , so    |V cos a|V in a|H nd          EPR  >   =   /√2  > | >   +   > | >   a >   =   >   s > a  

H sin a |V cos a |H    L et |ψ cosθ|H H sinθ |V V ,  | a >   =   >   +   > . DC >   =   1 > | 2 >   +   1 > | 2 >    
 
where   “DC”   means   “down   conversion,”   entangled   photons   are   1   and   2   or   L   and   R   on   the   untilted 
vertical   (y   axis)   and   horizontal   (x   axis).   And   we   make   the   initial   laser   beam   entering   the 
nonlinear   crystals   for   down   conversion   to   have   polarization   oriented   at 

.   Then   the   “balanced”               There   are   four   basic5  so that cosθ inθ 1  θ = 4 o = s =   /√2 ψ> ψ>  | DC = | EPR.   
types   of   ‘Bell   states”,   [aligned   or   un-aligned   (e.g.,   VH)      and   superpositioned   with   a   +   or   -],   but   we 
will   only   use   this   one      ψ> .| DC  
Then   project   the   down   converted   state   onto   “tilted-vertical”   polarizations   as   in    Fig.   B.    So, 
 
(V V )  (V V )  |  | | |ψ (  1  )    |sin a sin b  os a cos b| )    P ⇒ P a b =   < V a < V b DC > |2 =   /√2 2 + c 2  

{where   trig   coefficients   are   picked   out   like   this:   e.g.,  
    H>   =   <-sin   a   H|H>   =   -sin   a   <H|H>=   -   sin   a      },|< V a   

            ANS.ut   cos(a )  cos a cos b sin a sin b, so         P (V V ) os  (a  b)  2  B b =   +       = c 2   /  
 
Or,    if   we   set   angle   a   at   0   and   replace   angle   b   by   the   difference   angle      b ,  α =   a    
(V V )  (V V )  |  |  |   |ψ (  1  )    |sin 0 sin α  os 0 cos α| )    P ⇒ P o α =   < V o < V α  DC > |2 =   /√2 2 + c 2  

.      (Again).      We   can   rewrite   this   also   as:                                                                        [see   Fig.    A ]cos α  2  =   2  /  
 

   (V V )  (1 2) cos (b )  1 4)[1 os 2(b )].     Eqn.  3  P =   / 2  a = ( / + c a    
 

The   variable   used   for   actual   quantum   mechanics   tests   and   many   LHV’s   is   solely   the 
difference   in   tilt    angles   of   the   two   detectors   [   angle   alpha   =      ].   QM   calculations(b  a)  α =      
result   in   a   Bell   correlation   depending   on   cos( )   [note:   for   fermion   electrons   it   would   be   justα2  
-cos( )].   Suppose   again,   by   rotational   symmetry   and   convenience,   that   the   left   device   A-angleα  
is   vertical,   a   =0=      “|   ”;      and   there   is   a   lambda   angle      “   \”,      and   right   detector   tilt   angle   may   beλ ~  

=   “/   ”.      For   the   quantum   case,   a   hit   on   the   vertical   detector   “|”    snaps    the   other   photon   alsob = α  
to   “|”   so   that   the   only   relevant   polarizer   angle   to   project   onto   is   alpha   for   the   second   detector,   B. 
  .  λ α  
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Figure   C:    Correlation   Integrand   shapes   for   overlap   of   A   and   B   function   shapes   for   Convolution. 

Cases   “colliding   hills”   and   “overlapping   bricks.”  

  

 

Example   HV-A:           2   joint   snap-to’s   without   Malus’   law,   “ The   Triangle   Plot”=    (Fig.    A )   

 

Now,   what   about   those   plots   we’ve   seen   before   of   “naïve”    triangle    (capital   Lambda 

shape   or   “tent   map”   e.g.,   Fig   A)   approximating   the   quantum   cosine   curve.      Straight   slanted   lines 

go   from   the   top   of   the   QM   cosine   curve   to   its   bottom   valley   –   a   “not   too   bad”   approximation. 

Well,   this   case   is   for   an   implementation   of   hidden   variable   density   using   step-functions--   a 

special   closeness   and   almost   successful   rule.      This    first   concrete   example    is   also    the   most 

popular   example .   Instead   of   vector   electric   projections   to   the   polarization   axes,   here   we 

“snap-to”   when   within   an   effective   domain   of   angles.   This   special   HV   rule   is   that   If   angle      “   \”λ =  

lies   within      of      “/”      and   0   =   “|”,   then   they   both   registers   as   V   =“|”      [e.g.,   ref.    2      see   RULE ].54 o α =  

Here   we   are    not    using   sine/cosine   projections   and   not   using   the   rules   of   quantum   mechanics. 

In   electrical   engineering   (EE),   the   relevant      distribution   is   called   a   “rectangular”   or(λ)  ρ  

Pi=   shape   with   width   [13].   The   probabilityΠ 2 , F ig. C    π/    

ensity ρ(λ)  hΠ(2λ π)  eight  h 2 π  for | λ |  4  45 , (else 0).    d =   / = h =   / ≤ π/ =   o     

   The   total   domain   width   of   lambda   is 

π 2  2)]  , but the width of  Π is ω 2, so h  π. (product unity)  w = [ / ( π/ = π   = π/   = 2/   

Then, (λ)dλ  Π(2λ π) dλ  .   And, = Π(2λ π)(1Π(2λ π)dλ ,      ∫
+π 2/

π 2/
ρ = ∫

+π 2/

π 2/
h / = 1   < A > ∫

 

 
h / / = 1    

(as   required,   if   we   center   a   at   0   --   and   we   can).    As   lambda   moves   from   lower   to   upper   of   its 
range,   the   rectangle      with   as   center   moves   with   it. Π  λ  
 

 

The   special   EE   shape   functions      are   both   understood   to   have    unit    height,   and   the(x) and Λ(x)   Π  

form   is   a   symmetric   function   centered   at   a,   has   total   width      and   height   h         [13].Π( (λ ) ω)  h a /  ω   
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    RULE :   The   rule   for   this   LHV   is   “ We   require      to   be   close   to    both    the   left   and   right   detectorλ  
polarization    (A,   B)”;   and   we   care   about   the    overlap   correlation    (angular   overlap   width   =    W    <   w 
radians,   see   overlapping   W   of   Fig.   C).  
This   is   exactly   the   problem   shown   by    animation    in   Wikipedia   [3]   for   a    convolution    that   outputs   a 

   shape   (please   look,   it   is   kinda   neat!   ).      By    definition :      a   function   f   convolved   with   g   is:Λ  

(x) (x)  (u)g(x )du  (u)f (x )du,  let u , here  Π(0 )Π(α )dλ      f g  ∫
 

 
f u =  ∫

 

 
g u   = λ   ∫

 

 
  λ λ  

Convolution   calculations   can   be   hard   and   often   require   numerical   methods,   but   ordinary 
calculus   can   also   be   used   [e.g.,   7].   This   case   with   flat-uniform   distributions   is    much    easier:   there 
are   no   curves   or   slopes   in   these   functions,   so   we   can   just   apply   simple   geometrical   thinking. 
Since   we’ve   conveniently   chosen   detector   A   to   always   have   a   vertical   orientation   (a   =   zero   tilt 
from   vertical),   we   can   position   the   lambda   density   also   at   rotation   zero   leaving   us   with   detector 
B   with   rotation   alpha   (the   difference   from   b   minus   a   angles,   ).      Overlap   enables   both   ab  α =   a  
and   b   to   be   in   range   of   4.  λ =   π/ Eqn.   A0 

(α)  (λ) A(0, ) B(α, λ)dλ  1 π) Π(2[λ ] π) Π(2[λ ]) dλ    P V V =∫
 

 
ρ λ = 0   = ( / ∫

 

 
  0 / α  

This   has   the   correct      LHV   form   of    Eqn.   1.          And   we   also   attain   maximum   probability   when   the 
difference   angle      (when   full   rectangles   overlap)0.  α =     

   There   may   be   two   domains   to   consider   for   overlap   widthSo P (W )  (1 π)(π 2)  .5 .    = h = w =   / / = 0  

W   =   right   overlap   minus   left   of   overlap   domain:                                    [Slope   Functions,    Eqn.      A1       ] 
 

0  (α)  π 2  , and α 0  (α)  π 2  α, so   α >   ⇒W =   / α   <   ⇒W =   / +      

         Plot. P (V V ) h)(1)W   [1 2 π].      = ( =   / α/  
 
   And   these   are   just   the   equation   for   the   triangle   ( Figure    A )   with   left   slope   up   and   right   slope,  Λ    
down   ending   at         [Figure   A].   For   the   fermion-electron   case,   the   slopes   would   end   at      --2  π/ π  
twice   as   wide.   Bell’s   theorem   says   that   it   is    impossible    to   find   any   local   hidden   variable   example 
that   can   give   actual   quantum   mechanics   results.       So   Example   HV   A   modestly   fails   to   agree   with 
QM.       But,   this   seemingly   kludgy   “double   snap”   ends   up    being   much   better    than   some   other 
attempts   with   local   hidden   variables   (such   as   HV   C   below). 

Notice   that   the   slope   equations   only   pertain   to   P(VV)   and   shouldn’t   yet   be   compared   yet 
to   the   more   elaborate   E(a,b)      experimental   estimate   of   the   CHSH   test. 
  
 
 
 
Example   HV-B          [Possible   Puzzling   Exemption]:      Simple   Malus’   Law   projections   of 

pre-existing   photon   polarization   (angle   onto   two   analyzer   orientations      a   and   b            or   0   and   λ  
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.   This   sounds   like   a   hidden   variable   calculation   and   lambda   might   really   project(b )  α =   a  

initially   onto   the   polarizers.      But   then   lambda   gets   discarded   at   the   end.   Overall,   this   is   a   little 

strange.   Bohr   might   say   that   if   you   can’t   measure   the   effect   of   ,   then   don’t   bother   even   thinking λ  

about   it.      But   it   could   participate   before   it   is   subtracted   away. 

 

 This   time,   a   detection   on   the   “|”   detector      leaves   the   other   photon    where   it   was    at   (no   λ  

snap-to)   so   that   the   electric   vector   now   has   to   project   onto   the    difference    in   angles   of   “/   - α λ =  

\”   .      [We    are    assuming   Malus’   Law   for   real   electric   fields   of   a   photon   projecting   onto   the   polarizer 

angle   for   detector   A   and   separately   for   detector   B].   Classical   calculations   may   then   require   an 

integration   over   the   ensemble   of   all   local   “hidden   variable”      angles. λ  

Derivation    :         use   of   hidden   lambda   and   trig   projections   onto   two   polarizer   angles: 

  ρ(λ)  ( height  h 1 π)  for | λ |  2  90  (else 0).    Then, (λ)dλ  1.    =   =   / ≤ π/ =   o   ∫
+π 2/

π 2/
ρ =     

=(V V )  (V V )    | |   (|V V + H H 2  (λ)dλ  P ⇒ P o α =   ∫
+π 4/

π 4/
| < V o < V α λ > | λ > | λ > | λ > |

2/ ρ  

=   ( =1 2) [< |V < |V |H < |H  ρ(λ)dλ  ( / ∫
 

 
V o λ > V α λ >   +   < V o λ  > V α λ > ]

2
 

=                                   Eqn.   B11 2) (  cos(0 ) cos (α ) in(0 ) sin(α ) )   ρ(λ)dλ     .  ( / ∫
 

 
λ λ + s λ λ 2    

=(½) [sin  λ sin (α )  cos  λ cos (α )  sin λ sin (α ) cos λ cos (α λ)]  ρ(λ)dλ    ∫
 

 
  2 2  λ +   2 2 λ 2 λ    

 

At   first,   this   approach   might   be   another   Convolution   Integral.       Goal ,   for   example,for   each 

alpha,   evaluate   the   integral   for   lambda   and   then   sweep   through   possible   alphas   for   a   final   plot 

of   P(VV)   versus   the   polarizer   difference   settings   alpha. 

e.g.,   A   peak   result   occurs   for   alpha   =   0:   that   is, 

(V V )(@α 0)  (0.5) (cos λ in λ)   ρ(λ)dλ  0.5  ρ(λ)dλ  0.5 (1)  0.5  1 2.  P =   =   ∫
 

 

2 + s 2  2 =   ∫
 

 
1 =   =   =   /  

e.g.,   And   for   45 , integrand A1  cos λ((1  )(cos λ inλ) sinλ((1  )(cosλ in λ)   α =   o   =   /√2 + s   /√2 s =    

=   1  )(cos λ  osλsinλ)  (1  )(sinλcosλ  in λ)  1 )(1), P (V V ) 4      ( /√2 2 + c   /√2 s
2  = ( /√2   = 1/  

 

BUT ,    look   more   carefully   at   that   integrand   in   Eqn.   B1. Eqn.   B2   : 

cos a cos b  sin a sin b   cos(a ) cos(0 )cos(α )  os(0 α ) os(α)  !!    +   =   b =   λ λ = c λ ( λ = c  

 

And   then:          This   result   is   just   QM! !!                   ANS.(V V )  P (V V )  cos α  2.  P =   o α =   2 /  

The   lambda   contribution   subtracts   away !         [I   only   noticed   this   after   doing   a   spreadsheet 

calculation].      There   is   no   need   for   convolution   over   all   lambdas.   The   lambda   angle   can   be 

anything   or   everything.  

This   hidden   lambda   pre-existing   orientation   ends   up   working      like   QM.  
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And,   note   that    Eqn.   B1   is    not    in   the   LHV   form   of   Eqn   1.    Contributions   from   A   and   B   are   mixed 
together   (arguments   with   .      But    Local    hidden   variables   require   separating   Aα ) and (0  λ))  ( λ    
and   B   in   the   HV   equation.  
Most   HV   equations   begin   with   finding   averages   of   results   for   tests   A   and   B   separately.  

For   example,      where   v   is   a   preparation   direction   (like   H   or   V).         If(v) ρ(λ)dλ B(λ, , )  < B >   =  ∫
 

 
  v α  

we   let   (interesting)                                     Eqn   B3.(λ, )  | || V , then B  cos (α ) 2 nst.   B α =   < V α λ  > |
2   =   2 λ / = c  

 One   might   think   that   a   proper   approach   should   also   include   horizontals:  
(λ, )  | | (|V  H )|   |cos(α )  sin(α )|    B α =   < V α λ  >   + | λ >

2 =   λ +   λ 2  
And   it   is   not   clear   that   this   should   be   dismissed.      Overall,   this sin(α 4)| .   = |√2 λ  + π/ 2  

example   HV-B   is   puzzling   and   suggests   extra   thought. 
 
 
 
 

HV-C :    A   more   intuitive   proper    LOCA L    hidden   variable   calculation   using   as   input   the 
cosine-squared    Hill -profile   of   Figure    C      --    somewhat   like   the   QM   Eqn   3   above   and   beginning 
with   an   optical   Bell   calculation   for   the   individual   detectors:         Let 

(a, ) cos (a ),   cos (a ) dλ π  N π) [(a ) 2  sin2 (a ) 4]     A λ = N 2 λ  ⇒   < A >   =   ∫
+π 2/

π 2/
N

2 λ / = ( /   λ / +   λ /  

Evaluate   at   limits   to   get   the   sine   contributionN 2  0.5N .      used ρ(λ)  1 π,  and   < A >   =   / =   =   /    
drops   out   at   end   points.      [   A   “normalizer”   N   was   added   just   in   case   we   wish   to   modify   all   results 
at   the   end.(for   example   getting   a   better   fit   to   the   QM   result   using      But     a fudge)].  N =  √2    
we   really   should   be   using   just   N   =   1. 
 

So   now   we   can   evaluate   the   correlation   of   a   and   b   using   the   standard   LHV   form   Eqn.   1.  
 

(V V )  < B = (dλ π) cos (a ) cos (b ) N   (dλ π)[(cos(a )cos(b )]  N    P a b = A > ∫
+π 2/

π 2/
/ 2 λ 2 λ 2 =   ∫

+π 2/

π 2/
/ λ λ 2 2  

At   first   this   form   looks   like   another   convolution   is   needed   (Figure   C).       But    ,   it   can   also   be   done 
just   using   calculus.      That   is:   hint   sketch: 

Expand   cos x cos y)   (0.5 cos(x )  0.5 cos (x )) , and use  cos z dz  z 2  sin 2z  4.     ( 2 =   + y +   y
2   ∫

 

 
  2 =   / +   /  

 
The   result   is   Eqn   C1.(V V )  < B = 1 8  cos  (a  ) 4.    = QM cos (a ) 2 !  P a b = A >   / +   2 b / /   :   2 b /  

We   might   kludge   this   up   by   using   2  B (1 4  cos (a  b) 2 )   N
2 =     < A >   =   / +   2   /  

 
But,       it   is   still   a   poor   fit       because   of   the   1/8th   or      ¼    offset   value .      We   actually   did   much 

better   using   what   seemed   to   be   silly   rectangles   in   HV-A.      Why   the   offset?   Because   the   lambda 
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domain   for   integration   is   only   180   degree   wide   which   is   also   the   domain   of   each   cosine   squared 

function   --   there   just   isn’t   much   room--   it   is   all   used   up   and    some   overlap   is   guaranteed.       A 

minimum   overlap   may   result   from   a      at   -45   degrees   and   b   at   +45   degrees   where   we   have 

overlaps   on   both   sides   of   functions   A   and   B. 

 

[As   a   quick   check,   for   total   overlap:   (compare   with   Eqn   B4)

   Agrees.0 (max), 1 8  cos (0) 4  3 8,  also  os λdλ 3 π8)(π 2 2)  3 8.   α =     / +   2 / =   /   =∫
 

 
c

4 = ( / / π/ =   /  

 
 
 
Section   D:                    A   Better   Bell   Test: 
 
a).       Coincidence   for   V   and   H   polarizations   together 

In   the   older   Bell   Tests,   we   only   recorded   verticals   “V   and   V”   correlations   and 

threw   away   all   horizontas,   H   (we   just   didn’t   bother   to   measure   them).   The   full   Figure-    D 

tests   below   are   now   preferred   over   the   older   Bell   test.  

   [Look   at   coincidence   monitor   CM   for   a   pair   (D-   D+)   in   Figure    D ].   

The   previous   quantum   mechanics 

        result was  P (a, )  P (a, )  (1 2)cos (a ),     [eqn. 3 above]        :  
V V

b =  
HH

b =   / 2
b    

But    what   about   the   probabilities   of   coincidence   detections   for   VH   and   HV   ,   we   will   need   this. 

 

(a, )  P (a, )  |  | | Ψ ,   |ψ (1  [ |V V |H H ]        P
V H

b =  
HV

b = | < V a < H
b DC

> |2  
EPR  >   =   /√2  > | >   +   > | >  

And   with   a   45   degree   laser   polarization   coming   into   a   nonlinear   crystal,   EPR   =   DC.   As   Before:

   |V cos a|V in a|H ,  and          a >   =   >   s >   H sin a |V cos a |H    | a >   =   >   +   > .  

Carefully   picking   off   the   sines   and   cosines   (      e.g., 

    V>   =   <sin   a   V|V>   =   sin   a   <V|V>=   sin   a      ),         we   then   get:|< V a  

(a, )  1 2)[ os a sin b in a cos b] sin(a )]   2  P
V H

b = ( / c + s 2 = [ b 2 /  

And:      (a, )  sin α 2                    Eqn  D 1.  P
HV

b =   2 /  
 
b)        “CHSH”:          [   for   John    Clauser ,   Michael   Horne,   Abner   Shimony,   Richard   Holt,   1969.] 

The   CHSH   HV   test   [Figure    D ]   again   uses   entangled   photons   with   each   photon 

encountering   a   two   channel   polarizer   with   a   total   of   four   outputs   (V   H   left   and   V   H   right)   instead 

of   the   older   Bell   two   detector   tests   with   single   channel   analyzers.      This   test   has   advantages   over 

older   Bell;   for   example    not   throwing   away   horizontal   H   counts    but   including   them   in   statistics. 

Counts   are   recorded   for   coincidences   :   N++,   N+-   ,   N-+,   and   N--                        (VV,   VH,   HV,   HH). 
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A   first   experiment   begins   with   angles   a   and   b   and   then   one   angle   is   changed   (from   b   to   b’) 

followed   by   changing   a   to   a’   (pair   a’,b)   and   finally   both   angles   changed   together   to   pair   a’b’. 

Then   statistics   are   gathered   to   get   an   “experimental   estimate”   E   and   a   special   test   metric   S: 

  [N N N N )  ]    Σ N s,  And    E =   ++ +     ( +   +   + / ′   :     

(a, ) (a, ) (a b) (a b )   S = E b E b′ + E ′ + E ′ ′ Eqn.   D   2. 

Hidden   variables   then   predict   bounds   in   the   form   of   an   inequality: 

    S|   ,    But Quantum mechanics gives a higher range  |S|    |
HV

≤ 2  
QM

≤ 2√2  

 

 

 
 
Figure   D:                       (Above)    CHSH -Bell   test   schematic   with   a   two   entangled   photon   source   (S), 

four   detectors   (D’s),   two   channel   polarizers   (a,b),   and   Coincidence   Monitor   (CM).   [Ref.   12].   This 

setup   is   now   more   popular   than   Bell . 
 

   As   hinted   by   Figure    A ,   optimal   LHV   results   may   select   a   set   of   special   test   angles   separated   by 

22.5   degrees   and   angle   a’b’=67.5   degrees 

order a   0 , b  π 8, a  2π 8, b π 8  set Φ] .    [ ′ =   = V o   =   /   =   /   ′ = 3 / =    

 

This   special   choice   of   angles   (set   “Phi”      or   similar)   was   also   tested   by    Aspect    [Ref.    14 ] 

--sometimes      also   called   the   Bell   test   angles.   They   give   the   highest   E(a,b)   values   for   LHV   and 

QM. 

   From   equations   3,   D   1,      D2   i.e., cos α 2, sin α 2 and E(α) os 2α}     {   2 /   2 / QM
= c   

(a, )  (a, )  P (a, )  (a, )  P (a, ) 1 2)[(1 )cos α 1      E b P
V V

b +  
HH

b P
HV

b  
V H

b = ( / + 1 2 ( + 1)sin α]2
   

 

=0.707.ut, cos α in α os(2α).  And for special case α 8, cos(α)  cos(2π 8)  1  B   2 s 2 = c = π/   =   / =   /√2  

 

{Notice   that   (a, )   cos(2α) is a cosine curve f rom   at 0 to   at π 2.}  E b
QM

=   + 1 1 /  

 

The   sequential   calculations   for   CHSH   first   calculate   probabilities   like   P(vv)   in   Eqn   A1   and 

equation   D1.      Then   find   “estimate”   E(a,b)   in   terms   of   four   P’s   (like   D5).   And   then   the   S   metric 
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(Eqn   D2)   using   four   E   values.      It   sounds   hard.      But   it   gives   the   most   reliable   sets   of   inequality 
limits,   S. 

 
 
Figure   E:       (Figure   3   from   Reference   [5])   --   Has   the   same   shape   as   Figure   A   but   now 

with   y-axis   =   E(alpha   )   =    E(a,b)    =   “Experimental   coincidence   estimate”   instead   of   the 

P(VV)   of   just   one   of   its   components.   This   commonly   seen   graph      has   a   range   double 

that   of   Fig.    A .   .(α)   1  |(a, )| π  versus   E
HV

=   4 b / (a, )   cos(2α)  E b
QM

=    
 
 

This   is   different   from   the   cosine   curve   in   Figure    A    which   was   only   for   P_V   V   (range   0   to 
+0.5)   while   the   E   plot   is   stretched   up   from   Fig.    A .      But   for   the   definition   of   example   HV-A   with 
the   convolution   of   rectangles   for   “joint   snap   to”   output      P_v   v   as      the   only   thing   of   interest.   Now 
we   have   broadened   our   interest   beyond   just   P_vv. 
lso E(a , ) os2(3π 8) .707. So, [Eqn D2]  S     2.828   A ′ b′ = c / =   0   :  

QM
= 3/√2   1/√2 = 2√2 =    

And   the   1982   measurement   by   Alain   Aspect   [14]   gave    S~   2.7 ,      pretty   close   and   well   above 
(implying   that      QM   is   not   local-real   [hence   non-local]).  .0.    S

HV
≤ 2  

 
OK,   so   we   can   calculate   the   CSCH   inequality   limit   for   QM.  
Can   we   find   a    local    hidden   value   comparison   or   inequality   limit   for   S?  
 
Well,    abstractly ,   it   is   very   easy    [11]:   for   convenience,   first   abbreviate   with   a   single   letter 

and   for   each   lambda   and   each   test   where   each   letter   can   only   be   1   or   -1: 
(a, )  just A, value B is  , B  or B  has to be 0 or  . Then examine the 4 quantities  A λ =     1   + B′ B′ 2  

(like   the   metric   S   =   S(E’s)   in   equation    D2    above) 
B B   B  B A(B ) (B )  (2) (0) or A(0) (2)      A + A ′ + A′ A′ ′ =   + B′ + A′ B′ = A + A′ + A′ ≤ 2  
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This   is   the   inequality   for   CHSH   hidden   variables   (“Experimental   estimates   E).   --   Pretty   Clever, 

and   again   QM   can   do   better   (above   2.0)   in   violation   of   LHV’s. 

 

c).         A   Concrete   Local   Hidden   Variable   for   CHSH     :      (continue   deriving      the 

Cosine   versus   sloped   line   plots   somewhat   like   HV-A   but   now   for   estimate   E).   Let   us   evaluate 

t he   best   HV      estimate   E(a,b)    plot    (using   the   A(a)   =    rectangles   as   in   Fig    C    and   convolution).Π      

This   is   still   similar   to   Fig   C   but   now   having   a   vertical   axis   E(a,b)   where    E    depends   on    all   four 
probabilities   PVV   +   PHH   -   PVH   -   PHV   (for   aligned   vs.   unaligned   coincidences).      But   so   far   we 

only   knew      about   the   PVV   term   in   HV_A   --   so   how   can   one   calculate   the   other   probabilities? 

There   is   a   very   clever   trick   found   in   AJP   [pg   909,   ref.   [ 2 ][15]   .         We   can   state   two   old   terms 

familiar      A   and   B      as   separate   functions   of   a   new   A’   and   B’   for   use   in   calculating   estimate   E(b-a) 

such   that:  

               Eqn.   D   3(a, )  (λ, )  (λ, ) ρ(λ)dλ  .5[1 (λ, )] .5[1 (λ, )] ρ(λ)dλ   P
V V

b =  ∫
 

 
A a B b =∫

 

 
0 A′ a 0 B′ b  

                with   just   a   change   in   signs   for   the   other   combinations:    VV(++),   HH(--),   HV(-+),   VH(+-).  
And   then   the   resulting   summed   estimate   is   a   pleasant   form   with   primes      ′   

                                                                                                                                   Eqn.   D   4.(a, )  A (λ, )B (λ, ) ρ(λ)dλ  E b =  ∫
 

 
  ′ a ′ b  

 If   we   know   the   PVV,   then   we   exploit   this   symmetry   of   signs   to   now   deduce   the   other 

three   expressions.   Summing   up   all   the   possible   combinations   of   integrands   above      (and   using 

the   definition   of   E   with   its   own   +   for   V’s   and   -   for   H’s)   of   the   integrands   on   the   right   side   of   the 

equation   above   will   collapse   this   apparent   complexity   into   just      the   simple    A’B’    estimate   on   the 

left.      The   old   familiar   A   B   terms   now   look   like: 

   represents  Π  [1 ] 2    2A  (for all the vertical s, V ),   and  [1 ] 2  A =   =   + A′ / ⇒ A′ =   1 ′     A′ /  

horizontals   H. 

      Now   recall   that   the   old   A   and   B   functions   of   eqn    A0    were   just   rectangles   with   height   =   1   (like   in 

Fig.   C).      BUT      notice   that   the   rectangle   A   only   takes   up   90   degrees   on   the   lambda   axis   while   the 

domain   is   180   degrees.   So   the   number   1   represents   a   flat   constant   altitude   plotted   all   across   the 

domain.   And   [1-A’]/2      has   a   notch   down   to   zero   below   the   line   ½   ,   or   ,   or   this   time   we2 (1 )  1/ Π   

look   for    W   =   Non-Overlap!     --   only   the   domain    outside    of   the   rectangular   notch   counts.   So   for 

PVV   we   are   convoluting  

, for P  we f ind (1 ) 1 ).   For P  f ind Π 1 ).  Π Π  
HH

Π ( Π
HV   = P V H ,    ( Π  

Again,   the   domain   of   the   integral   is   for   all   the   integrals.2  2)  ,  so ρ(λ)  1 π     π/ ( π/ = π   =   /   

The   4   relevant   overlap   equations   to   sum   up   for      (b-a)   angle   are: 

         --    Eqn.   D5.(α)  (1 π)[(π 2 π) π 2  α π) (0 π)  (0 π)]  [1 α π]   E =   / / α/ + ( /   / +   α/ +   α/ =   4 /   
a   down-sloping   line   for   this   LHV   (shown   in   Figure    E )   against   (α) cos(2α).  E

QM
=    
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Non-Local:  

For   reference,   the   most   popular   “non-local   hidden   variable”   is   the   de   Broglie-Bohm 
“ position”    x(t)   along   with   the   velocity   of   a   moving   particle.   Remember   that   Copenhagen   doesn’t 
believe   in   the   existence   of   trajectories,   but   dBB   ~   QM   works   [9]!   It   is   equivalent   to   usual   QM   but 
in   a   different   form   and   different   interpretation.   In   Bohm   theory,   “the   non-local   correlations   are   a 
consequence   of   the   non-local   “quantum   potential,”   which   exerts   suitable   torque   on   the   particles 
leading   to   experimental   results   compliant   with   quantum   mechanics   [8].”   dBB   is   not   very   popular, 
but   it   was   intended   as   just   an   example   of   non-local   hidden   variable   theory   --   and   as   a 
counter-example,   it   revealed   an   error   in   von   Neumann’s   “proof”   of   no   hidden   variables. 
 

A   separate   class   of    non-local    hidden   variables   was   introduced   by    Leggett    in   2003   along 
with   a   new   inequality   for   testing.   Assumptions   are         1:   realism   (pre-existing   properties 
independent   of   measurement)   e.g.,   polarization   u   for   A   and   v   for   B,         2:   “physical   states   are 
statistical   mixtures   of   sub-ensembles   with   definite   polarization   where”      3:   Malus’   law   cosine 
projections   apply   for   each   sub-ensemble.               A   new   nonlocal   parameter,   ,   is   introduced   forη  
arranging   measurement   settings   across   space-like   separation   of   detectors   A   and   B   (often   called 
“Alice”   and   “Bob”).      Large   statistics   averagings   are   arranged   (or   contrived)   to   satisfy   some   QM 
expectation   values.   The   contrivance   is   complex,   so   as   just   a   partial   sketch:   the   distribution   for 

      is   decomposed   into   two   parts   for   A   at   value   L   and   into   3   different   parts   for   B.      For0, ]  λ [ 1  
example: 
   A  A(a, , )   for λ 0, ),  for λ L, ], L  0.5(1 ), B  B(a, , , , )    =   u λ =   + 1 [ L   1 [ 1   =   + u a   =   b u v λ  

That   is,   Bob   does   all   the   statistical   contriving   [8],   and   he   knows   about   Alice’s   settings   “outside   of 
space-time”.  
Actual   testing   of   Leggett   versus   QM   result   in   plots   somewhat   like   Fig   A   that   differ   significantly   for 
tilt   setting   difference   showing   that   “non-signalling   correlations”   don’t   work.  0    α ~   3 o   
 
Terms: 	
	 DefiniƟons			of			reality,			locality,			and			causality																			[11].	 	
			Reality			or			realism													is			the			belief			that			the			wave			funcƟon			(exists			prior			to			detecƟon)			is			a			physical			field,			like	
an			electric			field,			rather			than			just			informaƟon,			like			a			weather			forecast.			[“outcomes			of			measurements			that	
are			not			performed			are			just			as			real			as			those			of			measurements			that			were			performed”						--			counterfactual	
definiteness].	
		
Locality				means			that			the			wave			funcƟon			is			a			funcƟon			of			only			the			local			posiƟon			and			Ɵme,			and			that			the			value	
of			the			wave			funcƟon			at			a			given			point			does			not			depend			on			anything			else,			specifically			not			on			anything	
somewhere			else			[an			object			is			only			directly			influenced			by			its			immediate			surroundings]	
	
				Causality				means			that			the			value			of			the			wave			funcƟon			at			a			parƟcular			point			cannot			change			because			of	
something			that			happens			outside			of			the			past			light			cone			of			that			point.	
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With			these			definiƟons,			it			is			easy			to			see			(based			on			the			experiments			that			disagree			with			Bell’s			inequality)	
that			physics			cannot			saƟsfy			all			three			of			these			condiƟons.	
Add:						"What			we			cannot			exclude,			as			with			any			experiment,			is			the			possibility			(of)						an			earlier			common			cause	
in			the			overlap			of			the			backward			light			cones			of			the			two			events."	
 

The   existence   of   “non-locality”   (NL)      was   already   present   in   the   original   Copenhagen 

concept   of   reduction   (R   )   or       “wave   function   collapse”    [17].      This   is   now   enhanced   by   “EPR   + 

Bell      NL.”            Copenhagen   QM   also   advocates   that   a   state   vector   applies   to   each    single ⇒  

system.      But   many   now   believe   that   it   only   applies   to   a   statistical    ensemble    to   give   a   “forecast”. 

This   problem   is   shown   simply   in   the   Young   two-slit   interference   experiments.      Classically,   light 

passes   through   both   slits   to   form   a   pattern   on   a   screen.   This   is   like   Energy, ψ ψ E   ψ ~ E   ~ E =  

of   the   electric   field,   profile   for   --[We   learned   in   EM   [electricity   and   magnetism]   that   the(x, )E2 y  

energy   stored   in   an   electric   field   distribution   is   proportional   to   the   square   of   E].          Photons   go 

where   the   energy   density   is ,   but   we   can   only   see   this   using   a   statistical   ensemble   over   many 

photon   collapses.   Random   selectings   follow   the   EM   energy   distribution   on   the   screen,   and   that 

distribution   exactly   matches   the   energy   distribution   (or   probability   distribution).      But   how   can 

each   photon   collapse   know   where   to   unless   each   single   system   already   knows   the   propensity 

pattern...? 

What   does   QFT   add?   Well,   it   doesn’t   make   any   prediction   on   single   events   but   only   on 

the   ensembles.      And   QFT   is   highly   local   !      But   the   idea   of   non-locality   was   intended   to   apply   for 

each    single    pair   of   events.   However   any   clear   interpretation   of   QM   or   QFT   exists,   so   the   issues 

cannot   be   clarified   at   this   time. 

 

 

Conclusions: 
In   the   mathematics   above,   we   have   largely   bypassed   the   vast   subject   of   generalized 

“Bell   inequalities”   tests.   Instead,   we   have   addressed   the   continuous   graphs   of   QM   correlations 

versus   local   hidden   variables   models   as   a   function   of   two   polarizer-detectors   having   tilt   angle 

differences,      (e.g.,   Figure   A   with   QM   versus   concrete   example   “HV-A”   with   a(b )   α =   a  

modestly   good   fit).   We   have   derived   the   fundamental   quantum   mechanical   correlation   equation: 

and   we   used   this   result   to   attempt   another      LHV   for   A   and   B   as(V V )  cos α 2,  P =   2 /  

cosine-squares   (HV-C   with   a   poorer   fit   than   HV-A).   Then   we   came   up   with   an   example   HV-B 

that   unintentionally   ended   up   being   the   same   as   QM.      But   thought   revealed   that   it   wasn’t   Local. 

However,   it   might   seem   to   be   a   counterexample   to   saying   “no   hidden   variables.”  

Next   we   examined   CHSH   type   tests   for   “experimental   estimates”   (a, ) os2(b ).  E b
QM

= c a  

Calculating   required   convolutions.      Finally,   the   values   from   the   key   graphs   (Fig   A   and(a, )E b
HV

 

Fig.   E)   could   allow   us   to   find   the   final   metric   S   and   show   its   violation 

   for   optimal   input   test   angles.   All   examples   shown   here   haveS  using angle set Φ  S
QM

>  
HV  

function   plots   of      angle   differences.b )  α = ( a   

 

Discussion: 
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A   general   goal   of   my   papers   is   to   study   a   subject   and   then   present   it   more   simply   for 
easier   understanding.   It   would   appear   that   I   didn’t   succeed   very   well   with   this   topic.      It   was   hard 
to   locate   literature   to   find   the   math   of   the   topic   choices   here.   And   it   was   difficult   to   see   how   to 
understand   that   math   intuitively   (and   of   course   the   interpretation   of   quantum   mechanics   has 
always   been   tricky   with   little   agreement   between   experts).   Many   intuitive   presentations   of 
entanglement   seem   to   use   analogies   that   really   don’t   apply   very   well.      Sorry. 
 

A   great   majority   of   current   journal   articles   seem   to   solidly   support   the   conclusion   that 
Bell-theory   implies    non-locality    (“spooky   action   at      distance”)   and   the   impossibility   of   Local 
hidden   variables   (LHV’s).      Yet,   a   recent   survey   on   physicist’s   beliefs   express   residual   doubt 
[survey,   10]   at   about   one-third   of   physicists.   Additional   beliefs   from   the   survey   suggest   that 
2/3rds   believe   that   true   randomness   is   inherent   in   QM   detections,      2/3rds   believe   that   we   need 
to   have   interpretations   of   quantum   mechanics;   yet   ¾’s   believe   either   in   Copenhagen   or   simply 
don’t   care   (which   is   another   aspect   of   Copenhagen).  

 
Possible   explanations   for   non-locality   refer   to   hidden   sub-quantum-level   signalling   going 

freely   backwards   and   forward   in   time   from   one   detector   back   to   the   source   and   then   to   the   other 
detector   for   a   joint   handshaking.   This   retrocausality   was   originally   suggested   in   1950   by   a 
Parisian   physicist,   Olivier   Costa   de   Beauregard   to   help   explain   EPR.   This    “ Parisian   zigzag” 
idea   is   still   studied   (and   this   was   before   Kastner,   Cramer,   and   Aharonov). 
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