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Introduction (Book Two).

Dave Peterson, 7/26/2019 -- 12/10/19.
My View of the Physical World
Overview:

I've been studying physics for the last sixty years with a goal of uncovering and
comprehending its most basic fundamental laws -- the reductionist principles by which
the universe functions from the inside out. This means focusing on the foundations
underlying the wonderful facts of physics and stressing the “common denominators” of
physical actions along with a pursuit of basic unanswered questions. Some of my most
fundamental questions about physics have not yet been answered. But, | wish to
declare my final guesses about such topics as: “natural mathematics,” the future of
improved interpretations of quantum mechanics, and the properties of the “Vacuum.” In
modern physics, the vacuum of space-time is no longer an empty nothingness. It is
rather the most important essence that | refer to as “Plato’s Form-Heaven” — the bearer
of all the invariant physical constants, laws of Nature, and fundamental templates for
fields and quanta.

Physics is primarily expressed in the language of mathematics. But we also want
intuitive explanations of that math accompanied with the human history of physics so we
may all share in the key “Aha!” moments that changed our core beliefs about the
world. Explanations depend on stating concepts but also on finding appropriate words
with updated definitions for modern understandings. The more classical terms used to
express science often have an unhealthy prolonged inertia that gets in the way of these
new understandings. Mathematics has precise definitions, but definitions in physics
evolve with new knowledge: what really is mass, energy, gravity, a “particle,” a photon,
an electron, quanta, measurements, fields, the Vacuum,... and most difficult of all,
“reality” itself ?).

This Book:

| have now written three physics “books” — mainly just for myself and a few
friends. The process and discipline of researching and writing makes key concepts more
tangible, concrete and memorable to me and | hope more presentable to others. The
essays document my understandings so that re-reading facilitates re-learning.

My self-study of general relativity from 1968 to 1980 was gathered together into
what | call “Book Zero.” Rather than expounding on the complexity of the subject, my
major goal was to try to simplify the concepts for a more intuitive understanding. One
could say for example that the bending of starlight, the time delay of radar, and
gravitational red shift are simply consequences of special relativity combined with the
principle of equivalence (SR+PE, [Schiff] ) not needing the power of general relativity.
And, the historically decisive “perihelion precession of Mercury” comes close to also
being intuitive. In the realm of cosmology, our “flat” universe cosmic expansion is in part
like a simple Newtonian model for expanding dust [Liddle]. But, when we get to concepts
such as rotating black holes and gravitational radiation, then we do require the full
theory.



The essays from about 2009 to 2014 that are presented in Book One were
broader — still beginning with general relativity but moving more into modern physics:
cosmology, Kaluza-Klein theory, understanding up-to-date particle physics and
astrophysics, efforts probing the foundations of quantum mechanics, electrodynamics,
nuclear shell filling, and a partial overview of my previous work-studies in applied
magnetics.

An incidental note here is that introductory magnetics raises the curious question,
“What is an intuitive understanding of the Lorentz force?” [F = qvx B]: a particle velocity
one way crossed with a B field another way gives a force perpendicular to both — doesn’t
that seem strange? What other force field does that: the Coriolis force, F = 2m vx w .
This (so-called fictitious force) is due to our being in the “wrong” frame of reference — a
rotating frame. The 2mw part is ~ 2m(v, /r), and since B=curl A, qB ~ q(2A4/r), where A
is the vector-potential, and q is the electric charge on a particle. The term “gA” acts as
an “electromagnetic momentum” competitive with p=mv. So a region with magnetic field
B acts like an unseen rotating frame of reference dragged along by A but only
experienced by particles possessing charge. An electron sees this along with its usual
inertia due to its mass (an “e” part plus an “m” part).

The new Book Two discusses mathematics used in modern physics such as that
found in The Geometry of Physics [for example, the book by Frankel]. It begins with my
essay on “Learning quantum mechanics and relativity” and my two essays for the
“Foundational Questions Institute” [FQXi.org]. In order to dig under the present
mathematics of physics, to find its commonality and simplifications and mappings to
“reality,” it is necessary to first have familiarity with some of the higher math. That
includes topics such as differential geometry, differential forms, covariant differentiation,
connections, curvature, topology, Lie groups, and Yang-Mills fields. My essays talk
lightly about the appropriate math and physics used by Nature for quantum mechanics,
entanglements, quantum optics, and a little more on relativity and cosmology.

A major interest is the possibility that hyper-complex numbers might best
represent the mapping to sub-quantum reality in the arenas of quantum-field theory and
particle physics. An intuitive reason for that is that the quantum world is generically like
“the square root of reality” in the sense of y versus |y|?. A special example is Dirac
effectively taking the “square root” of the Klein-Gordon equation to get his equation for
the electron. And Pauli matrices for electron spin are essentially complex quaternions
which have three imaginary bases, i, j, and k. Blends of complex and real bases are
covered by the term “Clifford Algebras.”

My Purpose:

Apart from persistence and a deep appreciation of Nature, | am essentially a
generalist and a perpetual and typically average graduate physics student. | care very
much about elevating and improving the teaching of physics. Physics is a hard subject;
but, with a change in style, it could be presented with more simple intuitive clarity and
inspirational motivation. Should it remain as dry and difficult and impersonal as usually
given in texts and articles? Many of us wish to be presented with “what is really going
on” in the physical world, how does Nature really work, what are the bottom lines? I'm
not aware that anyone can answer these questions, but we should try.



| have noticed that physics is addressing some of these concerns. For example,
the first pages of many physics journals are more readable than they used to be. And
the Physical Review guidelines now say, “Direct the manuscript text at a general
readership, so as to make it understandable to a broad spectrum of researchers”
avoiding jargon and the excessive use of acronyms. Page costs and length restrictions
are no longer major constraints for web publications such as ArXiv.org, and that allows
for much more flexibility in writing. There are a lot of popular books on modern physics,
but almost all are at a low level that isn’t real enough to satisfy. More are needed at
intermediate levels between too easy with inappropriate analogies and too hard without
interpretation. Fortunately, we do have Physics Today and Physics World magazines.

One of the best experiments in writing style was The Feynman Lecture Series —
a wonderful work with motivations and colloquial clarity. Feynman was unusually “real”
and honest in stating that no one knows what is going on beneath quantum mechanics
and that one shouldn’t try too hard — he didn’t forbid it but warned that thinking too much
about it could be detrimental to career and mental health. However, his own early lack of
understanding resulted in his creation of a new formulation of quantum mechanics
referred to “sum of histories” or “path integral” — something that made sense to him
where Copenhagen quantum mechanics didn’t.

| think that my paper on “Learning Quantum Mechanics and Relativity” is an
example that shows how teaching could be improved. There are simple intuitive
introductions to the dryly-stated logical and abstract postulates of quantum mechanics.
There are simple explanations of what a “Lagrangian” really means. In relativity, a metric
states the distances between two events as “deviations from the speed of light” (a light-
like separation has zero proper time, At = 0) — a very different scenario from Euclidean
geometry. That is a given, but why? And, in quantum mechanics, before presenting the
complex math of the hydrogen atom, first do a simple exercise of trying out ¢ = Ae™ in
the Schrodinger equation. This yields the 1S orbital — the important orbital that Bohr
missed.

There are many other basic simple and very inspiring explanations that | wish
every student of physics would read. These heuristic examples include: elementary
essentials in studying general relativity [Schiff], a scenario “On the Origin of Inertia”
[Sciamal], the transactional interpretation model of quantum mechanics [Cramer], and
cosmology in terms of the Newtonian “expanding dust” model {e.g., [Pettini], [Liddle] }.

| wish to ease the learning pathways to avoid some of the unnecessary
frustrations of physics students and the great frustration not being able to see or even
imagine “what might be real” in quantum mechanics. And | always wish to dig deeper
into the workings of Nature. Almost every topic I've studied in my essays has involved
assembling heuristics found in a great many sources — it is rare that just one or two
suffices. Finding answers to common questions about reality is usually an unanticipated
struggle. | think this is a strange deficiency in our publications and teaching methods —
why can’t we do better?

We are advanced biological creatures, a result of more than a billion years of
evolution. As such, we have developed natural built-in drives and purposes: finding food,
seeking safety and shelter, pair bonding, creating a family, belonging to a tribe or society
and conforming to its beliefs, finding certainty, striving to achieving social status or



power. Most people in most societies are able to find a path that gives their lives
meaning. But now, for the first time in the history of people and civilization, science
offers us the very new and different purposeful path of striving to see into the broad
reality of our universe.

We are borne into a “Great Mystery” — an immensely huge, deep, intricate,
intelligent and very strange physical world. Science has advanced enough so that we
can now realistically reason about this factual world and begin to collectively make
sense of its “magic.” We can see the intellectual architectures of the cosmos and the
micro-world that enable us to deeply appreciate a universal physical reality instead of
just our usual, somewhat narrow, largely artificial and sometimes unpleasant every-day
world. Pursuing this new goal is a singular deviation from previous life conventions and
may provide a sense of freedom from otherwise feeling “programmed” by our genes and
by our cultures. One can appreciate the latest scenes and mysteries at the edges of the
new frontiers, and they reveal an incredible and “preposterous universe.”

So, what my evolving knowledge does for me is provide a strong ongoing sense
of amazement and mystery — a somewhat “spiritual” value that could be called “Deep
Nature Appreciation.” | imagine that is similar to what Einstein calls his “cosmic religion.’

i

Along with learning physics is the major attraction and personal satisfaction from
learning the “Big Story” of Physics — the set of all the individual biographies and
discoveries of the key players — the great eye-opening moments of history that changed
our view of reality. Facts should be coupled with physics also being considered as a
Human pursuit. Unfortunately, there is a common principle of presenting physics as
impersonal, logical, and concise so that most textbooks skimp or even ignore the history
of science. But this history facilitates the understanding of the progress of science for us
and is one of the meaningful joys of learning. Physics could and maybe should be taught
more often through its history. It is a longer approach, but it sustains motivations. It is
through history that we can re-live the great break-through experiences where we had
lived in one world but then began to live in another broader and more enlightened world.

A classic example is the famous transitional figure of the 1600’s, Isaac Newton,
who has been called ...

“the last of the magicians, the last of the Babylonians and Sumerians, the last great
mind which looked out on the visible and intellectual world with the same eyes as those who
began to build our intellectual inheritance rather less than 10,000 years ago [John Maynard
Keynes].”

After his great work in the Principia, science entered into the paradigm of a
Newtonian mechanical clockwork universe and stayed with it for nearly two centuries.

A partial list of the key transformations of our world-view in the history of physics
could include:

The awareness of the extreme rapidity of light (Ole Romer, 1676), laws of
mechanics (Isaac Newton, 1687), “light as a wave” (Thomas Young, 1814),
electromagnetic field induction (Michael Faraday, 1831), conservation of energy
(Hermann von Helmholtz, 1847), ineffectiveness of the “aether” concept
(Michaelson,1887), little particles of charge ( J. J. Thomson, 1897), the introduction of
Planck’s constant of action (Max Planck, 1900), special relativity (Albert Einstein, 1905),
the Bohr atom model ( Niels Bohr, 1913), gravitation is geometry (Einstein, 1915),
discovery of the neutron (James Chadwick, 1932), matter waves and the Schrodinger



equation (Erwin Schrodinger, 1926), antimatter (P.A.M. Dirac, 1928, 1932), The “Big
Bang” universe (Georges Lemaitre, 1927), Hubble expansion (Edwin Hubble, 1929),
dark matter (Jan Oort, 1932, Fritz Zwicky, 1933, Vera Rubin, 1970), the muon (Carl
Anderson, 1937 — “who ordered that! ” still applies), the extreme luminosity and redshift
of quasar 3C273 (Maarten Schmidt, 1963), cosmic microwave background radiation
(“CMB” 1964), pulsars (Jocelyn Bell, Antony Hewish, 1967), charm quarks (Richter and
Ting, 1974, the “November Revolution” of physics), weak W and Z bosons (Carlo
Rubbia, 1983), the accelerating universe (Perimutter, Schmidt, Riess, 1998), and
gravitational wave detection (“LIGO,” 2015).

Problems needing Answers:

Physicists generally acknowledge a somewhat standard list of the leading
important outstanding problems that need to be solved -- It includes:

What is Dark Energy? Why is the cosmological constant so tiny when vacuum
zero point energy should be huge? What is Dark Matter? Why and how is there more
matter than antimatter in the universe? What is the correct model for cosmic inflation?
Why are there three generations of particles, and what underlies the strange values of
masses of the elementary particles? Is there really a long-range barren desert below the
list of currently known particles and energies? How does the neutrino get its tiny mass?
Explain the “arrow of time.” Prove QCD color confinement. Find a quantum theory of
gravity. One might also add, “Why is there something rather than Nothing?”

But the list that bothers me most is much simpler, commonplace, and relatively
unstressed by others:

1. Single photons can travel through complex optical glassware as if they were
large amplitude classical electromagnetic waves. This is just amazing to me —
but it is rare that it is mentioned at all in books or articles and just seems to be
taken for granted !

2. Pauli exclusion is fundamental and consistent-with but not directly derivable-from
quantum field theory (QFT). It holds up mountains; but there is no clearly
understood reason for the spin-statistics relation. That is future physics.

3. The important and basic “Born Rule” (~ y*y) is postulated but not fundamentally
understood. The “psi” of QM or QFT lives in what | call “the square root of
reality,” and the concept and existence of a “probability amplitude” seems
strange but is now taken for granted — it makes the world work.

4. Large objects like buckyballs self interfere in double slit interference despite the
fact that they are much smaller than the separation between slits. Their
aggregate mass M=xm; and its momentum become de-Broglie waves traveling
through both slits. What is the mechanism for forming A =h/Mv? Is it really a
Lorentz transformation of a huge composite vibration: w = Mc#/h?

5. If protons and neutrons in the nuclei were pictured as little balls of experimentally
confirmed diameters (a la Linus Pauling models), they would be packed so
closely together that no ball could interpenetrate them. Yet n’s and p’s (and a’s)
speed around fairly freely inside the dense nucleus and can organize themselves
in the angular momentum “shell model” as if they were all “really” “waves” rather
than particles. Explain this paradox (is it non-interaction due to different sets of
quantum numbers)?

6. Most of the photons in our expanding universe will never encounter absorbers
(“photons that never end”) — but quantum optics almost defines photons as



existing when and where they are detected! The photons in the universe
contribute to total energy — so do they exist as individual entities while they travel
as rays? It is also true that neutrinos do not interact over cosmological distances
in the later universe (“neutrinos that never end”). About 9% of cosmic rays are
alpha-particles (a’s that never end — are they rays?).

7. Non-locality and entanglement superpositions are a way to enforce conservation
laws given a world of possibilities. In QM, “distance doesn’t matter” and negligible
amplitudes still function. Does this involve sub-quantum communication back-
and-forth in time? (a la John Cramer?).

8. How can the realm of energy cover such an Incredible Range: Neutrino energy
and photon energy has been measured up to 10" and 10 " eV! It is believed
that we might approach the “Planck energy.” But photon energy can also go
down below micro-electron-volts, peV.

9. Does the spacetime Vacuum automatically take derivatives: for example, does
Nature promote the vector potential, A, into energy bearing E and B fields (or E2
and B?) by effectively performing differentiations? B = VxA and E =-9 A/ 3 t (or
for differential forms, F = dA). And then, for wave-functions, we add the operators
p =-inV and € =+ih 3/ 6 t. There are other applications where 2" derivatives

are required such as the d’Alembertian operator O .

10. Is there a barrier to understanding Nature beyond which we will not and can not
penetrate? — a permanently hidden functional “Core” forever beyond the ability of
humans and their science (and our super-computers).

11. What are the key concepts that ultimately enable the emergence of “life?”
Consider a newly formed planet Earth created from a dense primordial soup of
atoms covering much of the periodic table. Then flash forward billions of years
to the present age of humans: we exist and walk about and we encounter things
like big trees with massive trunks. What are the general principles that enable
that sort of life to architect itself and rise above the surface of the earth?

During the 20" century, progress in science and technology advanced
exponentially and drastically changed our world and our worldview. Many even believe
that the pace of change itself is advancing exponentially with a resulting hyper-
exponential “law of accelerating returns.” We essentially live in a totally different world
from that of the previous century. We have few generalists and now mainly specialists
who themselves often cannot keep up with their specialty. In our personal world, apart
from the requirements of our employment, we can manage the great expanse of
scientific knowledge by focusing on the smaller set of essential foundations — the facts
from which the other facts can be derived. What are the basics? What are the
foundational laws? What makes reality work? And, just how deep can we go? And are
there some concepts beyond the ability of humans to understand or even probe.

Since about the year 2010, we have learned that the geometry of the cosmos is
“flat” with nearly zero spatial curvature. Among other things, this means that
cosmological theory unexpectedly became accessible even to striving laymen due to a
minimal need for general relativity. We are now able to “cookbook” the evolution of the
universe from the first microsecond to the present age nearly 13.8 billion years after the
Big Bang. To a significant approximation, we now have an accepted “Standard” or
“Concordance Model” of the universe. It is presently called flat “Lambda-CDM” and is
composed primarily by a big dose of something called “dark energy” vacuum pressure



along with a lot of invisible “cold dark matter” and only a small portion of our familiar
ordinary matter. We don’t yet know what dark energy is, but it presently seems to be
Einstein’s “cosmological constant” from 1917-- a A or A “anti-gravity” term in the Einstein
equations now causing accelerated expansion of the universe. And we don’t yet know
what non-interacting dark matter is, but we are actively striving to figure that out soon.
We’ve made very impressive progress but obviously need to know more -- and maybe
that will always be true.

In the realm of the microworld, we now have what we consider to be a complete
list of the 62 elementary particles of physics along with the “Standard Model” of their field
theories. And we recently verified the existence of a scalar particle called the “Higgs” as
a quanta of an all-pervading “Higgs field” that causes the masses of most of the
elementary particles. Despite this, there are indications that we will eventually need to go
beyond the standard model (“BSM”) to deal with such problems as neutrinos having tiny
masses that had been predicted to be zero.

We have incredibly successful mathematical theories of quantum mechanics and
quantum field theories that consistently pass all experimental tests. What we are
presently missing is how to interpret them in ways we might comprehend or at least
accept as humans -- and what lies beneath these theories that enables them to function
as they do. Albert Einstein once said that the supreme task of physics is to arrive at
those universal elementary laws from which a world-picture can be built up by pure
deduction. The standard or “Copenhagen” paradigm of quantum mechanics only began
to give way after the published works of David Bohm and John Bell. Bell said that the
purpose of a theory is to understand the physical world and that “to restrict quantum
mechanics to be exclusively about piddling laboratory operations is to betray the great
enterprise.” [Bell,1990]. And Bohm’s alternative interpretation of quantum mechanics
was realistic.

When | was twelve | read a basic book by Einstein that led me to want to devote
my life to learning, understanding and appreciating how the universe works. That led me
to declare a major in physics in 1960. Now, after sixty years of studying a large cross
section of physics, how much “wisdom” do | have? Am | satisfied with how deeply | can
see into the mysteries of Nature? Well, ... ... ... ...

| have learned a lot of fascinating stuff. Physics can see very far and certainly
much deeper than we have ever possibly imagined. But, from our present perspective,
there is certainly more that needs to be known, and Nature’s fundamental reality
sometimes appears to be unexpectedly complex and strange and seemingly opaque.
The complexity of new developments grows faster than the ability of individual
comprehension. So, | do not have all the answers | desired.

Should we be able to see deeply into the Spinozan “Substance” of Nature? The
amazing progress of physics has shown that we actually can penetrate the ultimate to a
remarkable degree in accordance with Einstein’s statement that “god is subtle but not
malicious.” The main reason for our success so far is that the mathematics we have
applied indeed seems to be an appropriate and powerful tool. And a lot of intentionally
“pure mathematics” has unexpectedly found real application in physics. So a big
question is “can our relevant mathematics be truly isomorphic to deep reality and finally
go all the way?” Nature functions in a way that agrees with mathematical descriptions,



but might there be an optimal one-to-one mapping to the way Nature actually operates?
When a collective “intelligence” shines its light on Nature, it also discovers pre-existing
mathematics. That is one of the reasons that mathematicians tend to be Platonists,
many believe that even their pure mathematics is discovered rather than invented.

A further thought is, “might ultimate real mathematics be so deep and so complex
that it is beyond human comprehension.” We have had glimpses of this such as the
following: “It may be that the fundamental operations of the standard model of particle
physics are isomorphic to the hypercomplex octonians” — a proposal that has been
seriously offered from time to time {e.g., [Atiyah],[Jackson], [Furey] -- (octonians are a
hyper-complex number system that uses seven imaginary numbers — seven different
square-roots of minus one, -1 }. Even though most of us couldn’t handle this complexity,
perhaps our super-computers or artificial intelligences could. An example of this is that
Quantum ChromoDynamics (QCD) can be stated in short equations. But actually using it
requires very long super-computer calculations on a finely spaced 4D spacetime lattice.
If we have to have this level of high-tech assistance, can we still say that we
understand?

And then, a further confounding thought is that although the mathematics of non-
relativistic quantum mechanics [*QM”] is already well known and not too difficult, we still
haven’t been able to interpret what it means and what lies beneath it. So, again, is there
a limit to human ability to comprehend the universe? | read a book by David Bohm on
his view of quantum mechanics before | ever had a class on the standard theory. |
always knew that | was hearing some degree of dogma and assumed that by now it
would all have been straightened out. It hasn’t.

Due to the inertia of the Copenhagen Interpretation of quantum mechanics,
seeking the foundations of physics was not deemed a “respectable” pursuit until after
1970 which roughly coincided with the first issue of a journal called “Foundations of
Physics” [Found]. This was a new opening for publications with a floodgate of stored-up
criticisms, speculations, reconsiderations, inquiries, alternative views and philosophies
and was a liberation to me—the arena | most cared about.

I've taken more than a hundred classes, but most of my “real” learning has been
on my own outside of classes. | loved teaching courses but would prefer never to take
another class under someone else’s direction. | want my own intuition to guide me
towards what is really fundamental. | am “launched,” so | can do it myself. Since 1960, |
was a regular patron of our university math-physics library and spent a lot of time and
effort searching for basic answers in journals and textbooks. Now | can ask Google ten
questions a day and get to see physics articles daily on the web (such as ArXiv.org,
Physics World, Science News and physics.aps.org). Promising web articles get Xeroxed
daily for study, and key information is then documented for possible use in my own
essays. There is a tedious process of gleaning for little bits of leading information —
hoping that someone somewhere someday will make a statement that “spills the beans”
and divulges his own precious perspective.

Two such examples that inspired me were:
Claim: For experiments on electrons and photons, “There are no particles ...there are
only field quanta--excitations in spatially extended continuous fields.” [Art Hobson]




An elementary “particle” is something of a deduction after interaction, collapse or
measurement. Perhaps the term “quanta” should be kept distinct from composite-
particles like the proton or a “buckyball” Cgo. But, the “matter-wave” y is still common to
all. At least we are no longer talking much about an electron “particle” traveling
simultaneously through two slits. Perhaps it is more like a soliton wave guided by a y-
wave.

Another inspiration is the quote:

"But our present QM formalism is not purely epistemological; it is a peculiar mixture
describing in part realities of Nature, in part incomplete human information about Nature --- all
scrambled up by Heisenberg and Bohr into an omelet that nobody has seen how to unscramble."”
[E. T. Jaynes]

So, rather than the perpetual “frog-mouse-battle” between either “our knowledge”
versus “existing reality,” we may instead have “both/and” with a mixture that may vary
from case to case. For example, after being free from the nucleus, an alpha emission
decaying from U-238 may really be an a-ray trajectory. An observer assembles an
ensemble of a-detection data and deduces, “Oh, its wave function clearly has spherical
symmetry and must be like ¢ = Ae " /r.” A traditionalist might say, “it is a spherical
wave until there is a first ionization maybe in a cloud chamber, and that constitutes a
‘measurement’ that collapses its wave-function into a ray.” But is that really true?
Another possibility is that it “really” is a particle-ray but only after it knows about its future
detection (quantum information “Back from the Future”).

Learning physics and seeking its foundations is an intellectual pursuit. That
means constantly reading, constantly learning, trying to be efficient, working hard,
having deep curiosity, valuing truth, being suspicious of dogma and authority,
appreciating ideas, generally avoiding the small talk and shallow socializing of standard
life, enjoying being alone, and sacrificing for the future. A goal is to form huge dovetailed
mental structures of ideas and mathematics ideally based on some small number of
postulates.

Further Thoughts on Topics in Modern Physics:

“Why the Quantum?” is an apparently permanent mystery in quantum
mechanics. de Broglie’s rules of 1924 are E = hw {also called the Planck-Einstein relation} and
p = h/A = hk for massive particles as well as photons. | addressed the meaning of this in
my final essay, “An electron is waves of what?” de Broglie began with the concept that
all microscopic mass/energy vibrates: w = E/i =ymc?/h and that p=h/A is merely a

Lorentz transformation of that vibrating mass (essentially a relativistic “clock de-
synchronization” viewed by an observer in relative motion). Schrodinger kept the p=h/A
rule but only used kinetic energy for E+V = hw while ignoring the rest mass. Psi, y(x,t),
is a y-wave of an information-bearing y-field: analog energy is deduced as the density
of waves in time, and momentum is the density of waves in space. y itself is not a wave
of any kind of energy, it is more like a “quantum energy amplitude” with a blurry
interpretation due to the concepts of “collapse” and the Born Rule. The y-wave only
communicates “mechanical”’ properties of E, p and angular momentum; and its wave-like
“amplitude” can interfere with itself.

What is fascinating is that the equation p = mv = h/A applies to almost
“everything:” elementary fermion particle motion (with mass from the Higgs field),
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protons (which are mainly confined energy, m,= E/c?), phonons (mechanical vibrations),
massless photons (electromagnetism), and very large moving molecules with extremely
tiny wavelengths, A = h/Mv. de Broglie waves are completely generic and not made out
of anything classical that we know. We have to accept that these are fundamental rules
imposed and maintained by Nature, “Whatever it is that forms energy, it is constrained
and governed by an ‘energy supervisor’ that controls the packaging of quanta, the
shipping of quanta, and enforcement of the conservation of energy.” Is the explanation
of this rule discoverable or hidden inside the “Core?”

Fields are the most important things in quantum field theory (QFT). Our simplest
view is that they are like a 3D “mattress of springs” filling spacetime. Traveling waves
are sequences of compression and expansions of the little springs. Particles and energy
levels are quantum excitations of its normal modes. There is an occasional belief that
an electron wave being a disturbance of a special electron quantum field might imply
that an electron quanta could be reconstructed from a de Broglie wave as part of a
collapse at detection. But, there is the illuminating experimental fact that a massive
spread-out molecule composed of thousands of atoms also has a simple matter wave,
and that encourages belief in particles remaining and traveling as particles subject to
guiding waves—a partial return to de Broglie-Bohm views. If that is true for big particles,
then for consistency, why not also for the electron? For oscillating elementary fermion
particles, we might view the particles as confined (soliton-like) energy waves producing
extended information or guiding waves beyond the particle —in part a return to de
Broglie’s original but incompletely developed “double solution” model. A local particle “u-
field” and broader y-field both vibrate at the same frequency. ls it possible that these
waves are related to the phenomenon of jitter-motion “Zitterbewegung?” — it does pertain
to fermions, massive and massless scalar bosons, and Proca type spin-1 bosons too —
but its frequency is double that of de Broglie (it contains terms with the factor e ).

The increasing number of different proposed interpretations of QM has expanded
the set of possible assumptions that might go into a new interpretation. Photons are their
own antiparticles and might be able to go backwards in time as well as forwards. The
possibility of Cramer’s vaguely defined “pseudo-time” makes an emitter-absorber
transaction an evolving “process” rather than a single world line. Aharonov’s two state
solution has a final state advancing backwards in time. Feynman also allowed electrons
to also go backwards in time as contributions to his path integral. And we already
mentioned the de Broglie “double solution,” having both a real-physical u-wave localized
close to a “particle” along with a y-function perhaps representing our knowledge of
probable outcomes over an ensemble of events.

Quantum Mechanics:

It is often difficult for layman and non-specialists to access and grasp knowledge
of important fundamentals of a given subject. Texts don’t like to admit that there are
important concepts that are still unclear or unknown — authors don't like to state their
ignorance. The chemical covalent bond for example is a quantum effect. Plugging and
grinding a detailed Schrodinger equation for some appropriate “Hamiltonian” can
approximate the right numerical answers. But the basic acting principles for intuitive
understandings are not obvious and are rarely offered in chemistry books or even in
physical chemistry books.
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What could be more important than knowing what holds atoms together in
molecules? All chemistry books show bold “Lewis dots” {for example H : H } of
electrons lying between and being shared by atoms — a pretty poor and unrealistic
picture begging for more clarity that isn’t offered. An intuitive component of binding is
the “enhancement of effective electron charge density between two nuclei.” Orbital
overlaps get squared by the Born rule thereby promoting quantum amplitudes to an
increased electron density greater than that of mere linear superpositions. Many
chemistry texts don’t even mention the Born rule! — but they do picture “charge densities’
around atoms. And, there is an “obvious” but also rarely mentioned contribution:
electrons in molecules share several nuclei and hence have a bigger play-room in which
to move. That broadens their de Broglie wavelengths and lowers their effective kinetic
energy. These are big players, but there are others even more difficult to reveal. There
may be some mention of a need to add a little “ionic character,” include a fraction of 2s
and 2p orbitals, and make the radial size of the 1S-orbitals variable and constricted
(more localized). Interpretation is tricky in chemistry.

Chemistry texts don’t mention these principles because quantum interpretation is
unclear even in basic chemistry. | was once a “boy chemist” but got turned-off by high-
school memorizations without understandings.

My biggest personal hunch is that the “psi” in quantum mechanics represents the
“square root of reality” [in ways that my FQXi essays have discussed]. This description
and slogan is one of my favorite analogies but doesn’t appear to be favored or even
mentioned in any reference. As discussed before, Dirac’s biggest discovery was that
Dirac fermions are effectively governed by “the square root of the relativistic Klein-
Gordon equation” {and that is mentioned in references}. In general, the square root
concept forces us to dig deeper into “Clifford Algebras” which generalize hypercomplex
numbers and beyond. Physical reality is somehow isomorphic to the actions of these
algebras. That means that there is a real mapping between the math and the physics
that the math represents. For me, the beginning of this realization was Cramer’s
transactional interpretation of QM involving “retrocausality” which also seems to be
required for understanding entanglement and may be also the only sensible explanation
for the Born rule.

As examples of “square-rooting” (or conjugate-star-rooting) a simple popular {but
perhaps over-simplified} expression for the “wave function of a photon” is the Riemann-
Silberstein form y*y < (e,/2)(E*+c’B?) energy > @ ~ (€,/2)” (E + icB) resulting in
complex numbers. Unlike the scalar field de Broglie waves, E and B are vectors that
can have polarizations.

But, as mentioned before, a most important example is the Dirac equation,

(i@ -m)yp =0, (shortfor ihy" o w— mcy = 0) which is the “square root” of the “Klein-
Gordon” equation, [d %4 (ct)’ - V2 + (mc/h)?] w = 0. {This may also be considered as
taking the “square root” of the d’Alembertian operator, O {the term “square root” meant
something like deducing possible @’s when given p*y = |l|J|2 € Reals }.{Feynman “slash
notation” & has a slash through the partial derivative standing for yrd, =& {slash partial }, called the “Dirac
Operator,” and requiring the use of hypercomplex gamma matrices where ynyn =+ I}, and 0 =4 4 . Or,
symbolically, the Dirac Equation = (KG)*? = (i & - m)y =0 (where “natural units” are ¢ =
n=1).}
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The orthodox meaning of y in Copenhagen quantum mechanics is “waves of
probability amplitude;” an interpretation that is familiar but also numbingly opaque. The
name is certainly appropriate “for all practical purposes” [Bell’s acronym is “FAPP”]. But
that need not be the whole story. Matter waves could be “quantum-real” prior to
measurement but eventually couple to a separate last stage action “Principle of random
selection of absorber” or “stochastic choice” of y*y “intensity presence” -- a two-step
process. A familiar analogy is physical electric waves with amplitude E(x,t) finally
materializing as detected photons based on their space-time energy density oEZ.

ENTANGLEMENT

In apparent violation of causality and relativity, two particles are entangled when
the quantum state of each particle cannot be described independently of the state of the
others.

An example is a wavefunction for particles a and b described in configuration
space by:

W(ri, r2, t) = Wa(re,t) Wo(r2,t) + Wa(ra,t) wo(rs,t)
Where + is used for symmetrical wavefunctions and “-* for anti-symmetric ones
{meaning 180° out of phase}. If particle “a” is found at location r,, then b has to be at r;.
Or, for spins, if a is measured to have one spin, s4, then immediately the spin on the
other particle takes on its required spin, s, {and similarly for light polarizations}.

Counter to human intuition, experiments with jointly entangled particles show that
these correlated outcomes have no dependence on event times, spatial separation or
order of events as if some sort of long range back-and-forth-in-time “sub-quantum
communication” occurs between entangled particles. This “spooky action at a distance”
is like a magic act that is continually performed right in front of us — and we just can’t see
the “trick.”

John Bell showed that the entanglement correlations revealed by experiment are
not pre-determined by some previous contact — they occur spontaneously and non-
locally {or much faster than the speed of light}. He devised some test inequalities that
have been experimentally verified over and over again. One of my papers is about what
correlations could result from pre-determined Concrete Hidden Variables for the purpose
of comparison against actual Bell-test experimental results and then dismissing them in
favor of standard quantum mechanics. We can elaborate on these statements as
follows:

Entangled particle “Bell” test results are usually given just as inequalities and
usually for photon experiments with polarizers. This should be compared to what would
happen for the more classically intuitive but incorrect case of particle behavior being
predetermined from some common initial source. This is what | call the “concrete” case,
but few students are familiar with how hidden variables would work for these cases.
These concrete examples are generally not derived or included in Bell test papers.

In contrast, an actual quantum mechanical test of one photon of a pair
immediately “snaps” the other photon into alignment. To appreciate this, one must be
familiar with some scenarios incorporating predetermination, and that is the purpose of
this paper. Hidden variables have contrived or classical mechanisms that might
approximate a similar output , and its calculations often apply “convolution integrals.”
Actual test statistics are then compared to these concrete thought tests and found to be
in disagreement as Bell claimed.
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It has occasionally been suggested that the quantum entanglement correlations
may be due to back-and-forth communications in time that emulate instantaneous
communication between measuring systems. The “no-signaling” theorem of quantum
mechanics firmly says that no bits of classical-information can be transmitted back-and-
forth in time. But, a possible solution is to suggest that “quantum information” operates
in a different sub-quantum-realm, and transmission can be bi-directional in time. This
has been called “retro-causal,” but the term causality refers to cause-and-effect relations
in the classical world.

There are now a vast number of entanglement experiments that disturb
traditional thinking and give the “appearance” of some sort of retrocausal
communication. This is an especially tempting solution for the myriad “delayed choice
quantum eraser” experiments and “entanglement swapping” lab tests. The most
interesting of these is “entanglement between photons that have never coexisted !”
[Meg]. The earliest suggestion of a back-in-time explanation for entanglement
correlations seems to have been by Costa de Beauregard in 1953 and has been referred
to as the “Parisian Zig-Zag.”

{My paper, “Appearances of Retrocausality” with “Entanglement Figures”}

WORDS and The Possibilist Reality:

“The limits of my language are the limits of my world” [Ludwig Wittgenstein].

In the social, economic, legal, military, and political worlds, unbiased “truths” may
not be highly valued, and doublespeak is frequent. Examples are: “enhanced
interrogation” {torture}, department of defense {offence}, “states rights” {race control},
neutralize {kill}, intelligent design {god did it}, pacification {bombing}, ethnic cleansing
{genocide}, corrections {prisons},...). History also tends to be biased and even
mythological because it is justified and written by the “winners.” And there are countless
examples of outright lies such as the year-after-year claims over nearly two decades that
“We are winning the war in Vietnam,” “We are winning the war in Afghanistan.”

In contrast, physics and science in general cares deeply about truth and dislikes
obfuscation. But there does exist some degree of “fashion” or paradigm in physics. As
fashion changes, older concepts and words have an inertia that may not dovetail with
newer needs; and their continued use can lead to confusions. With poorly defined or
obsolete terms, scientists may talk with cross-purposes without understanding each
other.

Neils Bohr and later-on Werner Heisenberg set the fashion for the first half
century of the quantum mechanics from 1926. Heisenberg’s positivistic paradigm, which
in 1955 he labeled as the “Copenhagen Interpretation,” said that we were not supposed
to talk about a quantum subworld but only about its pragmatic results in the classically
measured world. Few believed that the wave function represented something “real.” In
1926, Erwin Schrédinger was dismayed to realize that his N-particle wavefunctions
propagated in an abstract fictitious “configuration space” of dimension 3". This concept
was quickly accepted but made it difficult to believe in the reality of such waves unless
the word “wave” was strongly broadened beyond our usual understanding [Afriat]. Unlike
the classical case, an N-particle quantum wavefunction cannot be described in our
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ordinary space. Having a @ that was complex and often lacking in any absolute phase
also seemed unreal.

We all know that the quantum world is not classical and should require its own
new language to describe the processings of the wave function as a different “reality.”
Discussions often used old terms, but in parentheses to mean something perhaps
different but related (like “reality” or “wave” or “particle”). If we wish to discuss the world
explored by y prior to its “collapse,” there presently are no clear and accepted words.
The processing of “possibilities’ may be best, and I've previously used “QuReal” or “sub-
classical,” or psi-real in “psiland.” y(x,t) is governed by differential equations such as
Schrodinger’s, but y won’t do anything until it explores its boundary conditions (BC).

The world of alternative possibilities as an example of a sub-quantum reality.

In particle physics, there are often a number of different interactions or decay
choices that could occur; and the different possibilities can interfere with each other.

For example, a charged pion can decay in three possible ways of which only one
is finally chosen: T+ 2> pu* + vy, or T >e* + Ve, Or even * = T® +e* + Ve.

In ordinary quantum mechanics, a photon that is produced by a quantum
transition might travel in many possible directions of which one is selected and detected
according to the probability density y*y. The transactional interpretation of quantum
mechanics (“TI”) considers the wavefunction y(x,t) to be an “offer wave” (“OW”) from
an emitter to a number of possible absorbers which in turn produce “confirmation waves”
(“CW?”) backwards-in-time to the emitter. There is a transaction or “hand-shaking-
agreement” between an emitter and one of the absorbers enabling the physical transfer
of the photon. Quantum physics has always considered an actual event selection to be
purely random — but perhaps it is emergent out of complexity and so is only apparently
indeterministic.

I've liked this interpretation ever since John Cramer proposed it in 1986 [Cramer].
It is the only interpretation that intuitively gives the Born Rule and in my mind also
explains entanglements. Its main advocate now is the physicist/philosopher Ruth
Kastner who calls it “Possibilist TI.” She “argues that OWs and CWs are possibilities that
are real”’ -- “less real than actual empirically measurable events, but more real than an
idea or concept in a person's mind” and suggests the alternate term "potentia" [Kastner].
Lee Smolin says that the “world of the possible has to be included as part of reality—
because in quantum physics the possible influences the future of the actual.”

PSI EXPLORES THE REALM OF POSSIBILITIES FOR EACH FINAL EVENT.

| believe that there is a “reality” below classical reality — but it requires a
broadening of the word “reality.” This is a world we so far cannot directly explore, but we
can deduce that the quantum psi engages in active exploration prior to “collapse” (the
Purcell effect is an example). It behaves almost as if it had some intelligence behind
every event. As an analogy, there is a “process” in which the wave-function first “cases
out the joint” before robbing the place. Every real quantum event has sampled its own
world of possibilities prior to the action of a “principle of random absorber selection. ”
The possible future aids in actualizing the past. The process, whatever it turns out to be,
is the sub-reality.
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Edward Purcell noted that an excited atom placed in a small reflective cavity can
have a very different decay lifetime that can be strongly enhanced or even totally
suppressed from that in "free space.” Since 1946, this deviation from a free non—
interacting half-life we now call the “Purcell effect,” and it was finally demonstrated at
optical frequencies in 1987. It is very interesting that this effect can also occur over quite
long distances [Herzog {-- this amazing —but overly concise—article from 1994 is
discussed in my paper on “Appearances of Retro-Causality in Entanglement
Experiments”} ]. An atom doesn’t emit until it knows its environment.

The interior of a highly reflecting cavity only allows wavelengths that fit (\/2, 1A,
3M2, ...). If an atom is placed in a small cavity having a size smaller than the transition
M2, no photons can propagate and the atom is unable to decay at all. In a cavity at
resonance, the density of final states is enhanced. This is a result from cavity quantum
electrodynamics (CQED) based on Fermi's golden rule which dictates that the transition
rate for the atom-vacuum (or atom-cavity) system is proportional to the density of final
possible states.

In symbols this is: i = (21 /A )[( f|H'] i) I p(Ef) where T is the transition or
decay probability for an initial state |i) and final state |f) and p is the density of final states
near E;. Then the probability of |f) < e ™', Quantum optics uses a density p of photon
states near hw .

RELATIVITY

The invariance of the speed of light, c, is essentially an “axiom” of special
relativity; and consequently all physical theories are supposed to be Lorentz invariant.
But, Why? The speed limit is perhaps a clue about how fast any kind of information can
travel and must have some origin in the fundamentals of the Vacuum. It tells us
something basic about space-time that we have not yet fully grasped.

The metric of relativity goes beyond familiar 3D Euclidean distance to the “proper
time” between events (4D space-time pairs of points). If two events are connected by the
speed of light Ax/At = ¢, then proper-time or distance is zero!! | take this strange concept
to be fundamental, and it should be more fully exploited. Also note that entanglements
seem to say that “distance doesn’t matter” and they entanglement tests most often use
light photons at speed c.

Restating this, relativity uses an initially strange “pseudo-Riemannian” metric.
What should be initially presented is that distance in 4-dimensional relativity is changed
to ds’=c’dt® where the important “tau” is now the proper time. Events connected by light
have no metric separation so that c?dt? = c?dt>-dx? gives zero change in proper time.
Dividing this metric by c? then gives dt = dt/ (1-v¥/c?) = dt/y , or dt=ydt (the usual time
dilation formula—quick and easy). If v=c, then dt =0 (zero 4-distance).

Why is the metric of special relativity so concerned with measuring “deviations
from the speed of light” as the “4-distance” measure called “proper time?” And why do
entanglements not care about distance? There was an instant in the early universe when
there were no deviations, no mass, no non-relativistic quantum mechanics and no
photons. We owe our physics to the transition called “electro-weak-symmetry-breaking”
[EWSB]. Is the next paragraph at all relevant?
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Quantum Mechanics emerged in an early period of the Universe when everything
was up close and personal (essentially no “distance” separations). Everything was at the
speed of light—all connections were light-like — but that doesn’t mean light as we think
we know it. The photon epoch began at 10 seconds after antimatter annihilation. But the
first emergence of photons was at EWSB at 10" seconds (about a pico-second). Prior
to that time, there were no photons nor any massive particles. There were only massless
fields. So, did quantum mechanics exist then? Is what we call mass the same as
frequency of zig-zags in the Higgs field? Unfortunately, EWSB still lies “beyond the
standard model,” so it is not well understood.

In my paper on “Learning quantum mechanics and relativity,” | note that the
single particle Lagrangians for both classical physics (L = T — V) and special relativity (L
= -moc?/y =V ) might be better presented as being proportional to “wave counters” —
counting waves or phase along a path for a “path integral.” That interpretation gives the
abstract “Lagrangian” more tangibility. It is interesting that it carries over to classical
mechanics without that apparent need.

In general relativity, | took another look at how black holes are formed according
to the historical 1939 “Oppenheimer-Snyder” or “frozen star” formulation {the essay here
is “Brief Summary of Collapse to a Schwarzschild Black Hole”}. Coordinate time is really
frozen near the horizon (go,=~> 0 and g«=> o ) -- so we will never see a particle actually
penetrate the horizon. Sparse falling matter or inwards-directed light will be seen to
accumulate just outside the evolved Event Horizon. The cycloid equations of a dynamic
closed cosmology are also useful in describing this collapse.

Unfortunately, all black holes rotate; and going deeper into the math-physics of
these black holes is very difficult. It took almost fifty years of hard thinking in differential
geometry to finally progress from the static Schwarzschild solution of Einstein’s 1915
equations of general relativity to the rotating Kerr metric of 1963.

On the cosmology front Recent local Hubble estimates indicate that the
universe is growing ~10% faster than indicated from analysis of the cosmic microwave
background radiation (CMB) [Riess]. A few astrophysicists are referring to the disparity
of universe expansion rates as a “crisis.” Some adjustments might be needed in the
standard six-parameter ACDM model (dark-energy with cold-dark-matter model).

PARTICLE PHYSICS

The modern physical Vacuum is “not-nothing” but rather the seat of
fundamental physics (physical laws, constants, physical objects such as “elementary
particles” as unique and omnipresent “templates” in the Vacuum). The Vacuum contains
fields for each elementary particle.
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Figure 1. The cross section, o, for hadron production from electron positron annihilations versus
Vs energy in GeV {total energy in the center of mass frame, “s” is “space-channel”}. [Particle Data
Group, http://pdg.lbl.gov/2007/reviews/hadronicrpp.pdf ].

With a supply of local energy, elementary particle pairs {quark-anti-quark mesons} can
just “pop out of the Vacuum” of space-time [Figure 1]. Lepton colliders for e'e” or p'u*
annihilate into photons. As their energy is increased in giga-electron-volts, we first
emerge quark-meson combinations of u i & d d quarks called p or w mesons. This is
followed by s 5 or ¢ mesons, then charmonium ¢ ¢ or y mesons and b b = Y (upsilon)
mesons {t, or top-quarks, don't live long enough to actualize}. Finally we see Z° particles
(the neutral weak boson or “heavy photon”). The thin vertical spikes show that the
incoming energy has to be precisely on target to stimulate the heavy meson resonances
of the various quantum fields.

{The p’is an excited state of p, and the y(2S) is an excited state of the J/y (1S) }.

All of the particular fermions (quarks and leptons) and bosons are “identical
particles” as if their unique templates pre-exist in the Vacuum. Identicalness doesn’t
exist in classical physics but is rather a feature of quantum field theory, QFT.

Since pumping energy into a point in the Vacuum produces particle pairs such as
quarks plus anti-quarks or muons plus anti-muons, it would appear that these
elementary particles are actuated resonances of the underlying structure of the Vacuum.

Why did | call the Vacuum “Plato’s Form Heaven?” Because the essence of his
Forms or “ldeas” is invariance, particular things or qualities taken from universal
templates (circles, spheres, trees, color blue, gold, beauty). If Plato were alive today and
knew that identical electrons were duplicated 10% times throughout the universe as
quanta from the electron field — he certainly would call electron-ness a perfect invariant
Form from immanent vacuum fields. All elementary particles are Forms as also is most
of the constructs of mathematics.

The mechanisms that function at our familiar sizes depend on reductionist
mechanisms at very tiny scales — how deep down have we seen Nature go? A related
question is how much energy a particle can have. In the 1960’s, we were discussing
energies in MeV and GeV but not in TeV nor PeV nor EeV’s. But now we are measuring
gamma ray and neutrino and cosmic ray energies in these upper realms and beyond
[e.g., 10%° eV!, Halzen]. Is there a limit?
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In the realm of “beyond the standard model” (BSM), “string theory” (a misuse of
the word “theory”) is an interesting but also dangerous arena of advanced physics that
might be forever beyond testability. If it can’t be tested, is it still science? Should the
public respect claims without proof? Supersymmetric string theory has long predicted
that there would be testable consequences for experiments at the Large Hadron Collider
(LHC) at CERN. But, the declared final result of high-statistics 13-TeV high energy
proton testing there was that there was “no evidence at all” for super-particles.
Nevertheless, string theory and the “multiverse” and holography are still often thrust
upon the general public as if they were all real physics — and a recent 3 million dollar
prize was just awarded for supergravity (the Milnor Breakthrough prize). | would agree
with Woit, Hossenfelder, and Smollin that this should presently be more in the realm of
some rational religion rather than science.

Nevertheless, | very much like the idea of higher dimensions as providing a
needed substrate justified by the great complexity of known field theories (e.g., like the
Kaluza-Klein paper in Book 1 providing an extra dimension to express electro-
magnetism). And | would like to think that we might someday agree on an interpretation
just based on agreed most probable deductions from known behavior and carry that over
to quantum mechanics as well. It may be true that “beneath quantum mechanics” is also
untestable. But | believe that some such reality exists nonetheless and will eventually be
supported (in some way).

A paper “Lie Group Representations” outlines Gel-Mann’s 1961 hierarchies of the
baryons and mesons. The important case of the spin 3/2’s “decuplet” 10 can be
constructed simply and intuitively since all quark spins are aligned and the states are
completely favor symmetric. These hadrons include the A’s, ¥’s, =’s, and the famous
omega-minus strange particle Q" (sss) whose confirmation first made the quark idea
respectable in 1964. The A" and A° are like excited states of the proton and neutron.

VIEW ON MATH IN PHYSICS

Mathematics is the language of physics, and It is interesting to see just how far
mathematical thought has gone in describing and evolving each field of physics. As
Feynman said, math is not just another language, it is a language with reasoning built
into it. Eugene Wigner once wrote a popular paper called "The unreasonable
effectiveness of mathematics in the natural sciences” [Wigner_1960] that said:

“The miracle of the appropriateness of the language of mathematics for the
formulation of the laws of physics is a wonderful gift which we neither understand nor
deserve.” And, “‘the mathematical structure of a physical theory often points the way to
further advances in that theory and even to empirical predictions.”

| based my FQXi essay, “Physics lives in Form Heaven” on this statement.

There are special examples of how learning a new field of mathematics grants a
student a new level of power, understanding, and perspective not previously available.
The most obvious example, of course, is the great power of calculus towards enabling
an understanding of classical physics.

A lesser example is realizing that the huge ranges of size and space can only be
conceived by viewing the world logarithmically — the log of durations of time versus log of
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sizes of space that is also called a “powers of ten” view as expressed in our “scientific
notation.”

“Connections” are basic in general relativity (the I symbols) and in general in
differential geometry. Einstein would not have completed his goal without the use of
tensor calculus. The concept of connections as consequences of transporting data along
a curve can be made intuitively clear by first considering simple examples such as
moving along a 40° latitude on a sphere (place a dunces-hat cone on that latitude).

And consider the mathematics of coordinate invariant “differential forms” such as
“1-forms” a or 2-forms w. In a loose sense, forms are just things that can go under an
integral sign — like say [ 2x?y dxdy = § w . We can treat the dx and dy as base
vectors in w and add a seemingly trivial “antisymmetry rule wedge product” that just says
that order counts: dxdy = dx /A dy= - dy Adx = -dydx, and dx Adx = 0. This little rule has
remarkable consequences.

Forms also incorporate an “exterior” differential operator d with some of its own
remarkable powers (similar to dr- V /\ -- as an operator) . An example is
electromagnetism from the scalar potential ¢ and vector potential A. Certain derivatives
of ¢ and A yield the fields E and B, and the real world of energy acknowledges the
physical existence of energy densities E? and B® . One might conclude that the space-
time Vacuum must actively process potentials by differentiation into EM fields. The
differential operator d of a 3-space “vector” A-field yields the magnetic field pseudo-
vector “B” = dA.

It is amazing that in Minkowski 4-space we can simply write F = dA where A is
now a “4-potential” (¢, A) but written as A = A° dt+A'dx'+A%dx?*+A%dx® {see paper on
“Geometry in Modern Physics”}. F is the anti-symmetric Faraday electromagnetic tensor
of special relativity (~ F,, ). That is, “d” can make derivatives and curls and also the
generalized 4-curls that produce F. Of all mathematical languages, the concise power of
this derivation leads one to wonder if this economical language of forms is optimally
isomorphic to the processings of Nature’s Vacuum. There are mappings between
mathematical physics and physical reality, and some mappings may be more “real” than
others.

Furthermore, dF = ddA = 0, which happens to yield “Faraday’s Law”
(Vx E=-0B/0dt) along with Maxwell’s “no poles” (VB = 0). These observations apply
to the EM gauge group U(1). If we consider the higher gauge group SU(2) for say Yang-
Mills theory in QFT, then there are analogs to the familiar A and F that have a more
general curvature 2-form: F = dA + AAA. { Since U(1) is Abelian, it's A/AA = 0 — -but not
for SU(2) }.

Spinors:

Spinors are objects that somewhat resemble taking the square root of vectors
and are usually pictured as short column vectors. See paper on “Spinors.”

Roger Penrose intuitively defined a spinor as an object which turns into its
negative after a complete 21 =360° rotation. An example could be the Mobius band
where two full rotations are needed to get back to the original orientation. He adds that
the action of rotation on a spinor is always double valued, 2:1. Beginning quantum
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mechanics shows Pauli matrices operating on 2-spinors as complex fractions of up and

down electron spins. Broader examples include matrices representing continuous (“Lie”)
groups to transform spinor column vectors. Group names use special symbols like U for
“unitary” {where (U")* = U™}, “S” for “special” {meaning having determinant = +1}, O for

orthogonal where A" = A™, L for linear invertable, and C means complex.

Consider the Lie group 2:1 homeomorphism for the 2x2 complex matrices of
SU(2)> SO(3) {the group of rotations in 3-space} and also the case of the special linear
group SL(2,C)> SO(1,3) for 4x4 Lorentz transformations {the (1,3) refers to 1 time
dimension and 3 space dimensions of a Minkowski metric}. Two elements of SU(2) map
to the same rotation element of SO(3), and this is called “double covering.” Two-
component spinors transform via multiplication by elements ue SU(2), and elements of
u contain “half-angles” e™®? which get imparted to the spinors (to give the needed “twice
arounds”). The elements of the Lie algebra su(2) {the “tangent” space of SU(2)} are
intended to represent hypercomplex quaternion vectors. Dirac’s standard 4-spinors are
mixtures of “Weyl chiral” 2-spinors}.

Electron spinors are can be viewed as hypercomplex quaternions {H for
Hamilton}, Pauli matrices are & C x H, and Dirac matrices are hypercomplex “Clifford”
entities.

Solid State/ Condensed Matter Physics:

In 1982, David Thouless published a paper called “Quantized Hall conductance
in a two-dimensional periodic potential” with research fellows Kohmoto, Nightingale and
den Nijs (labeled as “TKNZ2”) and was later cited for the Nobel Prize in Physics. The
word topology is not mentioned in the title of the 1982 paper and does not appear in his
titles until 1985—but it is there implicitly.

The introduction of topology into the behavior of exotic solid state materials is
now a maijor field of condensed matter physics. The first and best-known example is the
“Integer Quantum Hall Effect” (“IQHE” or just “QHE”) for a two-dimensional electron gas
surface. A 3d bulk insulator can have a 2d conducting surface with 1d edge currents.
The role of topology in materials often enters through quasi-momentum on the “Brillouin
torus” for crystal lattices with geometry that repeats from atom to atom. That is, a
periodic crystal surface (say cubic) may have matching periodic wavefunctions
throughout. Identifying opposite sides of a rectangular cell effectively results in a torus
topology -- the Brillouin torus.

Beyond the IQHE phenomenon is the “Fractional Quantum Hall Effect” (FQH). Both of
these topics have led to Nobel Prizes in physics. All of this is discussed in my paper on
the “Nobel Prize for Topology in Exotic Materials.”

IQHE is now as significant as superconductivity. In strong magnetic fields (e.g.,
10 Teslas), the Fermi levels on the 2D surface have integral numbers of wavelengths.
So, Bohr orbitals didn’'t work in 3D, but the idea does apply in 2D.
To the general public, topology describe holes in a manifold {a donut is like a coffee cup
in that each has one hole}. But having a 2D semi-conductive surface on a 3D insulator
and 1D edge currents is also topological.

MY FAVORITE HIGH-TECH STUDY PROJECT:




21

From 1965 to 1972, | started three different PhD graduate programs but never
completed a thesis. One project of 1967 was to show that the Carbon-12 nucleus
contained three a particles by processing data supplied from a “pions on propane”
experiment. Now, after 50 years, the model that “within a nucleus there are
substructures of alpha patrticles... has not been accepted despite the considerable
evidence for its validity” [Watkins]. {Implying that it wouldn’t have been a very productive
project}.

In my later high-tech career, one of my projects, a theoretical versus
experimental study of data disk life, could have served as an acceptable thesis.

Since about 1980, magnetic recording hard-disk data drives have required thin
surface lubrication as a protection against high RPM “head crashes” which would
destroy the magnetic surface. My study of long term flow of these thin lubricants on the
surfaces of spinning disks involved a decade of mathematical modeling, measurement
and modifications of disk surface porosity to finally ensure a long product lifetime.

It had been a common belief that radial lubricant migration was caused by
centrifugal force from rapidly spinning disks. In a variety of approaches, | showed that it
was instead mainly due to the effects of air-flow wind shear stress on the very thin
surface layers of lubricant; and for the thin viscous films on particulate disks, this effect
was much stronger than inertial forces. Depleted lubricant can be partially replenished
from lubricant stored in the porosity of the disk binder. Boundary layer fluid theory was
applied in my modeling.

| gathered three sets of long term measurements of lubricant thickness profiles
over time: ESCA for lube on the surface, FTIR for total thickness lubricant, and chemical
Freon “strip-and-weighs” by annular sections across the disks. All three methods
dovetailed and agreed with the final models. A newly encountered phenomenon was
complete depletion on inner diameters due to “polymer slip” from the long serpentine
poly-fluoro-ether molecules, and this was included in the model.

Unfortunately, what is current in high-technology has a very short half-life. Next
generations make older generations irrelevant. One of the best things about basic
science is that it lasts forever.

Physics largely involves problem solving and mathematical modeling. And,
regardless of title, that is essentially what | did over my whole career. Out of a thousand
cases, | include an elementary model here for the writing of alternating transitions on a
moving magnetic medium: “MagWave.” | liked it, it was pretty. One interesting aspect of
High-Tech problems is that they are unique, generally never solved before. My approach
was to struggle with a problem as a way to “load it into my RAM” brain memory and then
sleep on it. At night, my little brain micro-processors would work on the problem and
partly solve it. Then in the morning, they flash their solution on my internal conscious
vision screen. | don’t know if that is unusual or not—but it worked well for thirty years.

Every month, | also put out a list of about ten significant discoveries taken from
readings of major literature sources (not all science, physics and math). | include a set of
these at the end. For example, a recent summary note was:

o There are now “an astonishingly high number of black holes of all types in the
contemporary and early z~10 universe. Practically all black holes in the universe are
primordial PBHs (this defies most accepted models). There are also new quasars with
z> 6. Perhaps BH'’s came first and galaxies followed [from ArXiv.org 1911.023382].
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LEARNING QUANTUM MECHANICS AND RELATIVITY

DAVE PETERSON

ABSTRACT. Students of quantum mechanics and relativity encounter material that is not
only mathematically difficult but also conceptually incredulous. They ask, “Isn’t there a
way to make the mathematics and its interpretation more transparent?” and also, “Is this
the way the world really is?” Standard texts on non-relativistic quantum mechanics (QM)
generally focus on the abstract mathematical machinery for solving problems and usually
minimize or avoid attempts at intuitive understanding, basic underlying physics, and
the existence of many differing interpretations of the mathematics. Also, different texts
present quite different sets of fundamental but abstract postulates for a coherent system
from which to calculate probabilities of experimental outcomes. The goal of this paper is
to balance out that strangeness and abstraction by providing an intuitive understanding
of some of the key parts of this machinery. We wish to motivate and simplify so that the
mathematics isn’t quite so formidable. After this introduction, standard texts may be
studied in the usual way.

Special and general relativity also have their abstractness and opaqueness. Why, for
example, do their metrics have differences in sign between space and time parts? And,
when dealing with weak gravitational fields, is it still necessary to know the language of
tensor calculus or advanced differential geometry?

Most of the special heuristic tidbits discussed below are not well known. Why that
should be is largely a mystery to me.

1. INTRODUCTION

The mathematical theory of quantum mechanics is highly successful and has flawlessly
passed nearly ninety years of careful experimental tests. College textbooks on quantum
mechanics generally do a good job of providing adequate coverage of topic material so that
students have a conventional common mathematical machinery for solving relevant physics
problems. But this is often done in a sparse fashion which presents abstract postulates and
rules without sufficient motivation or physical clarity. They don’t say why we do things in
this conventional semi-Copenhagen way, how much linear algebra one should have first and
why, what’s really going on, where’s the physics beneath the abstract mathematics? They
presume that the machinery will make some sense (or at least familiarity) after solving a
series of problems. But basic postulates and math are counterintuitive and are given “out
of the blue;” and application is done from abstract generals to particular examples. It is
fairly easy to claim that in quantum mechanics, heuristics are poor. But there is also a
reason for this: physicists do not agree about the possibilities for any underlying reality.
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email: davepeterson137@gmail.com. Paper updated to 4/17/15, May 4, 2015.
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Some even claim that there is no underlying reality. And there is no general agreement on
the interpretation of the mathematics of quantum mechanics. As an example, one reason
that Niels Bohr was so difficult to understand was that he was very careful to always avoid
any mention of possible underlying mechanisms. So, if you are one of those people who
ask, “What is really going on?,” you may find few answers.

Every text on quantum mechanics provides a list of postulates from which basic struc-
ture can be developed and problems solved for the probabilities of experimental outcomes.
Postulates are often stated with numbers (like [P1] ) with orderings and main choices
that vary from text to text. Here, I will assign numbers to primary postulates, but the
choice is fairly arbitrary. Postulate 1 [P1] of quantum mechanics is always about the ex-
istence of a complex state function, ¥U(z,t) (or “ket” |¥) in Dirac notation), describing
any physically-realizable state of of a system and claiming that it contains all accessible
physical information about that system ! . Sometimes, this is accompanied by “The prin-
ciple of Superposition” being added that for any physically realizable states, other states
can be formed by linear superposition with complex valued coefficients. These complex
coefficients stress the importance of the relative phases of the components being added 2.
The other postulates appear with different numbers from text to text so that their names
(if provided at all) are more important than their numbers.

The ordering I will use here for the primary postulates of quantum mechanics are: again
[P1] for the existence complex state functions, [P2] is about operators corresponding to
observables, [P3] is the Schrodinger equation, [P4] says that measurement is a projection
for resulting eigenvalues, [P5] is the Born Rule for outcome probabilities, and [P6] says
that states of a composite system are tensor products of component states.

In my view, the strangest and most important postulate is the “Born Rule” [P5]
implying a probabilistic interpretation for the wavefunction . In one simple example, |¥|?
is the probability that the system will have given coordinates at time t; and this in turn
means that ¥ is a strange and new concept called a “probability amplitude” (at least
in the usual Copenhagen interpretation of quantum mechanics). It also means that the
sub-quantum world, if it indeed “exists” at all, lives in something like “the square root of
reality.” And that often makes it very different from any concept in classical physics. In

1S(:hri)'dinge]r initially intended his ¥ to correspond to a real wave, but Born’s probability wave quickly
prevailed instead. Students of Schrédinger wrote a poem: “Erwin with his psi can do, Calculations quite a
few. But one thing has not been seen: Just what does 9 really mean? [Remembered by Felix Bloch].

%j.e., a complex coefficient can be written in polar form, ¢; = aie'®!, where angle ¢ represents the
relative phase difference of functions with respect to neighbors in the sum. They are all locked-in or
entrained together with these fixed relative phases. An imaginary coefficient implies phase 90° or /2
radians, i.e., i = /2

3Max Born stated this conclusion as a footnote in a 1926 paper on particle collisions. Yes, I know that
Schrodinger said that entanglement was the strangest and most distinguishing concept; but I would call it
just a close second.
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particular, it makes the use of complex and hypercomplex numbers seem to be a neces-
sity (e.g., quaternions and Dirac matrices) 4. It should be a goal of new research into the
foundations of quantum mechanics to derive the Born Rule instead of simply postulating it.

One factor making the quantum postulates inconsistent from text to text is that they
are a mishmash of main postulates (that are logically fundamental), secondary postulates
(derivable from main postulates), and other “mere consequences” of postulates that happen
to be well known (like the “uncertainty principle” which is just a derived principle rather
than being fundamental) [1]. Inconsistent stress makes it unclear what is most important.
Unlike the principles underlying relativity (see later section), the principles of quantum
mechanics are exclusively in the language of abstract mathematics whose physical mean-
ings are unclear. The corresponding physical principles are in dispute.

Complex numbers in quantum mechanics: Complex numbers appear almost everywhere
in quantum mechanics and greatly facilitate calculations. Quantum formulations depend
on the use of complex numbers in all textbooks. So, if you want to learn quantum mechan-
ics, you have no present choice but to accept and use complex numbers. In disciplines such
as electrical engineering, complex numbers are a great convenience in calculations; but final
answers just use the real part. A strong majority opinion among physicists is that com-
plex numbers are instead essential and intrinsic in quantum mechanics. In the discussions
below, the initial choice of describing waves in complex polar form, ce’?, leads to the use
of complex amplitudes and then complex operators. Adding waves of different shapes or
frequencies means caring about the phase relationships between waves, and complex num-
bers do that well. The resulting mathematical system is highly dovetailed, self-consistent,
and tremendously successful. There are still many dissenters who wish to structure quan-
tum mathematics differently (such as using 2 x 2 matrices in place of complex numbers).
But their attempted constructions generally increase computational difficulty and reduce
economy of the mathematics. Ultimately, the dogma of complex numbers being intrinsic
depends on finding a good interpretation of the quantum world (e.g., is the wave-function
real in some sense (ontology) versus having it rather reflect “our knowledge” of a system
(epistemology).

Here is an Outline of key points addressed in the sections that follow:

4For example, electron spin has a “Hilbert Space” of only two base vectors, |up) and |down) for a spin
projection in say the “z” direction. But after a test with a Stern-Gerlach magnet, future spins can be
measured in an x or y direction too. The two z-bases cover both of those cases (very un-real-vector-like
behavior because spin is hyper-complex). If we let @ = 1/v/2 ~ 0.707, then x-spin right = | =) = a| 1) +a| {)
and spin y or spin down into the paper |®) = a| 1) + 4a| J)— funny superpositions of up/down base states.
And for y, a complex coefficient is really required. Also, the y-spin operator (Pauli Matrix) is complex:

oy = ( (z) _OZ ) This can be thought of as i times a quaternion, gy.
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e The simple plane wave is used to intuit differential operators on eigenfunctions
to give eigenvalues. Conservation of energy is then written with operators to form
the Schrodinger Equation of quantum wave-mechanics and the unitary evolution of
state functions.

e Simple examples are given of superposition. The Born Rule explains chemical
bonding by an extra enhancement of electron density between two nuclei.

e The uncertainty principle is derived as a consequence of primary postulates and
shown in two forms.

e Further mention is made of the primary postulates of quantum mechanics: [P1]
complex state function, [P2] corresponding operators, [P3] Schrédinger equation,
[P4] projection for resulting eigenvalues, the Born Rule [P5], and tensor products
for composite systems [P6].

e The elementary non-relativistic Lagrangian, L =T — V, is derived simply by
counting waves along a path (making the simplest Feynman path integral easy
to understand). And later, it is derived from the “principle of maximum proper
time” along a path.

e Time dilation, At = vAr, is derived simply from the Lorentz metric designed to
give zero interval when two events are connected by light.

e Length contraction is derived simply from the invariance of the metric (with a
standard derivation shown in the appendix).

e The relativistic Lagrangian, L = —m,c?/y—V, is derived simply by counting waves
along a path.

e First order general relativity is explained simply by special relativity combined with
the principle of equivalence.

Many of the items mentioned here and in the following are not well known and are gen-
erally hard to find in the literature. I had the joy of discovering them largely by myself.
But I presume that they are familiar to “those who know well.”

2. BACKGROUND

I believe that the most important concepts in quantum mechanics should begin with
stating:

(1) [PO] p=h/\=hk and E=hv="/w ;

and these equations apply to both light waves and to matter waves °. I would call this
Postulate Zero [P0], and it is a statement in the language of physics. No textbook in-
corporates this as a postulate largely because it suggests that waves have a reality; and
that goes against the majority beliefs of the mid-1900’s. But, if we wish for an intuitive
understanding of QM, we must start with the belief that these waves are at least “real” in
some sense, and that view is becoming increasingly more popular. A big question is “waves
of what?” The orthodox answer is “waves of probability amplitude” — but that certainly

SHere, h = h/2m, k = 27/, w = 27v and non-relativistic momentum p = mu.
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doesn’t resonate in our intuitions. For light photons, the waves appear to just be vector
electromagnetic or vector-potential waves. This is especially apparent when single photons

refract through glass in the same way that classical electrical waves do ©.

The key equation EF = hv originated with Planck’s 1900 paper on black body radia-
tion for what were later called photons. The quantum idea was that if a frequency v was
present, then it was only capable of delivering a “quantum” of energy, AE = hv to an
absorber. Then, in 1924, de Broglie used Einstein’s relativity theory to claim that massive
particles also obey this rule and that total energy determines a fundamental clock rate
for electrons. He also claimed that an effective wavelength exists for moving particles,
A = h/p, extended from Einstein’s idea that light quanta also possessed momentum 7. We
later said that massive particles with momentum and energy have associated de Broglie
matter waves with a wavelength and frequency.

That electrons diffract from crystals just like x-rays was first shown by Davisson and
Germer in 1927. It was then shown that matter wave diffraction also occurs for neutral
atoms and now even large molecules like buckyballs (Cgp). Instead of being physically “real”
waves, the scalar “matter” wave might be understood as representing an information “code”
where wave concentration in space can inform about momentum and wave peak density in
time tells energy. A wave also has a phase-velocity given by vy = A\v = (27v)(\/27) = w/k.
So, a wave moving to the right would be given by x-coordinate x = vgt, or kx = wt. We
pick a point or phase on the wave and follow its motion. So, if y = acos ¢ = a cos(kz — wt)
has say ¢ = 0 (and peak y = a), we can follow its motion to the right.

What are the most important equations in mathematics? The Pythagorean theorem
might be one answer (although it only applies when space is flat and not, say, on the
curved surface of the Earth). But competing with that answer might be Euler’s formula,
e™ = —1 (relating the number e ~ 2.718 and named “e” after Euler, and pi, and the
‘irrational’ number ¢ ). If it is that important, then almost everyone should know it. And
it is a special case of e = cos(#) + isin(@), which gives Euler’s formula when the phase is
pi (180 degrees). Rather than having just real waves, we prefer to generalize to complex
waves using the exponential with base e. This is not just for the usual calculus convenience;
it is widely believed that complex numbers are intrinsic in quantum mechanics. So, for
matter waves, we write:  y = a e@@t) = geilkr—wt) — ge=i(wt—kx) — f¢(=i/h)(Et—px)

In quantum mechanics, we like to label our wave functions with amplitudes and phases
by the symbol, “psi,” ¥. The equation above is for an infinitely long “plane” wave (over
all x and all t). If it also represents the motion of a so-called “particle,” we might want

6hut we then have to ask ourselves which came first: classical EM waves down to the quantum level
or intrinsically quantum EM ideas seeming classical due to large numbers of boson photons. That answer
seems to be quantum first, and then build up from there.

"First noticed by Stark in 1909 as p = hr/c and then finally and formally by Einstein in 1916.
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to restrict its domain better and “localize” it. This usually involves some superposition
of other wavenumbers, k (and discussed under the topic of Fourier analysis). A gaussian
shape in space for the waveform associated with a particle would result from a bell-shaped
profile of wave numbers, k. But, for the present, we will just look at the oversimplified
plane wave.

Once we have wave phases in an exponent, we will wish to be able to pull down the
values of E and p (their eigenvalues) from the expression for the wave. Obviously, this can
be done by creating and applying “operators” E and p so that Ed) = EvY and py = py;
we just make operators that work that way.

3. SIMPLE PLANE WAVES:

Using a plane-wave traveling wave train as the most elementary heuristic example, we
have a choice of expressing it as a wave in its own terms or in terms of energy and momentum
as parameters a measurement observation might prefer.

2) Pl t) = AT (1) = AemiEatre/h

Since E = hw = hv, and p = h/\ = hk, these equations are equivalent. In this equation,
we have single constant values for the wavenumber, k, and the angular frequency, w. It
might be that the left equation happens to be the one preferred by Nature for a wavefunc-
tion in the spacetime between an emitter and detector and that the Planck constant, A,
might only enter when a (classical) detector ‘collapses’ the wavefunction to make use of its
particle energy or momentum 8. Perhaps the simple wave is everywhere a carrier of quan-
tum information without physical actualization; and the density of wave peaks in space
and in time represents information as a ‘code’ about what might actually be detected as
a physical particle.

Nature can also use this code to deduce a particle’s rest mass, see for example equations
(15) and (16) for m, and w, later on. The ‘particle’ itself is only a deduction by the mea-
suring apparatus and likely doesn’t exist physically in the wavefunction. The amplitude
of the wavefunction can disperse and weaken over time and distance and still carry the
information ultimately used. Note that the units of h are [h| = joules - sec = J/hertz =
[momentum]/wavenumber = [action]|. Each vibration per second contributes a unit of
energy; each packed wavelength adds momentum.

Operators: If one begins with ¢ = 9 (z,t) as in equation (2), we then wish to retrieve
the energy and momentum it contains in the exponential. Obviously, derivatives will pull
these out. That is, creating an operator denoted as p = —ih d/0x (or p = —ihV in 3-
dimensions) gives us a so-called “eigenvalue” equation pip = py,. That is, the momentum
operator on the wave function yields a constant times the wave function.

81t seems to me that should require some sort of sub-quantum network transaction or hand-shaking
agreement between source and absorber. But due to a general avoidance of discussion about mechanisms,
that is a minority opinion.
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And using operator E = (ih) 8/0t gives us Fy = E,p 9. This is a first example of
another postulate in QM that might be called the “correspondence principle” ' :

[P2] To every physical observable, there corresponds a linear operator (and we call it
“Hermitian” or self-adjoint if it always results in a real value for the observable ''). Tt is
said that a difficulty in understanding QM is that instead of momentum being a determin-
istic variable, it now IS an operator operating on a wave function. I think what that means
is that the operation of the operator interprets and enables activation of the underlying
code contained in the wave function (the density of wave peaks over distance).

So far, there is nothing proprietary about having linear operators for quantum mechan-
ics. We can also have them for classical waves too. In equation (2), for example, we
could create operators that pull down the value of the angular frequency, omega, or the
wave-number, k, by using & = ¢ 9/0t and k= —i 0/0x. Then, wy) = wip and ke = kap.
Again, this is an example of a postulate for what is called a “linear eigenvalue equation”
associated with each linear operator [2]. W is called an eigenfunction of the operator, and
the real constant is called the eigenvalue. It is also a postulate that [P4] “one or another
of the eigenvalues is the only possible result of a precise measurement of the dynamical
variable represented by” the linear operator [2].

Some texts consider Schrédinger’s equation of 1926 (“SE,” eqn.(3) below) as a pri-
mary postulate of QM, [P3]. Here, it is simply obtained by writing out conservation of total
energy for a single particle in terms of these new operators, p and E, on a wave function.
Since kinetic energy K E = mv?/2 = p?/2m, the operator for KE will be KE = 2 $2; and

2m

potential energy V = V. And these operate on the wave function, ¢ (z,t) :

2 2
=P yy- e _ pdet)
(3) KE4+V = o +V =Bt — 2mV Yz, t) + V(x, )(z,t) =ik Er [P3].

It has always seemed to me that this simple approach is the best way to intuitively in-
troduce the Schrodinger equation for the first time rather than just postulate the strange
complex-looking Schrédinger equation and have it sprung onto a first time reader 2. What
the p operator does is look at the density of wave peaks in space, and the E operator looks

9And for angular momentum, L, one considers change of phase around a circular phi direction, 8/9¢, or
in more generally in 3D by —iir X V.

10Byt, the term “correspondence principle,” is also used to state that the predictions of QM reduce
to those of classical mechanics in the limit where a system approaches large quantum numbers or higher
energies.

H{nlike the complex quantum world, the classical world only desires real results.

12Anq Weinberg’s text on QM does touch on this heuristic introduction [3]. His book is also one of
the few to mention interpretations (section 3.7) — but only for Copenhagen, Many Worlds, older hidden
variables, and Decoherent Histories. He adds: “My own conclusion (not universally shared) is that today
there is no interpretation of quantum mechanics that does not have serious flaws, and that we ought to
take seriously the possibility of finding some more satisfactory other theory, to which quantum mechanics
is merely a good approximation.”
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at the density of peaks in time. I’ve always thought that Nature must also do this by phase
comparisons over small space-time regions. So, from a wave, Nature can deduce E and p.

The observable operator interpreted to mean energy (such as KE+V), is a distinguished
observable called the ‘Hamiltonian,” H. So the Schrodinger equation can also be written
as:

WUy so, b= tue T = Ultyp(e,0)
ot h

where U(t) is a unitary time evolution operator that can be written as an exponential. So,
we can use the Hamiltonian to give the time evolution of the wavefunction, v (z,t). In
some texts, this unitary evolution with time, U(t), is given as a primary postulate
also [P3'], and the SE follows from it. Hamiltonian energy isn’t always K E+ V', there are
other forms too. For example, a particle with a magnetic moment in a magnetic field may
have the form: H = uB - ¢ (where o refers to Pauli matrices). And when electromagnetic

(@) HYw0) = iho(et), or

fields are present, p' becomes p'— eA. But, for any Hamiltonian energy, 1 (z,t) evolves con-
tinuously and deterministically into the future, until the point where final measurement
occurs. Then the wave function collapses, and determinism is lost. In other words, “a

great miracle occurs,” and nobody really knows how.

Unlike the simple example above, in traditional classes the Schrédinger equation is simply
presented as (an initially strange) founding postulate of non-relativistic quantum mechan-
ics. Its solutions include tunneling, complex atoms, and s-orbitals which no longer resemble
anything like plane waves. For example, just try a solution resembling an exponentially
decaying radial profile: 1y = Ae™®" and plug that into the SE with an atomic nucleus
central potential V = —Ze? /dre,r and use V2 = r=29/9r(r?0v/0r). And then solve for
the actual coefficients A and b. The result is the normalized '* 1S atomic orbital:

(5) bi(r) = \}7? <aZo)3/2 o~ 7rlan

where a, = 4me,h?/me? is the first Bohr orbit ~ 0.53A, and Z is the proton number .
And then there is also multiplication by a time varying factor with a frequency given by
v = E/h. (r,t) is like a tent shape that is up and then becomes inverted down and
then back to up again — but in 3D. This profile is like nothing experienced in the classical
world, and there is nothing orbiting in the orbital. So, even though the Schréodinger equa-
tion makes simple intuitive sense for plane waves, its application goes well beyond that.

L3y quantum mechanics, normalizing means finding a front end coefficient such that the integral of ¢
over all space gives 1 = 100% total probability.

1This is the innermost atomic orbital that Bohr missed in his early theory where electrons were standing
waves about a nucleus. Actually, he only quantized the orbital angular momentum without yet realizing
that it could represent de Broglie waves. And he started with angular momentum 1, 2, and up; while the
1s state has orbital angular momentum L = 0.
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So, introducing it as a postulate makes some sense '°.

This particular atomic 1S orbital can be superimposed with other orbital functions and
still be an appropriate combined wave function. An example is the single electron shared
by two hydrogen nuclei, A and B for the simplest molecule Hy™, with binding wave func-
tion ¥y = a(154 + 1Sp). The “binding” itself is due to the overlap of these two spherical
functions followed by squaring (the special enhancement of electron density in-between the
two protons due to application of the Born Rule). Another is carbon’s four-valence-electron
hybrid orbital [Linus Pauling, 1931]: W = 0.5(2s + 2p, + 2py + 2p.) where the p-orbitals
have angular momentum L = 1. In both cases, the coefficient signs (+ in this case) are
very important because they represent the coordinated phases of the superpositions. The
result for carbon is the formation of a lobe of enhanced electron density sticking out from
the carbon atom in the direction i + j + k. For all four electrons, we get four tetrahedral
spaced lobes ready for bonding (e.g., like for methane, C Hy). In carbon, rather than have
all those individual orbitals vibrate separately, it makes sense for them to get entrained
together (entangled or hybridized) so that they have more aspects of constructive interfer-
ences.

Some say that the uncertainty Principle is a key property of QM, and that is occasion-
ally introduced as a postulate too. But it is actually just a derivation from other more
key postulates. In the oversimplified case of a plane wave, there is no localization of any
presumed particle. Localization can be expressed with a wave-packet which can be created
from a Fourier distribution of plane waves. If the wave-packet has a spatial width (say the
standard deviation for a Gaussian packet), then the uncertainty principle applies in either
form for the widths of x versus p or for x versus wavenumber, k (i.e., quantum mechanics
not required).

That is, somehow, Nature effectively can perform the equivalent of Fourier Transforms
(going from waveform in space or time to wavenumber or frequency in space or time). It
is not clear how it does this, but it explains the Heisenberg Uncertainty Principle. That
is, let wave-packet shape have an associated Gaussian probability envelope such that its
probability density, P, = dP/dx, is described by:

(6) Pooce 205 o, () = /Py ox et 10

The symbol sigma refers to “standard deviation” or square-root of variance in statistics.
The Fourier Transform (FT) of a Gaussian is itself a Gaussian so that the momentum
wavefunction ¢(k) = /P, x exp(—k?/40;2). Since exp(—a’x?) «— exp(—k?/4a?) is a
transform-pair where a? = 1/40,2, we have:

5 There is a Fourier Transform from the 1S exponential decay wave, but it is a 3-D spherically radial
transform not easily associated with plane waves. The form in momentum space is ¢(p) x p/(p® + 1) [4].
One has to integrate [ ¢ (r)exp(—ip - r)dr.
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(7) e Pol= b o LN " or, ArA
—=k%0," = — 00 = = 00y ==, or, ArzAp = —.
4(1/40'302) T 40—]@2’ 0k 9’ zCp 9’ ) Yy 2
The case of Gaussian envelopes is optimal and gives equality. Any other waveform enve-
lope profile will give AzAp > h/2. A distribution of momenta in a wave packet will cause

spreading of the spatial width of the wave packet over time

In the case of just waves without momentum being considered, Fourier transform theory
says, AxAk > 1/2. That is, an uncertainty principle applies to waves by themselves with-
out any mention of Planck’s constant, A. In electrical engineering, “It is well known that
the bandwidth-duration product of a signal cannot be less than a certain minimum value”
[5]. That is, At Afreq > 1/4m or At Aw > 1/2. So, if a special class of electrical engineers
had existed in 1927, there wouldn’t have been so much mystery about these uncertainty
principles.

Another important concept in quantum mechanics is the use of the “commutator bracket”
of two linear operators: [A,B] = AB — BA. Most of the time in classical mechan-
ics, the commutator will be zero. But, in QM, [Z,p,|v = —ih(x0,y — 0x(z) ) = k.
This is used in a general form for uncertainty relations, AA AB > ([A, B])/2i so that
AzAp > [z,p]/2i = ih/2i = h/2. But again, neither “commutators” nor “the uncertainty
principle” are unique to quantum mechanics, they also appear in usual classical physics [6].
For example, for classical waves, [t,0;] = —Z. What is unique to QM is the appearance of
the value A, the concept of “entanglement,” the existence of probability amplitudes, and
the phenomenon of “collapse” of the wave-function and the apparent reification of particle
behavior.

4. THE POSTULATES

The first postulate of quantum mechanics is sometimes stated more elaborately as:
[P1] For every system, there is a corresponding Hilbert space, H 16. and a state of the
system is a unit ray in the Hilbert space.

A student has to understand this statement but might also ask why it is written in this

161y 1932, von Neumann decided to include a collection of states into a “Hilbert Space” from a publication
in 1924 by Courant and Hilbert (for pure mathematics purposes). A Hilbert space is an abstract vector
space having an inner product. The simplest example is the ordinary real FEuclidean vectors with unit
vector basis {i, j, k} and the familiar dot product A - B = |A| |B|cosf. In quantum mechanics, we can
add that it is a “function vector space” [such as spherical harmonics, Hermite polynomials, or Legendre
polynomials (1782) on the interval —1 < x < 1] and referred to under the heading of “Lebesgue spaces,
L?7 of square integrable functions. But quantum mechanics allows for complex coefficients. This applied
mainly to Schrédinger’s Wave Mechanics. Heisenberg’s Matrix Mechanics came a little earlier in 1926
and was formulated with potentially infinite square matrices with a Hilbert Space of sequences of complex
numbers: “little £2” spaces. The two formulations are mathematically equivalent. Note that Hilbert space
can be, and often is, composed of an infinite number of bases. So, a vector can be a sum of an infinite
number of components.
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initially opaque language. Hilbert space includes linear vector spaces, so the usual mathe-
matics from a course in “Linear Algebra” is automatically implied. This, of course, includes
the superposition principle (adding vectors together still gives a vector). The “vectors” in
this case are more commonly functions that can be added and subtracted in the same way
as vectors (except that phase is also important).

Two State Superpositions: One of the simplest examples of postulate [P1] is the polar-
ization states of the photon (e.g., see Feynman Lectures Vol. III [15]). For the case of
a photon traveling in the z-direction, the Hilbert Space of this single photon system can
simply consist of two basis vectors called |z) and |y). That means that the electric field
vector is perpendicular to the direction of motion and can be in the “horizontal” x or
“vertical” y directions. Any other direction (like 45°) is a real superposition of these base
states. A horizontal polarizer will not pass the |y) state. But, we also like to say that a
photon carries spin; and this can be written as right or left circularly polarized states by a
complex superposition of the base states:

1 1 .
= ﬁ = E(I@ —ily)),

where the 1/v/2 coefficients “normalize” the states (i.e., R*R = 100% and L*L = 1). The
imaginary coefficient ¢ says that the addition of the y sine wave is 90° out of phase with
the x sine wave (so the y-wave is cosine). When that happens, the tip of the electric field
vector, E, rotates about in a helix and carries angular momentum.

Now, equation (8) can be inverted to solve for x and y in terms of R and L. That means
that R and L could also be considered as the bases for the Hilbert space. So, which is
more “real?” Both selections are equally valid with utility varying with the nature of
the experiment observing the photons (e.g., polarizers or quarter-wave-plate/Nichol-prism
combination, etc.). Single photons can be either circularly (or elliptically) polarized or
linearly polarized. So, how can photons have spin S = £1/ and also be linearly polarized?
The answer is that a linearly polarized photon (spin zero) can be considered as a superpo-
sition of both forward and reverse spin (RHC and LHC) at the same time. That is OK in
quantum mechanics.

And, as if that wasn’t counter-intuitive enough, we can also have macroscopic cases of
persistent currents in superconducting ring loops that can exist in a superposition of both
clockwise and anti-clockwise directions of current flow at the same time.

(8) |[RHC) = |R) (lz) +ily)),  |[LHC) =|L)

“State” is a key word in quantum mechanics. In Schrédinger “wave mechanics” it may
also be called a “wave function.” A traveling (time dependent) state is a mathematical
expression for a matter-wave that represents an appropriate relation or transition between
a source and a detector and possibly what’s in-between. It has to go through mathematical
processing’s before it can be said to have any classically understood “reality” ( unitary evo-
lution, “reduction,” Born rule “squaring,”...). There are also time-independent states such
as the hydrogen atom orbitals, and these can be considered as “standing-waves.” Exactly
what a state means and how “real” it is in itself has been a source of continuing discussion
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and ongoing contention. The mathematics has always worked perfectly, but what a state
represents to us is somewhat opaque. In a sense, it tells all of the possible outcomes from
a measurement. Examples include the interference output from slits in two-slit diffraction,
a moving electron, electron spin, atoms, and molecules. Measured values of an experiment
are called eigenvalues which are intrinsically classical and real and are not properties of
quantum objects which are complex [7].

The most desirable background for studying quantum mechanics is a mathematical
knowledge of linear algebra. In older days, students simply picked this up during the
learning of quantum mechanics. This has the advantage that only a portion of linear alge-
bra is needed, and in physics that portion is in the desired notation and application (our
vectors are in Hilbert space, a term barely mentioned in math books). One nice source
for learning this is in Griffiths [18]. After a course of study, one should be able to easily
say things like, “two unequal eigenvalues of a Hermitian operator have orthogonal corre-
sponding eigenvectors.” In most cases of interest, a state function [¢)) will have a variety
of eigenvalues and eigenfunctions — not just one as for the simple plane wave. Then, a
better statement of the Born Rule [P5] is: given that a system is prepared in a state |¢)),
the probability of seeing a measured system in an eigenstate |a) for an observable A is
given by P, = |{a|1))|?. We have to know about inner products, linear functionals and the
dual space, operators, projectors, subspaces, orthonormal bases, matrices, diagonalization
of Hermitian operators, traces, density matrices, probability theories, tensor products, and
much more [18§]

A very key (and very confusing) term in quantum mechanics is “measurement.” One
view is that it is a projection operating on the wave function and always causing the sys-
tem to jump into being an eigenstate of whatever dynamical variable is being measured.
The measured result is the eigenvalue of that eigenstate. A measurement actualizes val-
ues for the state. A standard view is that a state, 1, collapses its wave-function in the
act of measurement. A wave-function may be spread over kilometers (or possibly even
light-years) but then has to suddenly everywhere collapse into a point for measurement de-
tection: “The electron or photon ended up Here!” Possible mechanisms for doing this are
presently unknown, and there are many conceptual difficulties (the “Measurement Prob-
lem”). If we are expecting an explanation to connect the measurement outcome to some
property of a particle before the time of measurement, the problem might be in the word
“before” (presumptions about the nature of quantum information and time). And the term
collapse might be replaced by other suitable conditional probabilities in consistent theories
[18].

Another way of stating measurements [P4] is the “von Neumann Postulate: If a mea-
surement of the observable A yields some value a;, the wave function of the system just
after measurement is the corresponding eigenstate 1); [1]. This is another non-deterministic
discontinuous collapse due to the act of observation by projection of a superposition to one
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of its terms.

In addition to the “main postulates” already mentioned ([P1] complex state function,
we again also have [P2] corresponding operators, [P3] wave equation, [P4] projection for
resulting eigenvalues, and the Born Rule [P5]) , one can derive “secondary postulates” [1].
These include superpositions, eigenfunction and eigenvalues, calculation of expectation val-
ues, expansion in eigenfunctions, and conservation of probability.

A further note on postulate [P6] Tensor Products: A primary postulate that some-
times goes unmentioned as primary is about “tensor products”: the state of a com-
posite system is in the direct product of the Hilbert spaces of its component systems:
S =84+S5Sp = H =Ha® Hp. This is important when discussing entanglements for
two or more particles. For example, the state |¥) = (1/v/2)(|1)4 ®[0)5 — |[0)4 @ |1)p ) is
an entangled state.

Historically, Heisenberg’s “Matrix Mechanics” came slightly earlier than Schrédinger’s
“Wave Mechanics,” (1925 and 1926). But Schrédinger’s mathematics was much easier to
use and quickly gained popularity. Physicists were familiar with the language of differential
equations, but few knew anything about matrices !”. They were difficult to apply for most
common problems and now find use in fewer applications (such as the harmonic oscillator).
In 1926 to 1930, Dirac invented his more general “transformation theory” and could derive
both the wave and matrix pictures from it (and operators now become the generators of
transformations). Then in 1939, Dirac introduced his now common notation of “bra” and
“ket” vectors, (¢| and |¢), with “inner product” then conveniently written as (p[i). This
is the analog of the usual “dot” product of vectors, A- B = |A||B|cosf. But for continuous
functions, it might look more like [ ¢*¢ d(volume).

In addition to the wave and matrix formulations, there is also a “path integral” or “sum
over histories” formulation from Richard Feynman (sum over all possible paths that a par-
ticle could take weighted by phases along each path). Feynman wrote a technical book
on this [13], but he also discussed an elementary version in his much more popular book
called “QED” [14]. From his formulation, he derived the Schrodinger equation. The rele-
vant phases depend on “action,” A = [ Ldt, where L was a slightly opaque function called
a “Lagrangian.”

Path Integrals and Least Action: Derive the Lagrangian L = T — V simply by counting
waves along a path (making the simplest Feynman path integral easy to understand):

This is based on the “principle of least action” or “principle of stationary action” which
dates at least back to 1662 for “Fermat’s Principle” for light rays and to 1744 for massive

17Essentially, they had never been used by physicists since their discovery by Cayley in 1855 and were
considered as “pure mathematics.”
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particles [Maupertuis and Euler]. The equations they used were:
to T2

9) o 2T(t)dt =0 and 5/ pdq = dA = 0.

t1 T
where T is another symbol for kinetic energy, KE, “q” is a generalized coordinate symbol
for distance (most of the time we could just use “ x” instead), A is “action” (the integra-
tion over time), and trial paths are varied (symbolized by “change in” or delta . The game
we play is to fix end points at time-1 and time-2 and then vary paths in-between until
they satisfy requirements (called “calculus of variations” in mathematics with solutions
given by the “Euler-Lagrange” equations). These concepts were then broadened by La-
grange [1760] and Hamilton [1835] where the integrand came to be called the “Lagrangian”,
L = L(x,,t) which is often just L =T — V (and here & = dx/dt— Newton’s notation for
time derivative). Anyway, the purpose of all this was to have an alternate but mysterious
formulation of Newtonian Mechanics '8,

The two forms above in equation (9) are inter-related: that is, Euler’s action was the
integral of pdq or

T dx , dt dz\ 2

10 dr =mvdr = m—dr =m—dr— =m | — | dt =mv*dt = 2T dt.

(10) pdz =mvdz =m-—dz =m—dz— m(dt) muv

It matches, but If we wish to “extremize” paths, a differing constant of proportionality
wouldn’t matter.

It wasn’t perfectly clear why this approach worked or what it might really mean until
it was applied to quantum mechanics and waves. The action then becomes proportional
to the total number of waves along a path (or total phase), and the best path is one that
provides the most constructive wave interference at the end points. So now, lets just forget
some of this previous history, and work backwards to find an action and Lagrangian that
allows this to happen for a single free particle.

Since p = h/\, a wave-count along a path is n = Az/\ = pAx/h = 2T At /h, just like
the transformation of pdx in the above equation (10). Nearby paths with nearly equal
wave phases or counts, n, will have good constructive interference and be preferable and
stationary.

To complete the counts calculation, note that total wave phase is seen in equation (2)
as ¢ = (kx — wt) = (pxr — Et)/h, where E = T+V 19, So, wave counts is:

n:M:(pr—EAt)/h:<2T—(T+V)) T-V L
h

At = —— At = —At.
2 2 h ! h ! t

(11)

18For more discussion on Least Action, see the Feynman Lectures on Physics [15].
19Remember, we are dealing with non-relativistic mechanics, so mass energy is not included. If it were,
then intrinsic vibrational frequencies would be huge— almost beyond measurement.
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Where the elementary classical Lagrangian is L =T — V.

5. RELATIVITY

The fundamental ideas of special relativity (SR) can now be found in any of hundreds
of basic books on elementary modern physics, and those approaches will not be stressed
here. Historically, the ideas for length contraction and time dilation go back at least to
the works of Lorentz, FitzGerald, and Poincare on the properties of Maxwell’s equations,
the ether and the null result of the Michelson-Morley experiment (1887). “Lorentz Trans-
formations” were in common use prior to Einstein, but their interpretation wasn’t clear.
FEinstein’s 1905 paper on the electrodynamics of moving bodies changed beliefs by using
two central simplifying assumptions:

“The Principle of Relativity:” physical laws are invariant with respect to frames of
reference in uniform motion relative to each other, and,

“The Principle of Invariant Speed of Light:” Light speed V = c regardless of the
uniform motion of either an emitter or observer.

This different point of view made the previously all-important “luminiferous aether”
now seem superfluious 2°. Note that these postulates are “in the language of physics”
rather than abstract mathematics. It is hoped that quantum mechanics may someday be
derived from similar physical principles. Rather than the term “relativity,” Einstein later
wished that he had used the term “invariance” instead (e.g., the laws of physics should
be invariant under Lorentz transformations — a symmetry principle). It is also implicitly
understood that the space we live in is isotropic and homogeneous (and this gets carried
over to cosmology as well).

Here, I would like to approach the subject of relativity and time dilation in a slightly
different way beginning with the concept of metric. In geometry, we can look at distances
as the positive value of the separation of two marks on a measuring tape. In relativity, we
shift from “marks” in space to “events” which take place in both space and time (four
coordinates or 4-dimensions). And we compare the separation of two events in terms of a
transit of a beam of light between events. This is a profound difference in views. The
standard mathematics for “metric spaces” insists that distance measures be positive. In
relativity, we break this rule and consider both positive and negative distances and treat
the signature of space differently from that of time.

20But Einstein changed his mind about the aether after the success of General Relativity of 1915. For
him, aether was now the geometry of space-time, g,., later on to include other fields as well.
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The important Pythagorean theorem for right triangles on a plane states a® + b? = ¢?;
for example, sides of length 3 and 4 give a hypotenuse of length 5, i.e., 33 + 4% = 52. A
distance between two points of 5 units will be preserved regardless of the coordinates being
used. A student would be incredulous if someone claimed that the interval between these
same two points instead obeyed a metric looking like distance? = 42 — 32 | but something
like that happens in special relativity. The usual Pythagorean idea can be extended to
three-dimensions: (Ax)? + (Ay)? + (Az)? = 2 as a Euclidean (E?) metric distance. For
more general cases, we use small increment change, “d = tiny A” distances, and allow
arbitrary coordinate systems (e.g., cylindrical or spherical) and summarize weighted coef-
ficients symbolically.

In conventional notation, we now write: dz? + dy? + dz? = ds? = gijdxidxj with or-
thogonal coordinates now labeled dz', dz?, da® and superscripts i and j just standing for
coordinate values 1, 2 and 3 (which could mean x, y, z). The new coefficients, g, re-
fer to “metric tensor.” So, for usual E? space, the metric coefficients are just trivially
g11 = 1, goo = 1 and g33 = 1, with all other indices g;»; = 0. We call this a “diagonal”
metric.” The term ds? is called an “interval” and is invariant. We can select any coordi-
nate system in E® to specify the coordinates of any two given points. We can rotate and
translate the orthogonal axes in any way; and the resulting distance interval As? will be
the same. This concept carries over to the invariance of relativistic space-time intervals;
and this can be used to simplify calculations (as shown below for length contraction).

In general relativity (GR), the idea of gravity is replaced by curvatures deriving from a
general 4-dimensional space-time metric called “g,,,,” shown like a 4 x 4 matrix of values and
called a metric tensor (with “g” for gravity). We let the subscripts p and v stand for values
0,1,2 or 3 where the index “0” is reserved for time and 1,2,3 for space coordinates. The g’s
can be functions rather than constant values and can represent curvatures of space-time.
The tricky thing about both SR and GR is that the metric distance doesn’t have to be
positive and its components for space and time can have opposite signs! This is often hard
to grasp and goes under the name “pseudo-Riemannian-metric”. So, what’s that all about?

The big change for special relativity is that instead of usual distances, we now care
about and focus on “light” with speed c as a fundamental reference. If two events
in space-time are connected by a beam of light (or other massless radiation), we now want
their separation interval to be called “zero!” For the general case, the metric this time
is the difference between time and space increments: e.g., ds? = c?dt®> — dz?. A ‘time-
like’ convention uses a plus sign on time (sign g,, = +1) and minus sign on space, and
ds? = c?dr? where T is called ‘proper time’ meaning time in the frame of a moving object.
For light, de = cdt, so ds®> = 0 as desired. So, the change from classically traditional
positive metrics to difference metrics is due to the change of reference to light.
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Time Dilation: A particle having mass will move more slowly than the speed of light,
v < ¢, and we can write our metric as

ds? = 2 dr? = (goo = +1)c? dt? + (911 = —1)(dz")? or:

da? dx/dt)? 2 d
(12) dr? = a2~ 22 dt2<1—( %/ )>—dt2<1—;>,sodt—75'ydr

Ea c? /T—02/c2

This is “time dilation,” and it can be picked off straight from the Lorentz SR metric form.
The ‘Lorentz factor’ v > 1; so, for example, if v = 0.95¢, then v = 3.2. Perceived time du-
ration is larger than the clock time in the frame of the moving object. Then, for example,
At = yA7 means that a muon with short half-life streaking through our atmosphere can
live longer than it would at rest and be able to make it all the way through our atmosphere
to the ground.

Also note that since light travels at speed v = ¢, the Lorentz factor is v = 0o so that
dr = dt/oo = 0. So, even though two events may be light-years apart, in the frame of a
photon there is no advancement in time. Time flow is Zero (and, as intended, the “interval”
ds? = 0). A photon leaves its source, “snaps its fingers,” and instantaneously arrives at its
absorber.

Length Contraction: Perhaps the simplest example of SR length contraction in the di-
rection of motion is based on general interval invariance. Imagine a longitudinal bar in
system S’ of length L’ moving to the right with velocity v relative to system S. Let two
small flashes (events) occur when the leading and then the trailing edges of the bar coincide
with a fixed post in S.  ds? = ds'? = A2 — Az? = AAY? — Az’* . Since Az =0 in
S, the At is proper time = At = L/v. L' = vAt' and Az’ = L. Then:

(13) (cL/v)> —0=(cL'Jv)? = L7 L*=L%1-%/c?), L=1L/}y.
Again, this is consistent with time dilation:

L L Al
(14) Ar===" "2 AY =qAT.

v Yv vy

The rest frame, S, sees a moving bar contracted along its length by the factor ~.

We now have the two key equations of special relativity, time dilation At = yA7 and
length contraction, L = L'/~. From these, the standard formulas for the “Lorentz Trans-
formation” can be derived; and this can be used to show the invariance of the speed of
light. Textbooks usually do this in reverse: use Einstein’s postulates to derive Lorentz
Transformations and then show time dilation and length contraction and then velocity
transformations and relativistic kinematics. One can read textbooks for all of that.
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The most famous formula in physics is E = mc?, an idea dating back at least to Poincare

in 1900 — but then only for electromagnetic fields. Einstein is generally given credit for
this formula from 1905, but this and many other later publications by him either had im-
portant mistakes 2! or were incomplete [17] (he was generally sloppy about mathematics).
The first complete proof of E = mc?> = ym,c? was provided by Max von Laue in 1911.
Correct kinematic derivations are now known by every college freshman in physics and will
not be shown here.

Rest Mass: Energy is about the most important concept in physics. The rest mass
of a particle is a fundamental vibration, hw, = E, = m,c?. In special relativity (SR), we

start with total (rest + kinetic) energy E = mc? = ym,c? and momentum p = ym,v, then:
(15)
2 242 (moc?)? 212 %; 22 2 242 2
B2 = (ymaet)? = S = (moe?)? (14— | = (maet) - (mgue)? = (moc®)+(pe)’.
T2 -2

The same process can be repeated for frequency, v = yv,, and we differentiate between
group velocity, v = vy, and phase velocity, vy = Av, and the product vyvy = c. Then, we
get:

2 2
(16) V2 = (Y,)% = vp° + V22l = Vo + (E) ,or w? = we? + (ke)?.

This can be conveniently pictured by right triangles having hypotenuse E with sides

(moc?) and (pe) (or hypotenuse v with sides v, and (c/\) ) %2

Either way, if E and p are known, then m, rest mass is also known from the wave code.
And if frequency v and wavelength A\ are known, then rest frequency v, is also known. If
w/k = dw/dk = ¢, then m, = 0. So waves carry all this information even with very low
amplitude. Redundantly, the knowledge of rest masses for the elementary particles is built
into and accessible from the quantum fields of the Vacuum.

So, a wave enables determination of momentum or energy despite having weak ampli-
tude, uncertainty is built into any wave-packet, and also rest frequency (or rest mass) can
be deduced by the form of the dispersion relation, w = w(k), which now also includes
E = E(p).

21The fact that Einstein’s proof was not correct is detailed in the paper “Derivation of the Mass-Energy
Relation” by Herbert E. Ives, Journal of the Optical Society of America v.42, p. 540 (1952).

22This is equivalent to the “on mass shell” 4-vector form p,p* = (moc)?, or 2pp* = E? — (pc)? = E,>
(also called the “mass hyperboloid” equation). Real observable particles have momentum vectors on-shell;
but so-called virtual (internal Feynman line) particles have off-shell momenta.
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The Schrédinger equation is non-relativistic with KE = p?/2m. In that case, angular
frequency would be written as w = w(k) = (hk)?/2m + V(x)/h. Then group velocity
is vg = v = Ow/0k = hk/m, and phase velocity vy = w/k = hk/2m + V/hk. Then
vy = v/2 4+ V/hk. If the potential was not included (V = 0), then vy = v/2 would seem
very non-physical) and vA = v/2 for the free particle. p = h/A = mv = muvg, so mass
m = h/vgA. Of course, the non-relativistic case ignores the intrinsic frequency of rest mass.

Special Relativistic Lagrangian by Counting Waves: L = —m,c?/y — V appears implausi-
bly different from the previous L = T — V form. But, viewed from wave counts or total
phase along a path, it becomes simple and almost obvious. We reuse the previous conver-
sion from Euler’s integral of p dz — mv?dt from equation (10). Relativistic energy is now
E = ymoc? + V (from the equations under the section on “rest mass”); and p = ym,v so
that pdx — ymyv?dt. Then, wave counts becomes:

_A¢ _ (pAz—EAY)/h —yme?At(1 —v?/c?) — VAL —myc?At _ VAt
2 27 N h 4 h h
And Least Action can be written as 64 = § [ Ldt = 0, where

(17) n

to to
(18) A= —mOCQ/ i _ Vdt.
t1 vy t1

There are many more important topics in special relativity that could be discussed here.
But, now we wish to move ahead to the topic of general relativity [GRT] and see if it can
be easily and intuitively approximated.

The ‘Principle of General Relativity’ or “Principle of Equivalence” [PE] says that a lo-
cal inertial system experiencing a constant gravitational force is equivalent to a noninertial
system undergoing constant acceleration (relative to the‘“fixed star”). The fundamental
laws of physics do not depend on relative motion nor relative acceleration; they are valid
for both inertial frames and noninertial frames of reference. A precursor to this is the
recognition by Galileo and Newton that gravitational and inertial mass seem to be the
same for all substances.

Weak Field General Relativity: Fairly simple arguments show that we can derive
some first order general relativity results just using some of the arguments discussed in all
of the preceding text above. We don’t need the full power of Einstein Field Equations.
Picture in your mind the surface of the Earth with some objects above it which we will
allow to fall freely under gravity (and no atmosphere, just ideal vacuum). Consider a clock
‘A’ placed h meters above clock ‘B’ in a local gravitational field, g, with another reference
comparison clock ‘C’ lying high but nearby at a fixed altitude [9]. The GR principle says
that the physics of this system is equivalent to that where clocks A and B accelerate
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upwards with acceleration a = |g|. Then, by conservation of kinetic plus potential energy,
the speeds of the clocks when they pass altitude C must obey v% = v4 + 2ah. By SR, the
clock periods dilate by T = 47 ~ 7(1 + v?/2¢?). Then period:

GM GM

(19) T~ Ta[l + (v5 — v%4)/2¢%] =~ Ta(1 4 gh/c?) =~ Ty |1+ o
c’rg c’ry

We have used the approximation 1/rg — 1/ra = (ra —rg)/rarp = h/7? and GM/r? = g.

But we really can’t go beyond little h distances to long radial r distances like we do in

general relativity.

This period elongation, Tp > T4, is called ‘Red Shift.” That is, since the lower time
period is longer, the perceived frequency is lower (and we say shifted toward the red).
This concept has been proven to apply to both light and to ‘matter waves’ as well [16].
Phase difference measurements in an atom or neutron interferometer are the same as those
accumulated using conventional clocks following the same paths (test of the principle of
equivalence, the famous COW experiment [22] ). The first accurate test of gravity on
photons was the 1960 Pound-Rebka experiment for gamma-rays from Fe’” at an elevation
of 22.5 meters above a detector (verified with accuracy £1% [20]). Atomic clocks are now
so accurate that a change in time flow should be seen over an elevation change of only
2 cm (Jun Ye, JILA/Nist test in Boulder, [21]). The degree of gravitational redshifting
AN\ ~ A®/c? is just —2 parts-per million for photons leaving the Sun but a powerful
—10 % for neutron stars [25] where the needed escape speed is 30% of light speed.

A similar comparison exists for measuring rods in the radial direction where now L =
Lo/v =~ Lo(1 — v%/2¢?). Then,

(20)  Lp~ La[l —(v% —v%)/2¢% ~ La(1 — gh/c?) ~ LA[l — GM/c*rp + GM/c*r 4]
If A is far away (e.g., the earth observing the sun), then

' Tp dr' Lg

— ~ 2 ~[14+GM/*r] and — ~ == ~[1—GM/cr].

dr Ty 1+ /el dr  Lg [ /el

The term G M /c? is often shortened to just m. This is especially true when using modern
units where basic constants are set equal to unity, c = h = G = 1. The equations above

can be assembled by components into a metric:

(21)

(22) dr? ~ dt’*(1 - 2m/r) — dr'*(1 + 2m/r) — dr’, 2

which resembles the linearized Schwarzschild metric. But this was only constructed using
the principle of equivalence and special relativity for weak fields.

The arguments leading to equation (22) can be reinforced by other physical considera-
tions. Simply by conservation of energy and basic quantum laws, a photon of energy £ = hv
rising against a gravitational potential must have its frequency lowered by Av/v = gh/c?.
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The red-shifting due to the field of our sun is a tiny contribution (e.g., parts per million).
Since VA = ¢, dv/v = —dA/A. If T is period, and ¢ is gravitational potential —MG/r,
then [10]:

va—vp Tp—Ta Ap—Aa _ ¢p—oda

v T A 2

Duration is a number of periods and length is a number of wavelengths. So this result
is consistent with the first order length transformation (20). Massive particles also obey
E = hv = mc? and will also suffer frequency change from change in gravitational potential.

(23)

Also notice that the radial component of the speed of light is no longer seen as constant
everywhere,
(24) v (1=m/r

v’ dr \1+m/r

it slows down in near field. Light speed c is a local constant, but at distance separation
it is non-constant and non-isotropic. This slowing down of the apparent speed of light
is similar to having the gravitational field act as a refracting medium. Then light rays
passing through this medium will get bent. This can be used to derive the “bending of
starlight” and the “time delay of radar.” So, we can get three of the simpler consequences
of testing GRT. With care, the first approximation of the perihelion shift of the orbit of
the planet Mercury can also be attained. This means that full testing of the Einstein Field
Equations requires strong fields (such as the famous binary pulsar first seen by the giant
Aricebo radio telescope [Puerto Rico, 1974]).

) = ~c(1—2m/r)

Geodesics are world lines of extremal proper time [8]: The solutions for trajectories in
general relativity are curved pathways called geodesics. These are like straight lines for
light rays in Euclidean space or great circles on the surface of the Earth. We wish to talk
about particle paths in the gravitational field just above the surface of the Earth, and
we just showed that clock frequency speeds up with height. And in special relativity, we
showed that clock frequency slows down with speed. Recall that a little trick here is that
frequency is 1/ clock period; they are inversely related. Now we wish to combine these.
There is a time flow tradeoff between speed and elevation called “most hang-time and least
speed” [Feynman] over desired trajectories. Or, in the Feynman Lectures, it is said, “An
object always moves from one place to another so that a clock carried on it gives a longer
time than it would on any other possible trajectory — with of course the same starting and
finishing conditions” [15]. We can combine the previous math for time dilation (12) and
gravity time (19) to get:

dr\? dz \? 02 dr \/ 2MG 2
25 7 =Yoo — | —4; = Yoo — 5 5 = 1— 7_7:1171
(25) ( dt) g (cdt) g 2 7w cr 2
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where I" could be called a “gravitational Lorentz factor” [23] and u is a velocity accompa-
nying each potential. To low order, one could approximate this as:

dr 1 MG gAh v?
2 N ¢ e Ar~At1+ 920 A (L
(26) dt T ( Ar 202)’ o ar [ T2 <2c2>}

Since wi/w, = dr/dt, we do see that clock frequency (in perceiver frame) is slowed down
by motion and speeded up by height. The fraction ¢?/g = R is the relativistic radius of
curvature of the Earth’s gravitational field (which works out to be about one light year)??.
Recall in equation (16) under rest mass that frequency w = yE,/h = ymyc?/h. This now
becomes w = I'myc?/h = w, + Aw. This suggests multiplying the last equation (26) by
moc?/h. Then, A¢ = (—L)At/h where L = T — V is just the simple Lagrangian as in the
older equation (11).

Finally, returning to the principle of extremal proper time, the whole proper time accu-
mulated along a trajectory is given by

t2 to t2 L
(27) T = / dr = / Gupdxtdzt dt ~ / (1-— )dt
t1 t1 t

) meC?

In finding extremum’s, added constants and proportional factors don’t matter, so we are
left with just the usual least action variation of the Lagrangian: 67 = 0 = ¢ [ Ldt = 0.
24

Proper time (time carried by a moving frame) 7 is a maximum, and A = [ Ldt is a min-
imum. In a way, this principle of maximum proper time is another way to derive the
simplest Lagrangian, L = T — V' (this time for gravitational potential energy).

Cosmology: Finally, a fair understanding of cosmology can be attained simply by using
Newtonian calculations for the case of a homogeneous and isotropic universe with zero
curvature (k = 0), no cosmological constant (A = 0), no pressure, and only matter (like
dust). From simple conservation of energy, equations can be derived resembling Einstein’s
general relativity field equations. This is essentially the Einstein de Sitter (EdS) model
of 1932 for a “just right” universe that barely expands forever. This is discussed in many
older references and was a dominant model in cosmology for nearly 50 years [24] % Of
course, we are missing the early radiation era of the expansion of the universe which was
dominant until 47,000 years after the big bang. And we are also missing the accelerated
expansion era which may have begun 7 billion years after the big bang.

This special EdS case is contained in Friedmann equations begun in 1922 which can also
be approached using Newtonian conservation of energy [26]. An easy outline of essential

23The trajectory of a ball tossed into the air is a parabola. Change the time axis to ct, and this parabola
is the approximation to the top of a really great circle of radius R (found simply by calculating radius of
curvature from standard calculus formula). So, gAh/c? = Ah/R is a really tiny number.

24Feynmam’s derivation of this is somewhat easier than mine, see Vol II pg 42—13.

25Despite its historical importance, EdS is not now dominant in current books on cosmology or general
relativity. Its primary utility was easy integrations of its equations for applications.
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equations for Newtonian cosmology is contained in [27]. Of course, ultimately, one would
wish to know the proper study of general relativity using the concept of curvature. And
GRT says that the previous understanding of Newtonian gravitation is conceptually wrong
and should be stated as a low order curvature of time, dr/dt = goo(r). Beyond that,
bending of light (traveling at the speed of light) sees an additional but equal contribution
due to the curvature of space. This doubles the bending that Newton might have predicted.

A Newtonian approach can also be used to easily understand cosmic inflation too. Imag-
ine an ideal case of a ball freely falling through cylindrical hole drilled all the way through
the center of the Earth. Remember that the acceleration of gravity, g, only depends on the
mass contained within a spherical shell at radius r. Without any air resistance, the mo-
tion is approximately that of simple harmonic oscillation with a period of 1.4 hours. Now
switch from gravity to anti-gravity from the cosmological constant, A to give F' = +k r
with A ~ —87Gp/c? in its behavior. Its solution now changes from sine-wave motion to

rapid exponential expansion like r = rgeTVA/3t = . eHt [24].
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6. APPENDIX

More Traditional Derivation of Relativistic Length Contraction:

The usual textbook calculation of length contraction is a little longer than the simple
argument shown previously above [10]. It depends on a light flash mirror bounce from the
end of a rigid moving bar. So imagine a longitudinal bar (say in a moving or primed S’
system) moving to the right along an x-axis. A light flash is sent from the left of the bar to
a mirror, M, on the right side which reflects the light back to the left end for a round-trip
journey. The initial light flash event is at initial moving time ¢ = ¢ = 0 for moving clocks
versus clocks at rest in an un-primed system S. We compare length and time for the events
that (0): initial flash, (1): light bounces from M, and (2) light received at the left end of
the bar at final times ¢ and ¢'. The length of the bar is L' = ct’/2; and the times recorded
in the rest system are t; and to.

Since S’ is moving, the time at which light hits mirror M is ¢t; = (L + vt1)/c. Or
t1 = L/(c —v). And then the time back to O’ is short because the left end of the bar has
moved a total distance x9 = vty during round-trip transit.

Consider the last time increment (to —t;) = (x1 —x2)/c where final 9 = z1+v(ta —t1) — L
or (tg —t1)(c 4+ v) = L. Then,

L L 2Lc  2Ljc  2I42
28 ty = (ta —t t1—0)= = = - ‘
@) =l -0 = T T e e T s T o

Now remember from equation (12) that the moving clock time is 7 =t/ = t/~, and ¢ = to,
and L' = ct' /2, so,

t 2 t te 1 L
(29) L:‘J(l_”z):(;zc.:
2 c 2y 2 v v
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So, the length of a moving rod is seen as contracted by the system at rest, L = L'/~.
Notice that we have had to use the same speed of light factor ¢ in both the S system at
rest and in the moving system S’. So Einstein’s second postulate of the constancy of the
speed of light is still required.

Free Fall: Technically, it is not quite true that free fall in a gravitational field is the
same as the effects of an observer’s acceleration [12]. Real gravitational fields have tidal
forces so that the Riemann tensor is non-zero. In Newtonian gravitation, tidal acceler-
ations mean that objects at different altitudes experience different relative accelerations,
Aa ~ 2MGAR/R3. Tidal accelerations cause divergence of initially parallel geodesics in
the curved space-time of GR. The equivalence principle was a guiding concept towards GR
but acted as a midwife rather than actually constituting an explicit portion of GR. Nev-
ertheless, it could be argued that PE combined with SR should produce space contraction
along with red-shifting time effects and that the Schwarzschild form of a metric tensor is
more physically valid than an isotropic form. The principle of general covariance would
argue otherwise; but it really doesn’t have a legitimate power to be convincing. For an
external observer ‘relatively’ lacking in velocity with respect to a central mass, the radial
coordinate about the central mass is ‘really’ different from the angular coordinates because
of radial spatial contraction. And radial space contraction and time dilation only need
to be approximated to first order in gravitational potential to yield the correct perihelion
shift [11].

The First Test of Gravitational Red Shift: Notice that the term —GM /r is just Newto-
nian gravitational potential, ¢. In weak fields and negligible speeds, dt/dr ~ 1/1/1 + 2p/c?
1—¢/c* = v,/v. If vis light frequency (the inverse of light period), v(r) ~ v(r,)(1+Ap/c?).
On the surface of the earth, v(h) = v(h,)(1 — g(h — ho)/c?). This important ‘red shift’
of light at different potentials has been verified experimentally even over short altitude
changes on Earth [e.g., within £1% for the ‘Pound-Rebka’ experiment over Ah = 22.5m
back in 1959 [8] ] %6.

Some comments on going Beyond Non-Relativistic QM to Quantum Field Theory (QFT)

A main difference between QM and QFT is that at higher energies, the number of
particles present is not conserved. Matter and radiation are easily inter-converted (as
long as appropriate quantum numbers are preserved). Key new operators are then in-
troduced beyond those of relativistic QM: creation operators and annihilation operators
(called At and 121) and are related to the raising and lowering operators for the energy
levels of the Linear Harmonic Oscillator (LHO). This is very different from ordinary (non-
relativistic) quantum mechanics where we discuss the evolution of a “particle” already in
existence with particle number being held constant. Psi is not a probability amplitude but

26Actually, weak field red-shift can be derived without General Relativity by simply using the principle
of equivalence and special relativity (see Schiff [9]).
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operators which create and destroy particles in various normal modes.

Fundamental reality is composed of fields. And there are two basic types called “matter”
fields and “interaction” (or “gauge”) fields, and they have quanta for fermions and bosons
(half-integral spins and integral spins). Fundamental interactions occur only between mat-
ter and interactions fields [7]. “So, is QFT really based more on particles or on fields?
Although there is still a little disagreement, a strong majority of theoreticians favor fields
as fundamental objects. Nature is made of fields. Quantum fields permeate space-time,
are relatively eternal and omnipresent, and have excited state quanta that we have tra-
ditionally called ‘particles.” There is a special quantum field for each type of elementary
particle.

Matter in general is an excitation or wave in one or more of the fermionic matter fields.
For an electron two-slit diffraction for example, the extended singly-excited electron field
goes through both slits. The interaction with a detector screen is deduced to have been
from a ‘particle.” “Although excitations belong to the entire field, they must interact lo-
cally.” Of course, there is a problem with the word “field” in QFT (or any other classical
word used to describe quantum mechanics). It is usually defined as having a value (e.g.,
scalar or vector, etc.) assigned to every point of space-time. We picture that simplistically
as an amplitude disturbance in a mattress of springs. But the field in QFT is much more
“magical” than that. Many different types of disturbances can occur at the same time in
a given place and be holistically coordinated with all other locations.

The central problem with a particle interpretation is that the primary attribute of a
particle should be its localization in space, and particles should be countable. But there
is no such thing as an observable for position in QFT, and Wigner said in 1973 that
every attempt to provide a precise definition of a position coordinate stands in direct
contradiction to relativity. A ‘photon’ is not localizable at all, not even approximately,
and there is no consistent space-time wave-function for a photon as a “particle.” For single
photons, one can think of an electromagnetic wave packet as a function of space-time. In
general, there is no accepted viewpoint on the subject of localization in QFT that is either
simple or clear even for the case of free fields. Peierls said (1973) that “at relativistic
energies, the electron shows the same disease. So in this region, the electron is as bad a
particle as the photon.” Quantum fields are intrinsically delocalized and unbounded,?
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ABSTRACT. Many mathematicians are Platonists in the sense of believing that major
concepts and theorems are discovered rather than invented. It is claimed here that the
initial foundational source of those apparently spaceless and timeless mathematical ideas
is the invariant Vacuum of uniformly present space-time. This is a non-classical yet “real”
Form Heaven for fundamental physics and is a storehouse for all the knowledge of the
physical constants, laws, and particles of physics. The intricate structure of the Vacuum is
common to all intelligences in our universe and helps to constrain the reality of their var-
ious emergent knowledge. A reductionist view begins with the basic set of quantum fields
living in the Vacuum leading to more complex forms emerging from these fundamentals
(protons, nuclei, atoms, molecules). These entities are quantum, and their nature along
with the fundamental fields might be said to live in an unusual “square-root of reality.”
Mathematics applies logic, intelligence and abstraction to world patterns and then gener-
alizes at will forming abstractions of abstractions. But the field of mathematical-physics
continually cross-fertilizes math and physics modestly limiting their divergence.

1. INTRODUCTION

Focus for a moment on a simple question, “Does pi (7 = C/D) exist before we discover
it? And if it does, where does it exist?” Historically, our knowledge of this basic constant
comes from performing measurements in our various environments and doing practical cal-
culations. We use pi when we deal with circles, circumferences, and areas or volumes of
spheres or cylinders. And then, later on, after much development, pi can also appear from
a multitude of other activities such as the summing of series. The classical physical world
hints at pi in many ways: Nature has spherical planets and stars, planetary orbits, periodic
vibrations, spherical droplets of water, and progressing phases of waves as examples. No
matter where they are, intelligent creatures trying to understand the universe will find pi
useful and intriguing. In itself, Nature doesn’t explicitly or overtly know pi, but Nature
can be codified by rational communities trying to understand the patterns of Nature.

The Greek philosopher Plato (~ 424 - 348 BCE) stressed the importance of relatively space-
less and timeless abstract ideas relating to numbers, geometry, nature and ethics and why
these concepts seemed to be universal over the world then known to the Greeks. The ability
of different people to independently re-discover or “instantiate” some of these apparently
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pre-existing ideas was believed to be due to “remembering” them from a time before birth
when souls had contact with ideas in Plato’s heaven. We now tend to view this idea as silly
mysticism except for the nagging awareness of its general popularity across more than two
millennia and its widespread popularity among respected mathematicians up to the present
day. Contributing to their belief may be the desire to think that mathematical progress is
indeed discovery rather than invention. We wish here to update and apply Plato’s idea to
modern physics and mathematics and make the “problem of universals” into “the universe.”

The set of all invariant abstract ideas could be called Plato’s “Form Heaven.” In our
modern era, the important concepts or forms of mathematics and physics have complexity
and invariance that goes far beyond anything Plato could have imagined. The original
intent of his Forms was that they be abstract properties, that they transcend particular
instantiations, that they be pure and “perfect models” or causal templates, that there is
some sense in which they are objectively “real,” and that they have some sort of a hier-
archy of connectedness down to instantiated objects [1]. They should not have particular
places or times of existence, they are beyond localization in space or in time. The basic
mathematical forms of Plato’s day are still important to us today: numbers, perfect circles,
spheres, geometric “platonic” solids, lines, triangles and the Pythagorean theorem. But
we have now gone well beyond that. The ranking or value of a Form should reflect its
degree of invariance and how generalizable it is from a fundamental reductionist sense. We
may no longer consider examples like people, dogs, the color green, hair, wood, or air as
being invariant enough to call Forms because some of these may be restricted too narrowly
to Earth and its biology and culture. We want much wider invariance than that; and, in
the following, we wish to broaden the concept of the invariance of Forms from the ancient
Greek world up to the presently known universe within our particle horizon. Although
concepts like reincarnation and the soul were popular in Greek culture, we tend to avoid
them now — and, from our latest knowledge of cosmology, we would place some new limits
on words like eternal or immutable. Plato’s insistence that Form Heaven is not in space-
time might also be loosened because modern physics now might actually identify it with
the structures of the space-time Vacuum.

A standard objection to Platonism is asking the obvious question, where is this world
of Forms? Ignoring Plato’s answer, there are several possibilities. One is that it emerges
and lives in the minds and culture and literature of a world community of very smart, in-
quisitive, international, rational, abstract thinking people (such as the mathematicians of
our planet). So, mathematical Form Heaven results from “shining the light of intelligence”
onto a given habitat. We may also ask the following question: Suppose there is a set of in-
telligent, independent, technological, alien civilizations scattered throughout our universe.
Would we expect them to eventually evolve a mathematics structure and set of theorems
approximately isomorphic to our own? (focusing on the most important theorems out of
millions). And would their physicists eventually come up with something isomorphic to
our standard models of cosmology and particle-physics? We feel slightly braver in posing
such a question now that we have actually discovered nearly 2000 exoplanets [2], think
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that the total number of planets in our universe is extremely large (e.g., 10?%), and have
slightly greater comfort in the Drake equation These may be standard questions for SETI
(Search for Extra-terrestrial Intelligence, for “ETI”). Our knowledge is still weak, so this
may be just a thought-question (“Gedanken”). But, we would probably all find it easy to
believe that the equivalent of numbers like 2, 3, %, 7, v/2 and e would exist in all ETIs —
they are just too useful and important to bypass. (And, for physics, we can imagine that
knowledge of universal constant values for c, h, G, ¢c, kg, me, my, Ny, a, and agy should
eventually appear.) If we can agree this far, how difficult is it to further imagine that ideas
like the Euler equation ™ = —1 or the Pythagorean theorem a? 4 b? = ¢? will also be uni-
versal? And from the Pythagorean theorem, we can generalize metrics to ds? = uvdxtdz”.

2. MATHEMATICS

A common definition of mathematics is “an abstract representational system used in the
study of numbers, shapes, structure, change and the relationships between these concepts
[3].” It is an interdisciplinary language that has reason built into it; and this purity of
reasoning is why Plato valued mathematics so highly. A favorite definition is from Paul
Halmos, “Mathematics is the logical dovetailing of a carefully selected sparse set of as-
sumptions, with their surprising conclusions, via a conceptually elegant proof. Simplicity,
intricacy, and above all, logical analysis are the hallmark of mathematics [4].”

It is said that, “Mathematical platonism enjoys widespread support and is frequently con-
sidered the default metaphysical position with respect to mathematics” [5]. Consider
the emphasis on the phrase “there exists” (e.g., an infinite number of prime numbers,
I PCN, #{P}=X,, IpeP). We take the “existence” of these objects seriously. Can
we also imagine that basic proofs for an infinite set of prime numbers might pre-exist in
the book of the universe [6]? (e.g., Euclid’s (~ 300 BCE) finite set of the first r primes fol-
lowed by a new number n = pip2...p, + 1 which may have an additional new prime divisor).

In his book, The Road to Reality, about mathematics and the laws of the universe, Roger
Penrose says, “Platonic existence, as I see it, refers to the existence of an objective exter-
nal standard that is not dependent upon our individual opinions nor upon our particular
culture [7].” He devotes a whole section on whether the “Platonic world of mathematical
forms” is real and decides that it is in the sense of the “objectivity of mathematical truth.”
Kurt Godel also believed in the objectivity of mathematics, that an abstract realm existed,
and that the only valid philosophy of mathematics was Platonism. He was a theist who
believed that intellectual mathematical intuition is a kind of sense that enables us to per-
ceive Platonic concepts which are really “out there” [8]. And Paul Erdés believed in the
pre-existence of a transfinite Book that contains the most elegant and perfect proofs of all
mathematical theorems [6].

Pure mathematicians would say that mathematics is pure math, although this emphasis
only dates back to about 1800. Mathematical knowledge is only concerned with the realm
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of thought. It attempts to not consider direct application; but, mysteriously, the purity of
one era sometimes becomes the application of a following era (e.g., number theory was once
pure but now also applies to computer encryption). From the time of Karl Weierstrass, we
focus on mathematical analysis and rigorous proof from axioms. Jean Dieudonné (and the
highly abstract and rigorous French Bourbaki school) stated in 1962 that mathematical
progress has almost nothing to do with physical applications [9]. But, twenty years later,
modern physics again entered the picture. Michael Atiyah said that since about 1980,
“some of the most exciting developments in mathematics have arisen from the interface
with physics and particularly quantum field theory” (“QFT”) [19]. The Fields Medal is
sometimes called the Nobel Prize of mathematics. So far, Edward Witten is the only
practicing physicist who has won this award (in 1990 for his 1981 proof of the positive
energy theorem of general relativity). But eight other winners did work partly related
to physics (delta functions, quantum groups, PDE’s, Ising model, Boltzmann equation,
renormalization, Brownian motion, and general relativity). Peter Woit says “Mathematics
is a science, but it is not an empirical science. It insists on precise thought, rigor, clarity,
high standards of proof and debate among an international community. New mathematics
is motivated by numbers and geometry and also by theoretical physics” [10] (e.g., quantum
field theory and string theory).

3. PHYSICS

“The goal of physics is to study entities of the natural world, existing independently from
any particular observer’s perception, and obeying universal and intelligible rules [11].” We
are aware that our physical laws, particles, and the constants of Nature are universal and in-
variant over space and time. So, it has always been clear that physical Forms are discovered
rather than created by people. We know this largely due to the spectra of electromagnetic
radiation detected from very distant sources and from the success of the standard model
culminating in the discovery of the Higgs particle. And our ACDM concordance model of
cosmology is now pretty solid largely due to the study of cosmic microwave black body
radiation (CMB, e.g., via the Planck mission) [12].

Formerly, physical entities were said to ‘exist’ because they had mass. After Einstein, we
might say they exist because they have energy equivalence (e.g., E = mc? and E = hv). We
believe that photons and electric fields exist because they can deliver energy even though
their mass is zero. A present concern is whether information also has any real existence.
A problem in physics is that we presently seem to have two worlds: the classical world
(largely composed of particles created long ago) and the “quantum world” (currently ei-
ther coming into being or the not yet energized forms of the Vacuum). Plato’s Forms were
originally conceived as beginning in abstractions from the classical world where we now
speak of Newtonian mechanics and gravitation applied largely to macro-bodies. The quan-
tum world should perhaps really be called a “pre-quantum” world because its equations
stop short of the actual transfer of quanta. It is a strange non-classical existence possibly
described as a sort of “square-root of reality” discussed more below. We refer to this world
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as “real,” but that is a horribly overused word that should better be called quantum-real
or “qureal” instead to separate it from a usually understood bias of being classical.

Apart from solid-state physics (condensed matter), physicists generally have a reduc-
tionist perspective: work towards the bottom and then build up from there. Elementary
particles and fields represent the present bottom rung of this ladder. Our past history
biases us towards visualizing classical particles when thinking about ‘particle physics.” But
fundamental particle physics is now discussed in books on ‘quantum field theory” (QFT).
The belief in “a pure fields view” has developed during the past three decades. “At the
high energy end, most quantum field theorists agree for good reasons that relativistic quan-
tum physics is about fields and that electrons, photons, and so forth are epiphenomena,
namely excitations (waves) in the fundamental universal fields” [15]. Quantum fields exist
in space-time; but we need to talk about the nature of that existence. The reason that all
electrons are the same (N, ~ 1080) is that they are all excitations of the same pervasive
electron field. A general view is that a quantum field is an entity existing at each point of
space which regulates the creation and annihilation of particles — one field for each type
of particle. QFT treats fields as the knowledge embedded in the Vacuum of how to make
any particle providing that adequate energy and quantum numbers are available to do so
[16]. Some say that even in usual QM there is really ‘no evidence for particles’ [14] [15].

Frank Wilczek noted that a new term was needed which is broader and more relevant
to physics and QFT than the old ideas of aether, plenum, substance, vacuum, space-
time, or world-stuff [17]. He uses the word ‘Grid’ as a “multilayered, multicolored cosmic
superconductor” including quantum fluctuations, a superconducting condensate, a weak
superconducting Higgs condensate, Einstein’s metric field (g,, ), the dark energy cosmo-
logical constant grid density (A), and “chiral symmetry-breaking condensate consisting
of quark-antiquark pairs.” It is recognized that general relativity is really an “ethereal
theory of gravitation.” Grid superconductivity gives masses to particles created by weak
bosons, and particles are relatively localized disturbances in the Grid. Some might add
that the smoothly distributed cosmic black-body background (CMB) is also a modern ver-
sion of an aether with a locally preferred frame corresponding to the expanding cosmic
fluid. Wilczek’s picture is further encouraged by the experimental finding of the 125 GeV
resonance appearing to be the standard model Higgs boson (CERN-LHC, 4-July, 2012).

As a recent example of the hidden “causal templates” of the space-time Vacuum, con-
sider particle-antiparticle colliders producing what might be called “pure energy” which in
turn can then lead to myriad possible output particles of precisely defined types apparently
emerging out of the Vacuum itself. Since the earth rotates and orbits, the real historical
set of collision points of these colliders have been sweeping out corkscrew paths covering
large samples of space and over a long time implying that this production is spaceless and
timeless. There is a beautiful plot released by CERN LHC showing quark-mesons pro-
duced by the Vacuum as seen by an increasing total mass of di-muons, u™u~, “A Lovely
Dimuon Mass Spectrum” [18] . The spectra of events per GeV begins with lower energy
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at left showing spikes in cross-section for production of mesons called 1, p,w for i, dd.
Then there are the unflavored quarkonia gg mesons: the ¢ meson for strangeness ss, and
then charmonium J /1 for cé followed by Y or bb and its excited states. Finally there is a
huge spike for the neutral weak Z° boson near 92 GeV. These particles are spewed forth
when the Vacuum is stimulated. From a separate reference, a very similar plot of particle
production cross-section also results from electron-positron ete™ collisions [13] addition-
ally showing a high energy hump for W W~ production. We would believe that pumping
energy into any point in the universe would enable the production of these same particles
and deduce that the Vacuum of space-time holds the pre-existing knowledge of all these
particles and more.

Plato would also not have anticipated the world of identical particles. All of the uni-
verse’s muons are the same, each of its protons is the same, each of its ground state gold
atoms is the same ( isotope with neutron number say at 118). When we instantiate a physical
form, it is not an impure poor-copy; it is as pure as the abstract forms themselves. And,
experiments also show that these objects are quantum too — at least up to macro-molecule
size like Cgg carbon buckyballs. They are ‘de-localized’ entities. An experiment in 2013 [25]
demonstrated nano-particle de Broglie matter-wave interference of macromolecules above
10,000 amu! It is not presently clear where a dividing line may be between these quantum
objects and so-called classical objects. Could it be that the physical world is all-quantum?
Or might an upper mass limit be near the “Planck mass” (~ p gram)?

4. QUANTUM MECHANICS AND “THE SQUARE ROOT OF REALITY”:

Quantum mechanics provided us a strange new world where “reality” became hard to
define and complex numbers became a necessity. After eighty years, there is still an in-
tense on-going debate about the nature of the quantum state, v (is it “ontological” or
“epistemological” or perhaps some blend of both?). As an interesting example, suppose
that a minority view called the “Transactional Interpretation” has some validity [21]. In
this TI world, 1 is an “offer wave” from an emitter to possible absorbers. A confirming
wave * goes back in time from an absorber to the emitter resulting in a handshaking
“transaction” with weight 1*¢ which provides an explanation of the Born Rule. In this
picture, the reality of a quantum state or wave function 1 is something like the “sound
of one hand clapping.” That is a very unusual kind of “reality,” and the Form Heaven of
Physics has a reality similar to this.

Take the Born rule seriously as having sub-quantum-real (‘qureal’) wavefunctions need-
ing to be ‘squared’ to become classical candidate entities. Classically recognizable proba-
bility may be given by P = 1*¢, where psi lives in a new sub-world resembling the pulling
apart of classical reality into two “square-root” (or ‘star-root’) complex number parts. So,
electron spin as classically real or vector-like fails to agree with observation, but quaternions
or gamma matrices fit needs better. Discussions of the Born rule go from wavefunction to
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detection probability with a selection criterion that is unspecified and likely random. Here
we wish conceptually and heuristically to go backwards, from classical to sub-quantum.

As a first example, one occasionally used representation of a single photon (the ‘Riemann-
Silberstein’ form) is found by taking the “square-root” (or “star-root”) of its supposed
energy density: ¥*y o (e,/2)(E? + ¢2B?) becomes 1 = \/€,/2 (E +icB) [27]. The ‘star
root’ operation is of course not unique and not well-defined, it is intended to only be
heuristic: star-root *v/Prob = P*/2 = 1). In a similar vein, the ‘Dirac program’ essentially
derives from taking the square root of the d’Alembertian [20]; or we can consider the Dirac
equation as the ‘star root’ of the Klein-Gordon equation: Dirac = (KG)*/Q, ie.,

mc */2

(1) [6”(% + <?>2 ] =0 —  in"0p —mep =0

where the v* ’s are the 4 x 4 unitary Dirac matrices. Instead of just complex conjugation
(or ‘starring’), higher dimension quantum spaces can use matrices with conjugate trans-
pose or ‘Hermitian Adjoint,” AT. The ‘star-root’ idea can go further, for example into the
realm of quantum cosmology with supersymmetry where it is said that supergravity(N = 1
SUGRA) naturally provides a Dirac-like ‘square-root’ of gravity [23]. And some programs
for unifying general relativity and quantum mechanics use “tetrads” which can be thought
of as the square-root of the metric, g, .

Hypercomplex numbers can have convenient application in the classical world with ex-
amples including quaternions (H, basis = {1, i,j,k}) for 3D-rotation, electromagnetism,
and relativity. And their use eventually led to the development of more conventional vector
analysis which was easier to use. But the use of hypercomplex numbers becomes a necessity
in the quantum world. The algebra of hypercomplex quaternions and Dirac matrices are
examples of Clifford algebras (e.g., C, =R, C1 = C, Cy = H, C5 = Pauli, Cy =+'s) .

Similarly, the physics of fields usually begins with a Lagrangian written in terms of
energies and interactions. These in turn contain “squares” of fields such as the free gauge
field of electromagnetism and the gauge part of the weak action [24]:

F,, F* E? — B?
(2) »CE'M = - MV4 = ( 9 )7 Lweak—W = -

W, Wen
4

Again, what is E; or W7 all by itself? Well, the fermion-boson interactions mean some-
thing: Liny = —J"A, [e.g., like the eA part of the Aharonov-Bohm (momentum phase
change) effect; but unless it is electromagnetic frame dragging, it is hard to interpret in
words].
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5. CONCLUSION

We can now identify Plato’s Form Heaven for fundamental physics with something more
tangible than previous ‘spirit or mental worlds.” However, these Forms of physics are ob-
jectively real in space-time in a strange way. They are the information and potential to
create elementary particles; but, without energy, they are not the particles themselves. The
knowledge of this world can be plucked out by hitting the Vacuum with pulses of energy.
Unlike Plato, the resulting instantiations of each type of Form are themselves identical and
pure as are the contents of the Vacuum itself. But, until detected, these instantiations
are quantum objects lacking classical reality. The objects and the Forms have a new type
of existence similar to the “square root of reality.” Quantumness is preserved up to the
size of macro-molecules. Beyond that, it is undecided if larger objects are classical or not
(“macrorealism”).

Many mathematicians generally believe that their basic theorems and concepts are pre-
existing Platonic Forms which are discovered rather than invented. To some degree, math-
ematics is abstracted from physical reality because the regularity, repeatedness and sym-
metry of Nature is fruitfully expressible in the language of mathematics. There are regions
of overlap between math and physics, and this overlap region of mathematical-physics has
to be compatible with both. Lack of compatibility can lead to a modification of one side
or the other. Historically, physics and pure mathematics are relatively free to diverge and
grow apart. But then, unexpectedly, the evolving physics finds that some previously pure
math can be usefully applied. And the math finds that new physics has some aspects
that deserve to be better explored mathematically (and such development can be better
funded). They cross-fertilize each-other. They find that they are not entirely separated
but can play together.

What motivates mathematicians and physicists to devote their lives essentially to the
study of these Forms? Transcendence and connectedness. We sense that we are participat-
ing in a huge world beyond our own limited experiences. We sense that the intelligences
in the universe might discover the same truths we value; so we have a cosmic sharing.
Without overtly expressing it, the physicist senses Einstein’s “Cosmic Religious Feeling”
[22] which can be essentially summarized as rational “Deep Nature Appreciation.”
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WHAT FUNDAMENTAL SHOULD MEAN

DAVID L. PETERSON

ABSTRACT. The quest for future deep foundations of physics should continue to pursue greater
unifications, should incorporate “hypercomplex numbers” or the name “Clifford algebras” in
describing its quantum realm; develop a language for discussing in what way “quantum-waves”
could be considered “real;” and should always be capable of expressing the formulation and
interpretation of any fundamental theory so that humans might believe it is isomorphic to Nature’s
actual mechanisms. That is not yet the case for present-day quantum mechanics nor quantum
field theory. In addition, there is probably a limit to testably-assured knowledge perhaps three
to six orders of magnitude in particle energy above present capabilities. If “ultimate reality” lies
beyond that, we will never have confidence in identifying it.

1. INTRODUCTION

The entrance to my office has always had a cute picture of a family of curious Kalahari meerkats
peering out upon the world. And below that is an Einstein quotation that says, “We shall never
cease to stand like curious children before the great mystery into which we were born [1].” Many
of us love physics and desire to know its deepest mechanisms that “bring us closer to the Secrets
of the Old One.”

Science has been solving the mystery of what the world is and how it works for hundreds of years.
Physics had made astonishing progress in its approach towards “ultimate reality” resulting in a uni-
fication of strong, weak, and electromagnetic interactions called the “standard model” or “SM.”
But, this model is not yet at the “bottom of it all.” There are still many outstanding problems and,
by one estimate, 26 free parameters [2]. Ideally, a model with deeper foundations would uniquely
specify the values of those constants. A proposed model below SM uses“supersymmetry” with
over a hundred free parameters — so this also can not be “the foundation.” Then there is“String
Theory” or “M-Theory” that appears to be forever beyond testing and hence are not “theories” nor
what we have been calling “science.” A scientific theory must have a history of strong experimental
support to provide a “high level of confidence.” We should consider the possibility that a barrier or
limit to assured human knowledge may exist.

So, one should step back from these frontiers onto an overlook and assess where we are— what
we know— and how this should affect future foundations:

In the following, we focus mainly on the different levels of “unifications” of theories of high-
energy physics. These increasingly deeper quantum foundations use a progression of hypercomplex
numbers of increasingly higher dimension, n, that may be labeled by the name “Clifford algebras”

Email: davepeterson137@gmail.com. Date: 13 December 2017 updated to 14 January, 2018. FQXi.org Essays on
“What is Fundamental.” Posted as: https://fqxi.org/community/forum/topic/3027 .

1



CY(n). There is no intention here to actually use these algebras beyond just providing a convenient
name for the degree of hypercomplex numbers representing the progression from the real to the
complex to the Pauli matrices or quaternions to the Dirac matrices to the next deeper levels. All
of these levels of algebras use n base elements whose squares are either +1 or —1, so one might say
that the quantum world below classical reality lives in “the square root of the reals:”

The progression for C¢(n) can go like this:

C?(0) = the Real numbers, R; C¢(1) = the Complex numbers C; C¥¢(2) = the quaternions H
(for Hamilton); C4(3) = Pauli matrices; C¢(4) = Dirac gammas; C¢(6) = the Standard Model,
SM; and C¢(7) = the “octonians” which use seven complex numbers.

2. FOUNDATIONS OF PHYSICS: VIEW FROM ABOVE

2.1. Reductionism has been incredibly successful for particle physics. In some

ways, it is like those nested Matrushka dolls that maybe end with a smallest last doll. The bottom
doll might have information enabling calculation of the properties of larger dolls (for example the
progression down in size from molecules to atoms to nucleons to quarks). Unifications are another
type of reduction — pulling together two previous theories into one new theory (see examples in
the section on Unifications). From the present Standard Model, we are supposed to be able to cal-
culate masses of hadrons from colored quarks and gluons — and we can now approximate hadrons
using supercomputers for “lattice-QCD” [quantum chromo-dynamics on a 4D lattice [4] ]. We are
supposed to be able to predict water from quantum mechanics —and again, it can be approximated
using supercomputers [5].

In practice, of course, it is often wiser and easier to use emergent basics for complex systems
above particle physics — use the ideal gas law for weather. And the metallic state is an emergent
phenomenon. Condensed matter physics encourages emergence with the slogan “More is Different
[6]”. But here, we will focus mainly on “fundamental” high-energy physics.

2.2. Particle physics is quantum. A problem with “Ultimate Reality” is the word “Ultimate”
and that pesky word, “Real.” The Born rule says that we go from the wave-function, v, in “quan-
tumland” [3] to statistical events in our measured classical reality by “squaring psi” , || = 1*).
That suggests that psi itself lives in a different sub-world below classical “reality” with complex
numbers for this deeper reality: “Quantum characteristics are irreducibly complex, they cannot
be decomposed into real and imaginary parts [14].” This realm of the sub-real uses layers of fun-
damentality with each level inwards or down being more fundamental than the last. Progressing
downwards from usual complex wave-mechanics, we can include electron fermion spin by making
use of quaternions (the first hypercomplex number system [1843]) or Pauli-matrices [1927]. In 1928,
the next step down resembled taking the square-root of the d’Alembertian [17] or “square root of
the Klein-Gordon equation” [see Eqn. 1] resulting in Dirac spinors and 4 x 4 “y”-matrices which
themselves can be composed of Pauli matrices. Dirac theory is the foundation of quantum elec-
trodynamics (QED), and such quantum field theories are intrinsically hypercomplex making them
difficult to explain in words.

Summarizing this history, some key developments in modern quantum physics have been aided
by taking complex and deeper “hypercomplex” numbers seriously— perhaps even as representing
something somehow isomorphic to what Nature actually does. Presumably, all relevant quantum
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fields and C?(n) bases are overlaid together into a collective “GRID” [22] that is in or of the “Vac-

uum.”

Examples of the “square-root” of real numbers include: the complex numbers of quantum me-

chanics using the imaginary number ¢ with 2 = —1; non-relativistic electron spin uses 2 x 2 Pauli
matrices o; with 0;2 = +1 related to quaternions q with bases {e;} = {1,4, j, k} with ;>0 = i0; and
€i>02> = —1 times the identity matrix. Dirac 4 x 4 gamma matrices for quantum-electrodynamics
can also be written as 2 x 2 matrices themselves containing Pauli matrices, and ;2 = +1 unit
matrix.
To avoid traditional confusion, “real” in physics is most often used to mean classical, and quantum
mechanics (QM) processes the “sub-real” (quantum-real, qu-real, or Ruth Kastner’s term “poten-
tia” for potentially real prior to measurement [3]). If there isn’t a name for the underlying quantum
realm, few will pursue searching for the base mechanisms of it.

2.3. Quantum Waves should be considered to be “real”. — or should I now say “sub-real?”
In quantum philosophy, an observed system is real if its properties are intrinsic and observer in-
dependent. Many would say that kind of “real” doesn’t quite fit. We don’t know what actually
goes on in quantumland, but the “observer” or “absorber” is a key part of it. Quantum me-
chanics began with discrete “action” [Bohr atom, 1913] along with F = hv and with p = h/A.
Waves transmit information between emitters, interactions, and absorbers: energy is represented
by the density of waves in time, and momentum is represented by the density of waves in space.
Planck’s constant of action h is a conversion constant that seems tiny because our systems of units
are designed for big people. But, the question is always asked, “Waves of What?” It is a good
question with a typical answer, “waves of probability amplitude” — ? We should be digging deeper
into the sub-world.

Which Waves? Waves have a phase velocity, vphase = v, = Av. For free non-relativistic
Schrédinger waves, E = hv = KE, and v, = A\v = v4/2 where vy = vgroup = v is the speed
of the particle and its wave-envelope. These phase waves are often shown in freshman textbooks,
but they are wrong because they do not satisfy special relativity. Particle rest mass should be
included in the total energy, E = hv where v? = 1,2 + ¢?/A\?, and v, = m,c*/h. For an electron,
vy ~ 10%° Hz (hundred Exa-hertz, unfortunately beyond present measurement ability). Since par-
ticle speed vy < ¢, vy = 02/vg > ¢! — superluminal, but considered ok because phase velocity itself
carries no energy. Perhaps treat it as just information being transfered in the sub-real in some
vicinity near a moving particle.

How did complex variables enter non-relativistic Schrodinger wave mechanics? Begin with the
“reasonable quantization axioms” E = hv = hw and p = h/X = hk so that a wave has phase
¢ = kx —wt = (1/h)(pxz — Et). Complex numbers then entered for convenience via Euler’s formula,
€' = cos p+i sin ¢. Take the real p and E out of the exponent by using (complex) derivative oper-
ators: p = —i hd(wave)/dz and E = +ihd(wave)/dt and apply these operators in E = p2/2m+V
operating on wave ¥(z,t) [19]. Complex numbers are now in the “formulation” for simplicity but
later became a necessity when describing electron up-down spin with Pauli matrices (which them-
selves are already hypercomplex). The Schrodinger equation is a low energy case of the relativistic
Klein-Gordon equation where E now includes mass energy.



The principle of least action seemed slightly mysterious in Newtonian mechanics. But in quantum
mechanics action, S = f Ldt, seems to be just proportional to a phase or wave counter expressed
using a “Lagrangian, I” along a path with parameter t for time. Least action can give greatest
constructive wave-interference and can itself be deduced from Feynman’s “Sum over Histories” or
“Path Integral” program.

Action for tiny particle masses may use the Lagrangian L = K F—V which can count waves along
a classical trajectory (like free fall from a cliff). For relativity, the Lagrangian L = —m,c?/y — V
is also shown to be wave counting [19]. And, this also works for electromagnetism (EM) having
a term (p'— e/f) where A is EM vector potential and eA is like an “EM momentum.” The Stan-
dard Model Lagrangian is a complex beast having the symmetry of the standard model group:
“SUB)e x SU(2)r, x U(1)y.” So far, all theories make use of a Lagrangian suggesting the impor-
tance of waves for each foundation level. Instead of the phrases “matter waves” or just complex
waves, there are also hypercomplex waves (!):

Schrodinger waves are complex but limited — non-relativistic and not for spin. Dirac waves are
for relativistic spin !/ fermions like the electron. “Proca” (“heavy-photon”) waves include mass
but are still for the electromagnetic vector potential, A(z, ), U(1) waves. Gravitational waves are
waves OF space-time. There are SU(2) non-linear “Yang-Mills” wave equations. QCD with SU(3)
color symmetry has waves. The bottom line is that quantum waves are waves in each relevant
quantum field at different hypercomplex levels. For the case of quaternionic waves, there is a geo-
metric phase angle in a sort of Euler polar form expressing a periodic quaternion with a real part
and three imaginary parts [23]. Newly popular Geometric-algebra with C¢(4) or C¥(1,3) will cover
a lot of these case.

People have been reluctant to accept the “reality” of waves for several reasons: one is just a
philosophical view that nothing about the sub-real has any “existence,” another is gauge flexibility
so that a variety of mathematical forms will still yield the same results. And the experimental
world can only detect phase “differences” and never any absolute phase. But maybe Nature actu-
ally makes particular choice selections despite our inability to see it.

The importance of quantum waves, Lagrangian wave counting, action, and Lie symmetry groups
should be expected to continue through the next few generations.

2.4. Foundations should satisfy Humans. — Fundamental formulations should facilitate cal-
culations but should also alternatively be expressible in a form that humans can believe might
represent “How Nature actually does it!” And Humans should be able to tell each other stories
about it — after all, we are intrinsically culture accumulating and “Story Telling Apes” [9)].

As example, consider the case of the Theory of General Relativity: Special and General Relativ-
ity are based on a few reasonable principles (invariant laws, light speed invariance, the principle of
equivalence) that are then developed mathematically. This field has grown and improved for over a
century well enough that a graduate student shouldn’t have much trouble, and a serious layman at
least can learn “weak field” gravitation with some ease. With our new knowledge that the universe
is spatially “flat,” the Einstein field equations are easily derived from Newtonian arguments and
understood with just a little algebra and calculus. Experiencing this realm through an introduction
to modern cosmology is very fulfilling for all concerned parties [20].
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Quantum Field Theory is another story [14]. The clarity, math, interpretations and even defi-
nitions [24] are difficult, and the serious layman can only see its surface from popular writings (of
which there are many to see). Some books for the layman even discuss gauge symmetry, Lie groups
and spontaneous symmetry breaking [25]. But with the formal math and abstract postulates, even
basic quantum mechanics (QM) is challenging, lacking in visual pictures and probably will make
only modest intuitive sense for most students. Wanting to believe that this is perhaps how Nature
actually works just doesn’t go together with saying that “A quantum state is completely specified by
a vector in Hilbert space.” Some may appreciate the logic of the Copenhagen postulates formalism
and its mathematics, but it will not yet satisfy most humans; and no one yet knows how to make
that happen. In this sense, present QM postulates and philosophy are a bottleneck against com-
prehending any deep reality about how Nature works. And deep and deeper fundamental physics
should not be understood only by select best genius professionals nor perhaps just by some future
supercomputing artificial intelligence (— will we really be able to choose not to go that far ...?).

3. UNIFICATIONS:

We are concerned here with present and future physical theories having different levels of fun-
damentality. Newtonian mechanics and dynamics used to be fundamental. New sciences were
formulated with foundational principles for each: optics, electricity, magnetism, gravitation, ther-
modynamics and more. Maxwell’s electromagnetism (EM) unified electricity, magnetism and light
and thus became more fundamental. Electro-weak theory unified the weak and EM interactions.
Relativity brought space and time together with that immortal quote: ”Henceforth space by itself
and time by itself, fade away completely into shadow, and only a kind of union of the two will
preserve independent permanency” [Hermann Minkowski, 1908 [7]]. In 1960, fundamental or “el-
ementary” particles mainly meant protons, electrons, and neutrons [1932], along with a few pions
[1947] and the neutrino [detected in 1956]. Now there are many elementary particles. Protons and
neutrons are now composite from colored quarks and gluons — and deriving neutrons and protons
and heavy hadrons from fundamental theory is achievable but is also really hard [4].

Historical unifications included: Identifying Earth and Sun as a planet orbiting a star. Rest
and uniform motion (Galilean relativity). And Sun gravity and Earth gravity beyond falling apples
(universal gravitation)

Unification of theories is a measure of the degree of fundamentality.

e Electricity and Magnetism (E + M = EM) and then Maxwell’s EM and Light [1862-1873]

Space and Time (special relativity, SR, [1905])

Acceleration and gravity (Principle of Equivalence, [1907])

Gravity and Geometry (general relativity, GR, [1915] )

Quantum Mechanics + SR = quantum field theory (QED [1948]/QFT)



e EM + Weak interactions = “electro-weak” theory, EW, with symmetry breaking below
some energy near 100 GeV: SU(2), x U(1)y — U(1)gas [1968 and Higgs boson 2012] [L =
Left handed, Y = hypercharge, EM = vector potential A, or photon, and C = Color for
the group, SU(3)¢].

e Standard model (SM): EW +strong QCD interactions.

e Beyond Standard Model (BSM) subgroups:

e U(l) Cc SU(2) C SU(3) c SU(5) C SO(10) C E8?. SO(10) is sometimes considered as a
good candidate for a GUT.

e ToE?, SUSY?, GUTs? [Theory of Everything, supersymmetry, grand-unified-theories].

3.1. Problems Facing Physics Beyond the Standard Model (BSM). A list includes:

The problem of Dark Matter, the source of neutrino mass, why are there three generations of
quarks and leptons, additional dimensions, the arrow of time, what is the mechanism for a bias of
matter over anti-matter, how to calculate the 26 free parameters of the SM, a mechanism of infla-
tion, and the mystery of Dark Energy along with constancy and small value of A when quantum
field theory suggests a huge value.

My favorite conceptual problem with the Natural world is the incredible range of the Nature’s
variables and its ability to process those variables with mathematical precision over that range.
There is a huge range of distance, time, energy, and particle masses. Energy of photons can range
from Exa-electron-volts down to nano-electron-volts. And the biggest idea in the history of science
is that the largest thing we can imagine was once smaller than the smallest thing we might imagine
— our whole visible universe expanding from a tiny size smaller than a proton.

3.2. Fundamental: The word “fundamental” means foundational, a base support, un-derived, pri-
mal, essential, lying at the bottom or base of anything —ideally as “eternal truths.” Physics Foun-
dations refers to primary objects and theories, and theories are an end product of the “scientific
method” with experimentally tested correctness and statistical assurance over time. Fundamen-
tal principles of a discipline of physics should aid models of physical events, should be expressed
economically and efficiently — hopefully using a short list of mathematical statements from which
other “lesser theories” can be derived or calculated. Ideally, the end concern of a quest for funda-
mentiality should be getting as close as possible to being able to find and state the foundational
principles of a future “ultimate reality.”

Some physicists suspect that current theories might be “effective field theories” from something
deep down and different. But, if it involves territory anywhere near Planck units (~ 1073% meters),
it is unlikely to ever be testable. And many think that is where we do need to go for ideals like
grand unifications. From a practical and human perspective, deepest concepts might be forever
unattainable. It is best to believe that humans will attain a few deeper foundational levels beyond
the standard model but still above the limit boundary.



It is hoped that future attainable collider energies will continue to reveal some deeper theories
and that the idea of a “desert” below the standard model isn’t true (i.e., between present day ~ 10
TeV to 10! TeV or 10718 to 1073! meters [GUT level]). The limits to collider technology energy
for the “imagined future” may be less than a PeV. The highest energy cosmic ray is an astonishing
~ 10 EeV (or 10'° GeV — compare to the expected Grand Unified energy near 106 GeV or the
Planck energy of 10!? GeV). Great GUT theories might end up partly “faith-based.” So, the phrase
“ultimate reality” is going too far, and we should restrict our discussions of “fundamental” to a
depth that could actually be obtained. The “running” of key couplings for strong, weak and EM
“forces” and also the “seesaw” mechanism for the puzzle of very light neutrino masses may point
to a heavy GUT level particle — but we will never actually “see” it. There can be no assurance or
trust in theories beyond experimentation.

4. QUANTUM MECHANICS, QM:

Copenhagen Postulates have been the standard textbook formalism of quantum mechanics since
the 1930’s — how the fundamentals are presented and used. The initial formalism of QM was
“matrix mechanics” which was then largely pushed to the side by Schrédinger “wave mechanics”
that enabled easier calculations and greater breadth (everyone knew wave mechanics, but almost
no one knew matrices in the 1920’s). The utility of matrices lives on in describing the quantum
physics of angular momentum and group representations. But, a quite different interpretation of
QM from Copenhagen is the “de Broglie-Bohm” 1952 Pilot Wave theory as a non-local, hidden
variable theory without collapse! This minor interpretation still has strongly active supporters.
There are now a vast variety of seemingly mutually exclusive formulations and interpretations.

Perhaps only one offers a visual glimpse of a possible mechanism in the quantum world: the 1986
transactional interpretation (“TT”) of quantum mechanics from John Cramer (and newer version
from Kastner) where psi is considered as an “offer-wave” to possible absorbers [3][12]. The oth-
erwise mysterious Born rule postulate is “explained” by a “handshaking agreement” between the
offer wave from an emitter and an advanced confirmation wave back from an absorber. Without the
Born rule and completed transaction, we might ask, “What is the sound of one hand clapping?” In
status, TT might still be improved and is not yet very popular. Another mechanistic (and heretical)
goal may be to offer a “selection mechanism” for each particular chosen collapse of the wave func-
tion. Without that, we are forever stuck with the dogma of randomness and statistical probability
and un-intuitive “probability amplitudes.” Another great conceptual challenge is how “distance
doesn’t matter!” for entangled particles in “EPR” tests [Einstein, Podolsky, Rosen or “Bell” tests].
Explaining that might require a revolution in thought about the quantum world versus space-time.

Wittgenstein said the limits of my language are the limits of my world; and we lack words for
the arena of possible mechanisms underlying the quantum world. Ruth Kastner encourages an
acceptance of potential-reality as an extension of “reality” —“the underlying reality of possibilities”
or “potentia.” Lee Smolin is well-aware of present quantum mechanics as a bottleneck and says
that we must “Resolve the problems in the foundations of quantum mechanics, either by making
sense of the theory as it stands or by inventing a new theory that does make sense.” [11]— and
later adds, “This is probably the most serious problem facing modern science. It is just so hard
that progress is very slow.”




Depending on the hypercomplex algebra, there are various conjugations that can take numbers
back to the reals [like hyper-conjugate or ‘Hermitian Adjoint].” So, the “square root of reality” might
be changed perhaps to a generic “star-root” symbolized by ¢ ~ *v/Prob = P*/? [10]. Physics has
progressed by going down ever deeper into these “roots.”

An example is an occasionally used representation of a single photon (the ‘Riemann-Silberstein’
form) found by taking the “square-root” (or “star-root”) of its supposed energy density: ¥*¢) o
(€0/2)(E?+ c®B?) becomes ¢ = +/€,/2 (E +icB) [18]. The ’star root’ operation is intended to only
be heuristic and say “go to some higher dimension Clifford algebra.” And we’ve mentioned Dirac

theory as the square-root of the Klein-Gordon equation, Dirac = (KG)*/?.
2 *
(1) [aﬂau + (%) ] v=0 B imro —mep =0

where the v ’s are the 4 x 4 unitary Dirac matrices.

The ‘star-root’ idea may go further, for example into the realm of quantum cosmology with super-
symmetry where it is said that supergravity(N =1 SUGRA) naturally provides a Dirac-like ‘square-
root’ of gravity [21]. And some programs for unifying general relativity and quantum mechanics
use “tetrads“ which can be thought of as the square-root of the metric, g, .

Quaternions and Pauli Matrices:

There is a well known story that William Rowan Hamilton had been walking along the Irish
Royal Canal and suddenly realized his goal of an algebra that used three complex numbers. He
immediately scratched them out on a stone bridge as: i2 = j? = k? = ijk = —1 and later devoted
much of his life to the development of this “quaternion” mathematics. It contained our dot-product
and cross-product prior to the teaching of our “Gibbs-Heaviside” vector analysis and is 4D, so it
was useful for special relativity and also for expressing Maxwell’s equations. The Clifford symbol
for quaternions is C¥(p,q) = C¥(0,2) over real coefficients. The value in the p-slot stands for the
number of real bases (meaning e;2 = +1). and the value in the “q” slot stands here for two “imag-
inary” bases (meaning e;> = —1). Why just two?— because i = jk = —kj, so one base is covered
by the product of the other two bases. The Pauli matrices should be considered as higher n than
the quaternions, o; = —ig; or Pauli ~ C® H (bi-quaternions). For these matrices, we have C¥(3,0)
with no imaginary bases. C¢(2) and C¥¢(3) are the C¢(n) short forms.

Quaternions excel in representing rotations in usual 3D space about some axis 7. A general
quaternion is written as real coefficients ¢; times bases e; so that:

(2) q=qo+iq + jq2 + kg3 = ¢i0/2 = cos(0/2) +1i-nsin(0/2). qg-q=1.

Notice that we automatically have half-angles so that a return to § = 0 requires rotating 6 = 4nw
radians — twice around! Going once around, § = 27 gives minus q. The real coefficients of a unit
quaternion q plotted on i, j, k axes describe a unit 3-sphere or “hyper-sphere” S3. Recall that the
3-sphere (angles x, 0, ¢) was once a favorite geometry for the case of a closed universe, but ours
turned out to be flat Euclidean. For the usual sphere S2, just set g3 = 0; and for just a circle S,
set g3 = g2 = 0 —it covers all three. The continuous (or Lie) group SU(2) has a Lie algebra su(2)
[the tangent space of SU(2)] generated by 3 elements — the quaternions! So hypercomplex numbers
are also associated with our model groups.



Clifford Algebra:

In 1876, William Clifford invented new algebras to generalize Hamilton’s quaternions for n di-
mensions and enhanced Grassmann’s “wedge-product” algebra. Clifford algebra now applies to
much of mathematical physics. In special relativity, SR, we have a metric 7,, with signature
(+ — ——) or d(cr)? = +d(ct)? — da?® — dy* — dz? , a “quadratic form.” For SR and Dirac algebra,
we symbolize Cl(p,q) = C¥(1,3) or just short form C¢(n = 4) with dimension n = p + g where ¢
stands for the three minus-signs in the metric-quadratic-form. C¥¢(1,3) represents a large part of
physics. To the untrained eye, actual computations using Clifford algebra may be unfamiliar and
cumbersome; but there is a strong movement encouraging it for physics using the special case of
David Hestenes’ space-time or Geometric Algebra [15] with C¢(1,3). Most of us might just stay
with the best familiar representation like Dirac matrices instead. The point is that Clifford algebra
is a category encompassing most possibilities and may be relevant to future physics fundamentals.
Let’s propose that it will continue to apply to some higher “n”.

Recall that our continuous or Lie groups are nested (see Section on Unification) so that lower
groups are sub-groups “C” of the bigger higher groups. Clifford algebras dovetail with matrix rep-
resentations of Lie Groups. Vector algebra is a sub-algebra of Pauli which in turn is a sub-algebra
of Dirac. In 1961, Gell-Mann’s SU(3) fiqvor “Eight-Fold-Way” used eight 3 x 3 “lambda” matrices
— flavor at that time meaning just u, d, and s quarks. If we only used three of these instead, like
A1, A2, Az we would effectively get SU(2).

Isn’t there a conflict between saying that the quantum world is ”hypercomplex” and the need
to satisfy humans? Well, some knowledge of quaternions (or Pauli matrices) is already needed
for electron spin and to understand puzzles like electrons having to go twice around to return to
the same state — a standard feature of quaternions. It is just a new learning curve. In practical
applications, “Quaternions are now used throughout the aerospace industry for attitude control
of aircraft and spacecraft [13].” And they are commonly used by “games programmers.” There
are many references showing how quaternions can be visualized [13] and computer programs that
process Clifford algebras. But it will still be challenging to work out future heuristics.

5. CONCLUSIONS

It is proposed that the depths of different foundational theories of physics have levels quantified
by the dimension, n, of their Clifford algebras C'¢(n). Underlying the mechanisms of the quantum
world is “sub-real” physics somehow mapped to hypercompex numbers that can enter “reality” by
“Born-rule” squaring, ©¥*1 of presently unknown cause.

To go further, it is a human necessity to find a way to understand this and make it seem rea-
sonable. Grasping a deepest “ultimate reality” is probably blocked by the limitations of our ability
to conduct relevant experiments. Seeing beyond this barrier is a theoretical exercise of human
intelligence without assured foundation or testability. That probably includes the whole field of
“quantum gravity.”
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6. APPENDIX

Comments from other FQXi Essay authors:

Complex and hypercomplex numbers are parsimonious as needed: an example is quaternions H

can also be represented by 2 x 2 matrices with complex entries or 4 x 4 matrices with real elements.
[Reply to Ekhard Blumschein].

“Spacetime algebra C/(1,3) naturally includes the spin group Spin(1, 3) leading to Fermions which
are spinors.” [Cristi Stoica, Indra?s Net]. Color has C/(3 & 3) having Dirac as a subalgebra.
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Matrix representations of Lie groups are associative. So Octonian algebra cannot be directly
used since it is generally non-associative for multiplication [Rick Lockyer, “Truth”].

Present day quantum mechanics is ostensibly a theory about the results of measurements. A
final theory should not be “about the acquisition of knowledge.” [T. Durham)].
Bell: the result of a measurement does not in general reveal some pre-existing property of the
system, but is a product of both system and apparatus. Zeilinger: the results of observation are
not always given prior to and independent of observation.
There is a good reason why Chemistry is not called molecular physic— almost nothing can be derived
— it is an autonomous science and its basic principles are, for all practical purposes, fundamental.
[Marc Seguin]

“Rather than being skeptical, we can try to be optimistic that the theories may eventually be
indirectly testable, potentially yielding some novel predictions in regimes that are accessible to us.
Similarly, we may be able to put more experimental constraints on the theories from the other
direction, using observations in currently accessible regimes.” [Karen Crowther, 1/20/18 FQXi].
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Photons and Light

Dave Peterson, 12/17/18 —3/6/19 [V-1], 4//18/19 [Version 2].

Abstract:

Although the concept of photons was suggested by Einstein in 1905 and generally
accepted after the Compton effect of 1923, convincing evidence that light actually traveled as
photon quanta had to await later experiments such as the photon “antibunching” effect of 1977.
That essentially means that more than fifty years of the history of photons usually presented to
physics students has been misleading. There exist more “neo-classical” explanations against “the
three nails in the coffin of the wave theory of light” (black body radiation, photoelectric effect and
the early Compton effect). And that has continued through the Einstein A, B coefficients
(stimulated laser and spontaneous emission), approximate Lamb effect, and Casimir effect. But,
precision tests of high order Feynman diagram calculations do show agreement with quantum
electrodynamics over neo-classical approximations. And there are now many experiments using
just a few photons at a time and single photons where quantum electrodynamics clearly applies
and classical electromagnetism does not. Mostly, we can say that photons definitely exist;
however, a strongly consensus definition of the words “photon” and even “existence” is still
illusive. Some of the debate still depends on one’s “interpretation of quantum mechanics.”

INTRODUCTION:

For humans, light is defined as something that can stimulate the visual receptors
in the eye thus enabling vision. It is electromagnetic radiation that travels at speed “c” in
free space and can have an awesome range of wavelengths and frequencies, ¢ = Af. In
addition to having an intensity, transverse polarization, and direction, it transfers quanta
of energy to absorbers at single locations as would be expected for “particles.” This
“wave-particle” duality has never been consistently nor precisely defined and also
applies to electrons and other quanta. A central connundrum has been whether light
travels as photons (or superpositions of photons) — and this is not yet universally
resolved.

Do photons exist? -- and how can they be defined? Quantum electrodynamics
(“QED”) says that electromagnetic radiation is quantized, and many arenas of modern
guantum optics assume the existence of photons. But to what degree has that actually
been verified experimentally when compared to “more semi-classical theories where the
electromagnetic field remains classical?” How far can semi- or neo-classical physics
suffice in place of photons as quanta of the electromagnetic field? Are “virtual photons”
real? A major attribute of photons as particles is their degree of localization in space and
time. The cases where photons are strongly claimed are examples where space-time
localization was “clear” (for example like having a regular stream of single photons or the
many current experiments with single or entangled photons [e.g., Pete19] ).

Unlike mathematics with its clearly stated definitions, basic objects in modern
physics have definitions that evolve with newer experimental discoveries and theoretical
models. Sufficient definitions for the term “photon” or “electron” are rarely offered in
textbooks. And if they were, there would be disagreements about them among
physicists; and some disagreements would depend on a favored interpretation of
quantum mechanics.



We might say that a photon is a relativistic, massless, charge-less particle of
energy E=hAw also corresponding to electromagnetic waves. And we add that it has
helicity £ 1 -- making it a boson as an excitation or quanta of an underlying
electromagnetic photon field. But a single photon might be prepared in a mixture of spin
states or superposition of QM number states instead of just one. Alternatively, it can be
said to possess transverse polarizations orthogonal to its momentum [direction of p = h/A
= hk = hw/c = energy/c ]. A newer attribute in our 21 century is that photons can also
possess an orbital angular momentum £ of any number of 4 ‘s — interleaved helical
waves with no amplitude in their centers.

QED often states photon fields using the 4-vector potential, A* (A°=¢; A’, A?, A%
Instead of E and B fields which themselves are derivatives or curls” of the A field.
Photons may behave like electromagnetic waves possibly in some sort of wave function
that is in some sense also supposed to be a “particle” that is different from any known
classical particle. A particle aspect at least requires some degree of space-time
localization so that we can say that something is “here” within some volume. But,
Imagining a wave-function for a photon is hard because it lacks a “position state” |r) --
“there is no general particle creation operator that creates a photon at an exact point in
space [Scully]” — a QED photon is inherently delocalized.

So, defining a photon is difficult except for a special case: “A photon is what a
photodetector detects” [Roy Glauber, 2005 Nobel Prize ]; and “a photon is where the
photodetector detects it” via absorption [Scully]. Experimentally a photon is a “synonym
for a discrete event, clicks of a detector or appearance of spots on a photographic plate
[Rash]. Richard Muller says, “the photon is an event, not a thing.” It does not exist until it
is detected, then vanishes. So at least detection of photons at a local point can be
discussed.

But our early physics educational system seems to present photons as objects
traveling through space-time and having continuing existence between their initial
creation and final measurement. Can that view be justified? Stating what is real
between observations breaks a quantum rule that “unobserved things have no properties
whatsoever.” Some physicists state that photons as particle quanta do not exist but are
instead just manifestations of the interaction of light with matter (e.g., Willis Lamb [Nobel
prize 1955], Alfred Lande, E.T. Jaynes, [Rash] ). Lamb wrote “...there is no such thing
as a photon. Only a comedy of errors and historical accidents led to its popularity among
physicists and optical scientists.”

Let’s take a moment to examine beliefs like this:

Students are initially presented with three historic reasons for rejection of
classical waves in favor of quantized photon radiation (“the three nails” in the coffin of
the wave theory of light): the blackbody spectrum, the photo-electric effect, and the
early Compton effect. But the arguments against classical wave theory for these
traditional cases are somewhat flimsy, and the topics can be covered with theories
lacking “fuzzy ball” photons. An early theoretical approach to these cases was called
“semi-classical” (“SC” = EM + QM) and treated the electromagnetic field in the usual
classical sense with quantization only being present in atoms and molecules that can
create or absorb these waves. Schrodinger was an advocate and originator of this view.
He disliked the term “probability amplitude” for wave functions and believed that they
instead represented “real” waves. For bound electron systems, y*y in reality
represented an electron charge density p = e|y |°. Historically, “Copenhagen” positivism




opposed this view and its Born-probability idea quickly won out. But realist wave
discussions continued on the sidelines for many decades and had some unexpectedly
significant successes.

Historically, Einstein’s 1905 “light-quantum hypothesis was consistently rejected
by the physics community” until publication of the Compton effect experiment of 1923
(p=nk is implied for photons). Prior to that, radiation such as Thomson scattering was
interpreted in a semiclassical way. Also, it was later realized that the “essence of the
photoelectric effect does not require the quantization of the radiation field [Scully].” And,
at room temperature, the “work function” ® in the photoelectric formula Ke=hf- ® is very
poorly defined; and the idea of a stopping potential is physically impossible [Klassen].

Black body radiation is of course consistent with the idea of energy exchanges
AE=nAw between atoms and fields, but the quantization of radiation itself is not
required. It was also realized that the Compton effect to lowest order was not real proof,
and even the famous Lamb-shift of 1947 was challenged. And then, in addition,
Einstein’s stimulated emission and absorption “B-coefficients” of 1916 [e.g., Laser
theory] can also be described by semi-classical theory in which the atomic electron cloud
w*y acts like an oscillating dipole charge density. Laser light “photon number statistics”
itself is also described semi-classically. That is, lasers “produce light beams that are in
Glauber coherent states” whose photodetection analyses agree with those of the
semiclassical theory.

Reasons for believing in photons are more subtle and often lie in experiments
with just a few photons and in the improved accuracy and applicability of QED over SC
(eg., the 1928 Klein-Nishima formula from QED is an improvement on the simpler early
Compton effect, and some measured spectral line widths may be better derived from
QED). Currently all existing experimental evidence agrees with QED. This has never
failed while semi-classical theory often differs from experimental results

QUANTUM OPTICS:

The introduction to a popular quantum optics text says [Fox, 2006]:

“Quantum optics is the subject that deals with optical phenomena that can only
be explained by treating light as a stream of photons rather than as electromagnetic
waves.” Below this level and prior to 1980 lay semi-classical theory that happened to be
“quite adequate for most purposes.” That is, until fairly recently, there were few
topics that could not “be explained in the semi-classical approach.” These supposedly
included spontaneous emission and the Lamb shift and now photon antibunching.
Contrary to traditional teaching, this does not include the photoelectric effect of 1905
because it can “be understood by treating only the atoms as quantized objects, and the
light as a classical electromagnetic wave.” That is, Planck’s initial reaction was justifiable
that the photoelectric effect and black body radiation only showed that “something is
quantized” and not necessarily light itself.

“Sub-Poisson” light statistics is a relatively new topic in quantum optics that
requires photonic light. Ordinary coherent laser light with constant intensity instead has
photon number statistics that obey the Poisson distribution: P(n) = naye" exp[-nave)/n! for n
= 0,1,2, integer values. This has a standard deviation o, = An = (n,..) . Note again that
a description of coherent laser light can be achieved using only semiclassical theory
[Sudarshan, 1963]. Ordinary classical light with some time-varying intensity lies in the



category of super-Poisson statistics so that An > (na.) . Sub-Poisson statistics has a
tighter distribution than these, and an example is a regular series of photon pulses (with
no standard deviation, An=0 — quantum computing prefers this). As example, this case is
seen in “photon antibunching” experiments where “a driven atom is unable to emit two-
photons at once” {Kimble, Mandel, Dagenais, 1977} — two detections near zero
separation do not occur. So what about Planck black body thermal radiation that is
supposed to require discrete light? It has a variance of (An)?= Nave + Nave? Which is
greater than just n,e. So it is super-Poissonian with a semi-“classical interpretation in
terms of fluctuations in the light intensity.” That is, again, something is quantized, but
not necessarily the light. One reason sub-Poisson light is a new topic is that it is very
hard to observe and depends on highly efficient detectors (which are becoming
available). Any noise sources or detector imperfections introduce randomness into the
light stream degrading its detection to just normal random light.

A key concept in quantum optics and laser theory is the “Coherent state”
(symbolized by |a) =| |a| e} € C ) as the QM equivalent of classical electromagnetic
waves [Glauber]. Light is a wave, and all wave phenomena can be related to harmonic
oscillators. “Number states” |n ) have energies H|n) = (n+ %2 ) Aw |n) . The coherent
state is DEFINED by amplitude |alpha) = |a) = exp(-%4|a]? ) - 2, a” |n)/Y" n! ( which
intuitively looks like a “square root” of a Poisson Distribution — as might be expected for
probability amplitudes {“living in the square-root of reality”} ).

|a) is the right eigenstate of the annihilation operator a, ala) =a|a) [FOX p.
158-159] ( n|a) = exp(- ¥z |a|) a "/y/ n!,

Then, apply the Born rule, p(n) = [(n|a )|? = |o?|" exp(-|aj?)/n! = n"e™ /n! Where n =
average n = <n>. And |a |°=n . The result is a Poisson distribution for p(n), and n is a
rate. Poisson processes or streams have the desirable property that their mergings or
branchings are also Poisson distributions. Alternatively, if interarrival times between
events is an exponential distribution, then mergings or branchings of streams also have
exponential interarrival times.

“CAVITY QUANTUM ELECTRODYNAMICS” (CQED):

CQED “is the study of the interaction between light confined in a reflective cavity
and atoms under conditions where the quantum nature of light photons is significant.”

In free space, two level atoms in an excited state undergo spontaneous emission
to the lower state with a characteristic lifetime (say nanoseconds). But an atom placed in
a small reflective cavity can have a very different decay lifetime that can be strongly
enhanced or even totally suppressed. This is an example of the “Purcell effect” of 1946
that was finally demonstrated at optical frequencies in 1987. Decay is not intrinsic to an
atom but also depends on its environment: “the transition rate for the atom-vacuum (or
atom-cavity) system is proportional to the density of final states” (this is called Fermi’s
Golden Rule).

Testing “Cavity Quantum Electrodynamics” (CQED) at optical frequencies is
really hard and requires sub-micron sized cavities. Serge Haroche (Nobel Prize 2012)
was a prime contributor to this new field and did early experiments using “Rydberg”
atoms with decay photons in the micro-wave range (1 meter to ~1 mm wavelengths) —
much easier. These are atoms such as in a cesium beam having very high quantum
numbers (like n = 40) and hence very large outer orbits and very weak decay transitions.
He explains in simple language: “In classical terms, the outermost electron in an excited



atom is the equivalent of a small antenna oscillating at frequencies corresponding to the
energy of transition to less excited states, and the photon is simply the antenna’s
radiated field. When an atom absorbs light and jumps to a higher level, it acts as a
receiving antenna instead” [Haroche_SA]. A highly reflecting cavity only allows
wavelengths that fit (A2, 1A, 3M/2, ...) If an atom is placed in a small cavity having a size
smaller than the transition A/2, no photons can propagate and the atom is unable to
decay at all. And for low frequency photons, “there are no vacuum fluctuations to
stimulate its emission by oscillating in phase with it.” But for precise sizes that fit the
wavelengths, emission can be substantially enhanced. His work also “led to the creation
of new kinds of microscopic masers that operate with a single atom and a few photons
or with photons emitted in pairs in a two-photon transition” [Haroche_PT]. He also
experimentally proved the principle of quantum decoherence. More optically oriented
tests used cesium beam atoms with only principle quantum number n = 5 or 6 and
wavelengths of 3.5 um in tiny 2.2 ym cutoff cavities.

The Einstein B coefficients for stimulated emission or absorption is a weakly
driven case of a more general phenomena that includes “Rabi oscillations.” Instead of
an electron simply jumping up or down a level, the electron can oscillate back and forth
between the two levels at the Rabi angular frequency, Qr” [Fox]. It is difficult to observe
this frequency because the radiative lifetime (e.g., from spontaneous emission) has to be
longer than the oscillation period; and that requires high laser power.

The usual Einstein A coefficient for spontaneous emission is derived from semi-
classical physics for atoms in free space (or in a large cavity). This A-rate decay time is
altered when in small cavities. CQED physics is needed for the case of “strong-
coupling” between atom and cavity and is described by the Jaynes-Cummings” model of
1963. The two-level atom interacts with “a single mode of the radiation field” — quantized
light with small photon numbers.

SEMICLASSICAL VS QED

Quantum electrodynamics is considered as the most effective physical theory in
history with no experimentally tested exceptions in its realm of applicability. Since it
works so successfully, why bother to consider weaker theories with more classical
aspects. One reason is that they seem to suffice more often than previously expected
and sometimes offer adequately useful levels of approximation to the more accurate
QED [ “FAPP” —*for all practical purposes” ]. They also correct the historical biases of
the development of quantum theory. Another reason is that partly-classical theories are
simpler and easier to understand while QED calculations may be hard, opaque and
difficult to interpret. Calculations of QED perturbations led to numerous infinities and
lacked a firm foundation (e.g., a dovetailing with axiomatic quantum field theory, AQFT).
The rules of QED are more a set of practical algorithms for computation. The issue is
how far we can take “weaker” theories before QED is strictly required. In pursuing this,
we learn more about the essential features of the relevant physics — in particular the
importance of the “zero-point-fluctuations” (ZPF of Aw/2 minimal energy) inherent in
QED. Something resembling this has to be added to the older semi-classical theory to
make them more effective. Although semi-classical theories (SC’s) can explain the laser
(the Einstein “B” coefficients), the Einstein spontaneous “A” coefficients of 1916 and the
Lamb shift seemed to require something like ZPF. While a classical ZPF could explain
most of the Lamb shift, there remains a three percent strictly QED contribution that is
due to the polarization of the vacuum from virtual electron-positron fluctuations.




NEO-CLASSICAL THEORY (NC):

The next level of experimental discoveries above the quantum “three nails” were more of
a challenge to semi-classical views and required the addition of new concepts resulting
in what is called “neo-classical theory” --“NC,” e.g., [Jaynes]. This new approach
required the inclusion of a radiation reaction or “back” reaction field on top of classical
electrodynamics and the Schrodinger equation (EM+SEqgn+BR). As a challenge to the
prevailing view, Edwin Jaynes wished to consider more classicality to QED calculations
and develop a better description of two-level atoms interacting with a quantized mode of
an optical cavity (quasi-classical cavity dynamics, 1963 [Jaynes] ). His modification
allowed an atom to react back on an applied field with a radiation reaction that can lead
to radiative damping and was able to calculate the Einstein A and B coefficients for
spontaneous and stimulated emissions. This “neoclassical” theory is the most successful
semiclassical theory for explaining spontaneous emission. Jaynes stated that his neo-
classical NC theory “reproduces almost quantitatively the same laws of energy exchange
and coherence properties as the quantized field theory, even in the limit of one or a few
quanta in the field mode.” (!) A variant of this newer neo-classical theory is “random
electrodynamics” also called background stochastic electrodynamics (SED)
incorporating background Lorentz invariant random classical electromagnetic radiation.
{Note: how can this be done? A zero-point-spectrum can be independent of an
observer’s speed because of compensating changes in frequency and intensity. When
an observer is approaching a radiation source, all frequencies will be shifted to higher
values and all intensities are increased just so. And then, moving away from the source
will have the opposite effect }.

With this, one can derive van der Waals forces and the Casimir effect [Boyer] —
the attraction in vacuum of two parallel conducting plates with separations of microns.
So, even classically, the vacuum can be viewed as not empty but buzzing with weak
electromagnetic waves. But, again, the concept of radiation reactions also works equally
well.

QED (quantum electrodynamics) uses creation and annihilation operators such
as “a-dagger,” a‘|n) = |n+1)y (n+1), that raises a state number count by one more
photon. [For matrices, “dagger” also means “adjoint” or conjugate-transpose or
“Hermitian” conjugate]. These are taken from and are similar in appearance to the
raising and lowering operators for the quantum harmonic oscillator energy levels but are
now used for number of particles instead of energy level numbers. To interpret a* in
more familiar terms: “when there are n other identical Bose particles present, the
probability that one more particle will enter the same state is enhanced by the factor
(n+1)” [Feynman Il1]. “The presence of the other particles increases the probability of
getting one more.” The square-root ¥ (n+1) is used because quantum mechanics works
with “probability amplitudes” prior to quantum probabilities.

In QED, calculations using “normal ordering” of these operators (creation
operators kept to the left of annihilation operators, “a*a ”) removes the ZPF so that the
entire remaining contribution to radiative frequency shifting comes from the radiation
reaction. But, when the opposite “anti-normal” ordering aa” is used instead, vacuum field
fluctuations become the cause (so we have a matter of interpretation). Vacuum
fluctuations can be considered a physical basis for radiative frequency shift, but radiation
reaction is an equally valid basis at this level of approximation. One might say that
spontaneous emission and the Lamb shift are consequences of radiation reaction. And



sometimes, NC is using ZPF’s in disguise. But, with more generality, both classical ZPF
and radiation reaction could be included. The equivalence of these two points of view is
called the “fluctuation-dissipation theorem” [Mil_spon].

ADVANTAGES OF QED DERIVATIONS

The examples for the advantages of QED quantized fields above and beyond
that of the semi-classical theories include:

Many interactions have higher order perturbation Feynman diagrams yielding
more elaborate QED cross sections that agree with precise experimental
measurements. SC’s may only agree with low order calculations. The word “order” refers
to the number of vertices in a diagram. So, for example, e-e scattering using an
intermediate virtual photon would have two vertices and be of order two. “The full power
of the quantum field theory will be seen at higher orders” {Kaku}.

The concept of fluctuating zero-point fields of energy density Aw/2 per mode is
an important prediction that came with the quantum theory of radiation. These vacuum
fluctuations of QED have been used to explain spontaneous emission and the Lamb
shift. Quantized fields are also needed to calculate the anomalous magnetic moment of
the electron. Beyond that, many multiparticle entanglement experiments do require
quantized electromagnetic fields (e.g., quantum beats, quantum erasure, second-order
photon correlations, two-site down-conversion interferometry [Scully]. More recently,
photon anti-correlation experiments have been considered as proof that light is made of
particles.

A major problem confronting Schrodinger’s older idea of a “real” wave function
was that of multiple particle wavefunctions existing in configuration space instead of
conventional space-time [e.g., n non-interacting disconnected particles are represented
by a point in R* space — how “real” is that?]. Einstein-Podolsky-Rosen EPR
entanglements also reveal a limitation to semiclassical radiation theories. Examples of
EPR experiments include the Kocher-Cummins 1967 experiment with three level Ca
atoms where two photons have orthogonal polarizations and are entangled with other
and Clauser’s choice of mercury Hg atoms in 1974. These were the first true single-
photon tests. Semi- and neo-classical theory struggles with correlation effects in n-
particle states while QED does not.

After cascade decay sources, non-linear crystal SPDC became the standard
source of single photons (Spontaneous Parametric Down Conversion from an intense
laser beam that produces two entangled photons -- one of which can be used to signal
(herald) the existence of the other). But this technique has very low and random yield.
Modern quantum computing desires a regular source of photons to process. At present,
“the most common sources of single photons are single molecules, diamond color
centers and quantum dots” {Wikipedia}. It is now possible to supply streams of identical
photons on demand.

VIRTUAL PHOTONS
Virtual photons in Feynman diagrams represent electromagnetic “forces”

between charged particles and are themselves undetectable and should not be
considered “real.” They violate conservation of energy/momentum in accordance with



an approximate uncertainty rule, AEAt > 7/2. [e.g., ApAx ~ A(pc)A(x/c) ~ h where A
means o (stdev)]. This is called being off the “mass-shell.”

A recent article said:

“According to the received view Feynman diagrams are a bookkeep-
ing device in complex perturbative calculations. Thus, they do not provide a
representation or model of the underlying physical process. This view is in apparent
tension with scientific practice in high energy physics, which analyses its data in terms of
‘channels” — the “Feynman-Dyson split” [Passon]. Feynman (1949) believed they
represented actual particle processes, but it was Dyson who derived them from proper
mathematics and noted conflict with realistic interpretations. Prior to Dyson’s publication,
“Nobody but Dick could use his theory, because he was always invoking his
intuition to make up the rules of the game as he went along...

“Incoming and outgoing lines represent asymptotically free states and correspond
to Dirac spinors (fermions) or polarization vectors (photons) in the calculation.

A “real” photon is massless with k*=k" k, = 0 and has only two polarization states,
whereas a virtual one, being effectively massive, has three polarization states.
Virtual particles are also viewed as excitations of the underlying fields, but appear only
as forces, not as detectable particles. They are "temporary"

The absorption or emission of a ‘real’ photon by a free particle of nonvanishing
mass violates conservation laws. In addition, the popular picture of a single vertex
(billiard ball collisions) for the Compton effect y + et Yy’ + €’ is disallowed in QED
calculations (there is no yye 1° order Feynman diagram—at least 2" order is needed
(and then it changes name to “Klein-Nishima” scattering).

DISCUSSION

We know that quantum mechanics has severe problems with interpretation. But,
quantum field theory is worse and more conceptually intangible (and again, how can one
define the words “photon” and “electron” as “quanta”). Standard problems with QED
include the lack of dovetailing of mathematically rigorous axiomatic AQFT to the usual
practical or Lagrangian LQFT, and the divergence of the S-matrix series expansion and
its non-rigorous renormalizations. One result from AQFT is the conundrum of Haag’s
theorem (1955): the inability to transform from a free field theory to one with interactions.

“Haag’s theorem is very inconvenient; it means that the interaction picture exists
only if there is no interaction” [Streater and Wightman]. The Fock number representation
for a free field cannot carry over to interactions — the number operator N(k) is not
preserved (not a constant of the motion). That is a problem for understanding quanta. A
field is not made up of numbers |n(kq), n(kz)... n(ki)...) in momentum modes; n(k;)
“‘quanta show up in an appropriate measurement” — an end point [Auyang].

Intuitively, one might wish to say that “real” quantum properties are “visualizable;”
but that rarely applies to amplitudes and complex quantum states (nor hypercomplex
mathematical descriptions like quaternion spinors nor gamma-matrices {entering the
realm of “Clifford” algebras} ). A better criteria for unobservable characteristics of a well-
developed theory is called physical “kickability” [Auyang]: “something is kickable if it can
be kicked and kicks back.” A nice example is the Aharanov-Bohm effect in two-slit
electron interference. Increasing the magnetic field inside a tiny solenoid near the slits
increases its exterior vector potential A field which in turn alters the locations of
ensemble constructive phase interference (the peaks move — the effect is “physical’).



On the other hand, “Eigenvalues are not properties of quantum objects.” They are not
definite nor “kickable” but rather result from some principle of purely random selection
(the Born rule).

A usual assumption is that energy and momentum (classical terms) apply to
localized photons in flight. But, another possibility is that density of wave-lengths in
space or time (k or w ) represents “code” for detected momentum or energy that is de-
coded, actualized or “realized” only at absorption.

APPENDIX:

HARMONIC OSCILLATORS;

The linear harmonic oscillator is one of the classic topics in non-relativistic
quantum mechanics for the Schrodinger equation and has a “spring” potential energy: V
= kx?/2 with spring constant k = mw?. It has the interesting property that its quantum
energy states have constant spacings so that the n’th single particle state has energy
E.=(n+ Y2 )hw with a non-zero ground state E,=hw/2. As example, this applies to
infrared spectroscopy of vibrational levels of diatomic molecules. There are raising and
lowering operators, a* (“a-dagger”) and a, that increase the energy levels by one unit or
take away one unit. The n’th level is created from the zero’th “vacuum” level by n
applications of a* : |n) = (a*)"|0) /¥ n!.

This concept is carried over into QFT for the electromagnetic field of bosons but
with a different interpretation. State |n) is no longer for just a single particle but is now a
field state having n particles present all having the same energy, Aw. An example of a
general state for particles (with or without mass) is, |1 1) = |kq,kz) meaning momentum
hk; and energy hw; in each state over 1+1 particles. It may be created from |0) by
raising operators a“(k4) and a*(k,). For massless photon bosons, Aw =#k/c, so the
energy is proportional to the momentum, and only one needs to be used. State

|k1,k2) =|k2,k1) by boson interchange with no sign change. The Hamiltonian
operatoris H= [ d®k wy [N(k)+ %% ].

ZERO POINT FLUCTUATIONS

ZPF is supposed to refer to the state or energy of the vacuum at absolute zero
temperature. Classical non-relativistic statistical mechanics would claim all random
energy is thermal. If it really exists in QFT, it is believed to consist of an #/2 weight on
every normal mode. But,it cannot be said to be well characterized primarily because of
the huge discrepancy between the background ZPF energy predicted by theory versus
its near absence in real observations. It's main selling point is usually the Casimir effect
— but there are difficult theories that can produce it without ZPF. Then there is the Lamb
shift of 1058 MHz between the energies of the 1s and 2s levels of hydrogen that is
claimed to be due to electromagnetic ZPF but with a small 3% contribution from the
polarization of the vacuum from electron-positron fluctuations. The Lamb shift is mainly
due to the fluctuation of E and B fields from the QED-ZPF for k values k& [11/a,, mc/h ].
Frequencies higher than those associated with the Bohr orbit jitters the orbit. The
perturbing ZPF electric field E2c< /2.
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The claim of NC is that there is a background classical zero point fluctuating field
independent of QED.

There is one infinite collection of harmonic oscillators we call the background
"photon field", another we call the "electron field", and so on. Since a photon has no
independent existence from the photon field of which it is an excitation, the photon is a
derived concept. You start out with just the idea of a field. You model the field as an
infinite collection of harmonic oscillators, ... The electron, in a quantum mechanical
description, is truly a "field" that permeates all of space, and the "excitation" is the region
where the probability is highest. This is the basis of the QFT's description of a particle.
Excitation refers to the amount of energy needed, to take a field from the vacuum state
(ground state, energy zero) to an “excited state, corresponding to the creation of one
particle. During the scattering process itself, the electron loses its recognizable
individuallity, and all there is (meaningfully) is the quantum field with an indefinite particle
content. QED gives the full observable answer, with fully dressed, free electrons entering
and leaving the scattering event for t --> + c | but complex quantum field behavior at
finite times.

The classical Hamiltonian for the electromagnetic field can be expressed as a
continuous superposition over harmonic oscillator Hamiltonians: Classical uses a*,
quantum uses “a-dagger:” H = | d°kZ, Aw(k)(a'ko aww ) excited stationary states of
the quantum EM field, which we will interpret as states with one or more photons.
{http://www.physics.usu.edu/ /3700_Spring 2015/What is_a_photon.pdf }. The
behavior of charged particles can be affected by EM phenomena, even when no photons
are present! This is the idea behind the “Lamb shift” found in the spectra of atoms. And it
is the key idea needed to explain spontaneous emission of photons from atoms.
Quantum fields are the stuff out of which everything is made!

The “electric” E() and E(*) operators

... have “the property of raising an n-photon state to an n+1 photon state” or lowering
from n to n-1 state. The state E(")(rt)lvacuum) is a new one-photon state [Rash]. These
operators should be assumed to use the previous annihilation/creation operators (but
notice the sign conventions here which will pertain to - and + complex frequencies—
clockwise or counter-clockwise in the complex plane). The Born rule for light still applies
as probability p < E*E = |E|?, the intensity of classical light wave.

“Experiments which detect photons ordinarily do so by absorbing them,” so detection
processes represent photon annihilation using the complex field E(*)(rt) [Glauber63].

It is well known that the electromagnetic field may be treated as an assembly of
harmonic oscilators (e.g., Schrodinger, 1926).

We work in the complex plane by first splitting the expression for an oscillating

electric field E into two complex conjugate terms E = E* + E where E" = (E)* and E" has
only positive frequency terms (i.e., those varying as e ™. EE’s are familiar with this as a
mathematical convenience—like rotating clockwise (e™") versus CCW (e*") in the
complex plane. Instead of x and p as operators, we now have quantization of fields.

Define a free transverse electric field operator as:
E*(r,t)= | Z(hwi/2€) * ax ui(r) exp (-iwct)  [Orszag].
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{think of E as energy density amplitudes or electric field density and remember
than energy density of electric fields is proportional to E*E=|E|*. }

where wave-function u = e* exp(ik-r)/y volume, and e is polarization (A = 1,2) .
“a” and a-dagger are now part of these field operators. The sum E= E*+E" is also
expressed as E (r) =i 2 ¢ [aiee™™- a'¢; e [Tann], where

¢ refers to the electric field in reciprocal space, ¢ (k) ] where E and ¢ are radial

spatial Fourier transforms,

& (k,t) = (2m)-*2 § dPrE(rt)e™, and E(rt) = (2m)->2 [ d’k ¢ (kt)e"™.

[for example 1/4mr €r> (2m)2% K2 1.

-ik. r]

Detectors are usually in a ground state so that only energy absorption can occur.
E* takes an initial state |y;) to a final state |y;) where i is usually higher in energy than f.
The transition probability for this is Wi =|(w{ E* |yi) |-
The E* component of the electric field is proportional to the annihilation operator of the
field. This is stressed because detector states are usually ground so that only absorption
takes place during photodetection. E* takes an initial wavefunction y; to a final wave
function yr where state i is usually higher than state f—so it lowers its energy and gives it
to the detector.

In other words, Heuristically, annihilation of a photon, operator a, releases
positive energy ~amplitude E* at a detector associated with positive frequency (going
with —iwt) while the creation of a photon, a* (dagger) introduces a negative frequency
component and a loss of energy in creating the photon, E ™ going with —(-iwt). Think of
these positive and negative frequencies in terms of ¢ = (k- r-w t) so that + goes with e"®
and — goes with e™ .

Average field intensity I(r,t) = Z|( wi E*| W) = Z( @il E|wo) (@ E w)) =

(wi| E™- E'| ). This is “the probability of observing a photoionization in a detector
between times t and t + dt.” The sequence E - E” is called normal ordering in the
Heisenberg picture.

As an application, consider Franson Interferometry -- a “space-like method for
determining time-time correlations of entangled photons” Each photon of an entangled
pair (1-biphoton) travels through a single-photon rectangular Mach-Zehnder (MZ) type
path for a straight through short path and a long rectangular path resulting in two
different photon output times. At the beam-splitter entry to the MZ rectangle, we create
two new partial amplitudes using the E- operator (we are treating these amplitudes very
similarly to the usual electric amplitude photon wave functions at beam splitters).

ELECTRON WAVES

Schrodinger’s idea of the real continuous classically Maxwell wave perspective
(as functions rather than as operators) for actualized photons was also intended to be
carried over to “real” de Broglie waves for electrons (when viewed from an appropriate
frame of reference). The following abstract is an example: [RASH2 Abstract ]:

“In this paper, | argue that we can avoid the paradoxes connected with the wave-
particle duality if we consider some classical wave field—*an electron wave”—instead of
electrons as the particles and consider the wave equations (Dirac, Klein—Gordon, Pauli
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and Schrddinger) as the field equations similar to Maxwell equations for the
electromagnetic field.

That interpretation considered |w|? as a measure of the distribution of the electric
charge of electron in space. Schrodinger considered it possible to abandon both
quantum jumps and corpuscular representations and to consider the electron as a wave
packet described by the wave equation. The “Born rule for light” [proboc [EJ? ] is a trivial
consequence of the Schrédinger equation, occurring only for relatively short exposure
times, whereas for long-term exposure it is necessary to use a more general nonlinear
rule. | propose to consider the following perspective: there are no electrons as
particles, but instead there is an electron wave, which is a real classical wave field, in
the sense that the wave is continuous in space and time. From this perspective, the
Dirac equation is the equation of the electron field, similar to Maxwell’s equations for the
classical electromagnetic field. This enables consideration of the electron wave as a
classical continuous field that has an electric charge, continuously distributed in space
with density p, internal angular momentum, continuously distributed in space with
density s and not connected with the motion of the electron wave, and an internal
magnetic moment, continuously distributed in space with density m and unconnected to
the motion of the electric charges of the electron wave.

Note that expressions which are the basis of the considered explanation of the
shift, were obtained within the purely wave representations of electromagnetic and
electron waves without the use of such concepts as “photon” and “electron”.
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NOTES

{https://en.wikipedia.org/wiki/Nobel_Prize_controversies#Physics } And reference
[Sudarshan].

Sudarshan began working on quantum optics at the University of Rochester in
1960. Two years later, Glauber criticized the use of classical electromagnetic theory in
explaining optical fields, which surprised Sudarshan because he believed the theory
provided accurate explanations. Sudarshan subsequently wrote a paper expressing his
ideas and sent a preprint to Glauber. Glauber informed Sudarshan of similar results and
asked to be acknowledged in the latter's paper, while criticizing Sudarshan in his own
paper. "Glauber criticized Sudarshan’s representation, but his own was unable to
generate any of the typical quantum optics phenomena, hence he introduces what he
calls a P-representation, which was Sudarshan’s representation by another name",
wrote a physicist. "This representation, which had at first been scorned by Glauber, later
becomes known as the Sudarshan—Glauber representation.”

In 2007, Sudarshan told the Hindustan Times, "The 2005 Nobel prize for Physics
was awarded for my work, but | wasn't the one to get it. Each one of the discoveries that
this Nobel was given for work based on my research."[17] Sudarshan also commented
on not being selected for the 1979 Nobel, "Steven Weinberg, Sheldon Glashow and
Abdus Salam built on work | had done as a 26-year-old student. For another major
topic: Sudarshan regarded the “V-A theory” as his finest work. The Sudarshan-Marshak
(or V-A theory — vector minus axial-vector theory exposing the existence of intrinsic “left-
handedness.”

“On-demand Semiconductor Source of Entangled Photons Which
Simultaneously Has High Fidelity, Efficiency, and Indistinguishability,” Hui Wang,
et al., https://arxiv.org/pdf/1903.06071.pdf & Phys. Rev. Lett. 122, 113602

Focus: “Entangled Photon Source Ticks All Boxes.”

“A quantum-dot-based device combines all of the attributes necessary for producing a
reliable source of entangled photons for quantum information applications.”

Abstract: An outstanding goal in quantum optics and scalable photonic quantum
technology is to develop a source that each time emits one and only one entangled
photon pair with simultaneously high entanglement fidelity, extraction efficiency, and
photon indistinguishability. By coherent two-photon excitation of a single InGaAs
qguantum dot coupled to a circular Bragg grating bull’'s-eye cavity with a broadband high
Purcell factor of up to 11.3, we generate entangled photon pairs with a state fidelity of
0.90(1), pair generation rate of 0.59(1), pair extraction efficiency of 0.62(6), and photon
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indistinguishability of 0.90(1) simultaneously. Our work will open up many applications in
high-efficiency multiphoton experiments and solid-state quantum repeaters.



EXPLAINING S ORBITALS AND BONDING

DAVE PETERSON

ABSTRACT. The simplest covalent atomic bonds are the cases of Hy and neutral diatomic
hydrogen Hs beginning with the overlap of two S-orbitals. Understanding that bond is
aided by an understanding of S-orbitals. In the overlap region, the ‘information wave’ 1
‘realizes’ an enhanced negative charge density source via the Born rule, P = 1™, and this
enhancement can result in chemical bonding. Any initial candidate wavefunction, 1, gets
altered by the 1™ electron-enhancement of orbital overlap. Interpretations and precise
details of explanations of bonding lack consensus. The discussion here suggests that this
basic foundation of quantum physical chemistry is partly clear in a mathematical sense
but very unclear in an intuitive sense. Textbooks stick with the math and generally avoid
any intuitive explanations.

1. CHEMICAL BONDING:

It is generally accepted that a covalent bond is achieved by an effective enhanced forma-
tion of negative charge between two atomic nuclei — a“redistribution of electron density
to yield a build up in the interatomic midpoint region.” But even in 2008, there was still
controversy in the details leading to the covalent bond [1]. Despite a history of great ex-
perimental and computational success, “it is remarkable that the physical explanation of
the origin of covalent bonding is still a subtle and contentious issue generating much dis-
cussion.” So, the reason that chemistry texts are so vague about the nature of the covalent
bond is that they are still unsure exactly how to interpret the bonding mechanism. One
typical initial approach is MO-LCAO — a molecular orbital from a linear combination of
atomic orbitals. And then the Born rule ¢*1 enhances the effect in the overlap region.
One interesting aspect of this is that partial charge accumulates there, d@Q = ey*y dVol.
This is in contrast to physical measurements which require a discrete whole charge to be
transferred, and ¥*1) is the probability of an electron being intersected in the experiment.
It suggests that there is an intermediate interpretation of the Born-rule 1*¢ for the case
of bound state reinforcing orbitals separate from measurement.

There are often different equivalent approaches and interpretations for quantum me-
chanical problems. Feynman [3] considered Ho" binding in terms of an electron exchange
similar to the ‘flip-flop’ of an N-atom in an ammonia molecule (N Hg). There is a special
new energy term emerging in a two-state base system related to a tunneling entity flipping

Date: May 13, 2012.
email: davepetersonl137@gmail.com. Paper updated to March 6, 2014.
1
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‘back-and-forth’ as a resonance. That is, the electron of Ho™ might prefer to be near one
or the other protons for a “double-well” system [10], and the electron can pass through a
potential maximum in the middle. Exchange causes a splitting of energy levels with one
state lying lower than the other [E; high and Ej; low]. Essentially, the electron kinetic
energy (KE) near midpoint can become negative so that momentum p can be imaginary.
There is then a reduced net energy or a binding energy for the possibility of an electron
jumping from one proton to another. This ‘exchange effect’ idea was used by Yukawa to
aid his understanding of nuclear binding.

The main opponent of the idea of electrostatic attraction for chemical covalent bonding is
Klaus Ruedenberg (1962 to present) [2]. His position on Ha™ is ‘that orbital sharing lowers
the variational kinetic energy pressure and that this is the essential cause of covalent bond-
ing.” His detailed variational calculations allow for contraction of the size of a 1S orbital by
a free parameter a so that in equation (3) below we can have e~7/% — =07/t ~ ¢=1.238r/a0
L (for neutral Hy, we might have a ~ 1.19). It is not clear why this parameter should
be allowed to vary. Having a higher @ > 1 causes higher kinetic energy but also stronger
(more negative) potential energy. A step after this promoted contraction is overlap causing
charge delocalization and charge redistribution. The electron belongs to both nuclei which
lowers the KE. There is orbital sharing, orbital contraction, and orbital polarization. This
minority view is almost never discussed in undergraduate chemistry texts.

The case of neutral diatomic hydrogen Hy with two electrons adds the presence of two
identical particles obeying an exclusion principle. The molecular wavefunction has to have
not only even or odd parity over space but also be antisymmetric for interchange of space
and spin coordinates of the two electrons [4]. We need a zero net spin ground state (anti-
parallel spins) and again even parity leading to electrons spending most of their time
in-between the protons causing binding (-4.476 eV and separation 0.74A). In general the
strength of chemical bonds is due to the accumulation of electron density in the bonding
region [11]. ? The up and down spin electrons form a ‘1S o’ bond between protons. A
wavefunction for the symmetric case may look like:

(1) Us(r1,rs) = \}iwa(mm(rz) + Gy(r1)ba(r2)]

and a minus sign is used for the antisymmetric case, V4.

Note that technically, this formula (1) says that the two atoms of a hydrogen molecule
are entangled. The modern interest in entanglement is for long distance “spooky action,”
but this is a short distance example. It is also true that the two electrons of a helium atom
are entangled (measurements cannot be made on one particle without affecting the other).

1The Bohr orbit is a, ~ 0.53 A— which in ‘atomic units’ is just called one ‘bohr.” Likewise, the reference
energy Ep, = 27.21 eV = 2.626M J/mol is called a ‘hartree.’

2With some uncertainty in the literature for the case of H>" ion where bonding is weak, and cause is
subject to debate.
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Be aware that there are many interpretations of quantum mechanics. One aspect of
QM concepts is “wave-particle” duality. Feynman was a ‘particle person,’” but many other
physicists believe in a wave or field-only interpretation. The electron-field in quantum field
theory represents electrons. The 1S orbital in the hydrogen atom might not just represent
an electron but may actually be the electron. A perceived particle nature might not show
itself until a measurement occurs. Asking what an electron is doing in an atom assumes
that an electron actually exists there. As an example, the de Broglie-Bohm ‘pilot-wave’
interpretation of QM would say that indeed particles do exist and have well defined tra-
jectories. But unlike a ‘standard interpretation, an electron does not move if it is in a
stationary-state like the 1S or ‘c-bond.” The associated lack of any kinetic energy is offset
by a specially devised ‘quantum potential’ oc (—A2/2ml1)|)V?|4]).

A high-school level explanation of the Ho' covalent bond could be the following: An
electron in its lowest energy state is like an exponentially decaying ‘cloud’ surrounding a
proton. Suppose that on a piece of paper there is placed a quarter to the left and another
quarter to the right standing for two protons each having a ‘cloud’ of four pennies lying
to the left, right, up, and down directions and representing ‘electron amplitudes.” If the
quarters approach each other so that two of the pennies overlap at the midway point, M,
then there will be two pennies at M. Could this double weight cause the protons to have
a net attraction? No; they still have a net repulsion. But, there is a basic rule of quan-
tum mechanics that the “probability of finding an electron at some location” goes as the
square of the amplitude so that the 2 pennies at M will count as 2°> = 4— an enhancement
of electron density there. Now there is enough negative charge density at mid location to
cause a net attraction, and chemical bonding will occur. 3

So, how much charge is that? The repulsion of two protons by the inverse square electric
field would be balanced against a single charge of 1/4th e at a mid point. The new Born
enhanced overlap gives 4 pennies at the midpoint with another 6 at other positions for a
charge ratio of 4/10 electron charges. However, the plane sheet layout isn’t quite right and
really needs at least four more pennies each lying above and below each proton. Then the
midpoint charge is 4/14ths e ~ 0.286 e > 0.25— so we still see bonding, but barely. The
Hy™ case is one of the weakest of chemical bonds, and Hy gives stronger chemical bonding,.

Going one step further for planar Ho™, the enhancement of pennies at the midpoint is
4 —2 = 2 extra pennies. Quantum mechanics also allows the base states an electron on the
left proton (¢) and an electron on the right proton (r) to add together symmetrically or
also to subtract (anti-symmetrically and giving ‘anti-bonding’). Call these states I and II.

@ 1) = =0+ 1), 1D = =06 = 1)

S
S

2

380, is that really seen for H2? Plots of electron density at the midpoint between the two protons show
a value that is about 3.8 times stronger than the corresponding distances on the opposite or back side.
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4 State II has the positive overlap and lower energy, and state I has zero overlap at M.
For the pennies case, that means that state II has an excess of two pennies (more negative
charge there), and state I has a deficit (zero minus overlap two is minus two). If these
correspond to changes in energy, A, then we can explain an energy splitting from the non-
overlapping free state: Er = E,+ A and Ej; = E, — A. The state E; can be negative and
represent a net attraction and hence chemical bonding.

2. ‘S’ ORBITALS

The first two purely radial integral-square normalized 1S and 2S states of an atom are
given by [4]:

3/2 3/2
B == (f) eI () = = (f) (1 - 2Za7“> o120,

where a, = 4me,h? /me? is the first Bohr orbit ~ 0.53A4, and proton number Z = 1. The re-
duced electron mass should really be used m, = m./(1+me/M,) so that a, = a,(1+m/M).
These orbitals are solutions of the Schrédinger equation (SE) for an electron in a three-
dimensional Coulomb field. And then there is also multiplication by a time varying with
a frequency given by v = h/E. For the first 1;(r,t), this is like a central pole circus
tent shape that is up and then becomes inverted down and then back to up again. One
initial curiosity is that exponential tails go out to infinity, but can the whole wave function
change so fast that the tails are causally disconnected (beyond the speed of light). Not
really, because c time a half wave period is about 460 angstroms which is out there pretty
far. However, some view the wave-function as holistic with special quantum network type
communication between all of its portions. This communication can be a-temporal involv-
ing both back and forth in time transmission effectively instantaneously so that far-flung
portions work together well.

The ground state ‘1S’ waveform solution can be most easily understood by simply ‘as-
suming’ an exponentially decaying profile: 1), = Ae~"" and plugging that into the SE:
—(h?/2m)V*) = (E — V)4 to obtain by matching parts b = 1/a, and E = —h?/2ma? =
—13.6eV. In spherical coordinates, this is aided by using V) = r=20/0r(r204/0r).
V = —Ze?/4rme,r, and he = 12.4keV A. The proper coefficient A is found by normalizing
the wavefunction and using the definite integral from 0 to co of 72e~“"dr = 2/c3. Already
knowing the form of the solution is of course a big advantage.

Strangely, I had never been taught this in any classes. Dealing with complexity and gen-
erality sometimes pre-empts understanding things simply. Einstein advocated attempting
a dual approach where any correct complex idea should also be explained simply (as to

4Actually, correct normalization has to include the overlap integral A = [ ,3,dV to give a coefficient
of 1/4/2(1 F A) [10]. That makes the splitting asymmetrical.
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a ‘barmaid’ or to a ‘grandmother’ but now more appropriately “to a high school stu-
dent”). We are used to not being able to describe an electron particle in the 1S ground
state. But the further question is, “What is the electron wave doing in this ground state?”

Many texts on quantum mechanics include some explanation of the orbitals of the hy-
drogen atom. They are generally understandable until they discuss the radial portion of
the wave-function, Ry¢(r) in ¥pem = Rue(r)Y,™(0, ¢) = (1/7)uneY;™ (where u is called the
‘reduced radial function’ and the Y’s are spherical harmonics — the vibrating modes of
a spherical surface). Here, we are less concerned with the angular contribution and set
£ =0,m = 0. The radial wave equation is often expressed in terms of ‘Laguerre polynomi-
als’ but with a variety of differing conventions being used. Sometimes, authors avoid these
polynomials and just use power series solutions or even hypergeometric functions. Students
then often view even the simplest radial functions as mysterious because of uneven and
poorly presented heuristics and lack of simplifying explanations. Chemistry texts and even
physical chemistry books are even worse by freely using the names ‘S-orbitals’ or their
‘o-bonds without deriving or clearly explaining them.

If a text bothers to list Laguerre polynomials, they usually begin with: Lo =1, L; = 1-p
where L; = e(d/dp)’(p’e””) [Rodrigues]. The ‘generalized Laguerre polynomials’ also
connect to the radial locations of the angular functions [5] so that:

(4) Unp = Npop T L2HY (p)e™2, p=2Zr/na,.

Without that L,_1 subscript, one cannot connect to the form L, for u1g where the first n
value is 1 rather than 0 . Now we can see that the forms for 11 and 5 in (3) could include
L, and Ly. The 1S orbital wavefunction amplitude is an exponential decay away from the
center of mass of the electron-proton system. The ‘probability of finding an electron at a
radial location r is given by P = ¢*¢’. The V o« —1/r Coulomb potential constricts the
wavefunction towards the proton, but quantum mechanics also allows some exponential
decaying probability of penetrating into the potential. In the ground state of hydrogen,
the probability that the electron is inside the Bohr radius is only about 32% [6]. Ideally,
one might ask the question, “what is the electron doing in the 1S orbital?” (or for that
matter, in any orbital and in any chemical bond). There is no acceptable answer to this
question. There is not even agreement that it is a legitimate question or even that an
electron might exist prior to its being measured.

The old Bohr orbits could be pictured. After de Broglie, they represented standing waves
that orbited in a plane and continually reinforced each other. The waves on the surface of
a balloon can also be considered as reinforcing waves in both the theta and phi directions
together. Can that be done for these new S-orbitals? No. They have a wide range of
Fourier transform momenta representing a distribution of wavelengths superimposed to
give a shape in space. In particular, the Fourier transform of e~1*| is a Lorentzian profile
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in 1D, and in 3D FT we have a Lorentzian squared:
(5) e J(Vol = 4mr3/3)  —  6/(1 + 4rr2s?)?

The decaying ‘tent’ profile of ‘1S’ in space does imply something about implied momentum
components via the uncertainty principle. And with the radial coupling to the spherical
harmonics Y, (6, ¢), there must also be a distribution of radii and momenta for each of
the separate spherical harmonics as well. The days of simple pictures are long gone.

Are these Laguerre polynomials necessary to understanding why the 1S orbital has
exponential decaying amplitude? No. The Schrédinger equation represents conservation of
energy in operator form: p?/2m+V = E. But p* = p,2+p,*+p,? and V(r) = V(z,vy, 2), so
much perspective can be gained from just considering the equation in one x-dimension. And
a similiar exponential decay applies there as it does to the 3D central potential problem.

3. ANALOGIES:

The simplest analogy is the one-dimensional particle in a box (r = —a to x = +a). The
lowest energy level is given by: ¢ = (1/2v/a)[(e?** + e~**) = 2cos(kz)] = cos(kx)/\/a
where k = 27/\ = 7/2a. The fixed f(x) shape is due to interference between left and
right moving waves. The polar form is ¥ = Re™" = (1/y/a) cos(kz) e *Ft/". This can
be generalized to 3D for a central cosine shaped wave peak in x,y,z. The ‘left-and-right’
moving interference in a 3D spherical cell might suggest ‘in-and-out’ moving radial waves.

The instructive case of a ‘One-Dimensional Coulomb Problem’ [7] or ‘one-dimensional
hydrogen atom’ [8] central potential actually turns out to have some special complexi-
ties not found in the 3D case. It is in fact a controversial arena with offered claims and
later refutations persisting at least to the 1980’s. The potential V (z) = e2/4me,|x| has a
singularity at x = 0 which is the source of difficulty and allows no transmission through
the origin between separate left and right wavefunction portions. These regular wavefunc-
tions vanish at the origin unlike the 3D case which has a ground state peak there. The
existing wavefunctions still use the associated Laguerre polynomials, L, and exponential
decays to the left and right with decay constants 1/na,. The form of the functions are
¥ x xzL(p)exp(—p/2) where the factor of x is needed to cancel out the -1/x potential. There
are no eigenstates with definite parity. But, the problem does produce the usual Balmer
series (lowest state is n = 2) with the same energy spectrum as the 3D H-atom. So this
case is a partial counter-example to 1D being simpler than 3D. Strangely, this problem
also admits anomalous half-odd integral n states with even appearing wavefunctions more
resembling those of the 3D hydrogen atom except for a narrow divot at x = 0.

The 3D ‘spherical harmonic oscillator’ (‘SHO’) and also the case for a spherical box po-
tential provide relevant examples for contemplation. Note that a three dimensional spher-
ical isotropic harmonic oscillator also uses Laguerre polynomials in their wave function
solutions [9]. The ground state in this case is a centralized Gaussian, 1, ~ exp(—72/2)
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which is then a ‘kin’ to the atomic S-wave. How does this state have any kinetic energy? °
Also, the FT of a Gaussian is also a Gaussian in 3D for the SHO, and of course that is also
true in 1D. So we don’t have a nice picture somewhat related to a closed Bohr orbital stand-
ing wavelength — but rather a distribution of momenta. Similarly, the classical 2D ‘drum
head’ and 3D ‘spherical resonance cavity’ are characterized by Bessel functions J, and j,
with ‘Radial FTs ’ which are also distributions. The ground state of a one-dimensional
LHO uses the Hermite polynomial H,(x) = 1 and is also a Gaussian. The spherical square
well potential also has a spherical Bessel function solutions, e.g., j, = sin(p)/p (like the

‘sinc’ function) where p = ar, and ah = /2m(V — E).

So, the potential well determines the location and momentum constraints on the ground
state values. The electron wavefunction can penetrate the potential barrier as a decaying
tail. The inverse square field is strong enough so that the ground S state only possesses
this exponential decay character. In contrast, the spherical harmonic oscillator parabola
potential is soft enough so that the ground state can develop more character and end up
with a Gaussian bell-shaped profile. These both correspond to the first Laguerre polyno-
mial, L, (so there is no special mysterious tie-in).

For the commonplace LHO problem (linear harmonic oscillator with V = kz2/2), the
ground state Gaussian wavefunction is centrally located:

1/2
(6) uo(z) = Aexp(—a’z?/2) = 251546”%2/2, ot = km/h2.
The expectation values for < z > and < p > are both zero (because they are odd functions
of x). The expectation values < 22 >= 1/2a? and < p? >= h?a?/2. Since expectation
values for Delta x and Delta p are given by variances, AzAp = /< 22 >< p? > = h/2,
the tightest uncertainty. For the next state uj(x) o 2aze /2 AzAp = 3h/2 [4].
Notice that the central portion of the LHO or SHO wavefunction is smooth (mid Gaussian)
because matter wave forces vanish at zero radius. But, for the hydrogen atom with inverse
square field, the potential and forces become infinite at zero radius. In this case the
wavefunction is not smooth (it is a peaked exponential decay from center).

4. DISCUSSION

A common curiosity about introductory derivations for the one-electron atom is being
able to discuss and use a central potential from a nucleus to well defined electron locations.
An electron as a particle cannot be localized to within about one Bohr radius, a,, due to
the uncertainty principle. But the electrostatic potential is given for a particle with defi-
nite precise radial location. The unlikely interpretation might be called “Whack-a-mole”
(a board game in which a mole sticks its head out of a circle and then gets whacked with a

SKE could come from the usual formula —h?V24)/2m, but again Bohm would have a motionless electron
with no KE. Although a minority view, the pilot-wave interpretation advocates are increasing in number.
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hammer only to have another mole pop up from another hole, etc.). It is as if single elec-
trons suddenly materialize in accordance with the Born probability and then vanish only
to appear again at another location until all locations experience the materializations. A
similar problem occurs in many other examples such as the derivation of the van der Waals
interaction which uses potentials for two electrons in two atoms as if each atom possessed
an instantaneous dipole moment for dipole-dipole interactions. An old belief was that the
electrons zip around very quickly so that they can have instantaneous positions but still
effectively cover a diffuse cloud. A modern belief is that quantum mechanics describes
waves only, and quantum field theory describes fields and perturbations of fields only with-
out actual existence of localized particles. An actual whole electron charge doesn’t have to
exist everywhere because the quantum-electron-field existing everywhere contains knowl-
edge of the electron charge along with its other properties. Field interactions can use that
knowledge in their processings.

Using specific radii makes sense if one treats space-time as possessing mathematical mesh
‘cells’ of values to be updated. The potential ‘conditions’ the space. In non-relativistic
quantum mechanics (NR-QM), each cell has a specific location. For electrostatic fields,
the entity to update iteratively is the EM potential such that the Laplacian of U is:
V2U = —p/e,. In free space outside of charge sources, the Laplacian can be considered to
represent the process of iterative averaging of the values U(z,y, z,t) of a cell over the val-
ues in the nearest neighbors. Rather than solving the problem long range over space-time,
the process is merely local updating by iterative averaging and continuing these averagings
over cells until given boundary conditions (BC’s) are satisfied. The boundary conditions
propagate their values to the cell. The EM values of the cell are treated separately from an
electron which might actually occupy the cell. The same applies to Newtonian gravitation,
V2¢ = 47Gp (in for example a neutron crystal interferometer experiment).

The physical interpretation of Poisson’s equation with sources is numerically a little
more difficult. The quantum mechanical problem for say a one-electron atom is still more
difficult: H,e¢n = Enu, or V2 = —27Z(r/a,)y. And, in this case, each cell possesses
an electromagnetic potential value, U, and also a separate and possibly complex quantum
mechanical amplitude value, ¥ (z,y, 2).

No one really understands the particle property of ‘charge;’ its origin and characteristics
lie beyond the standard model. There is an intuitive discrepancy between the particle
picture (full charge instantaneously at each location along with a Born-Oppenheimer ap-
proximation) and Schrodinger’s old idea of a diffuse cloud charge density with partial
charges, dQ = ey*1) dV ®. The wave function is supposed to contain all knowledge, so ex-
tend that to knowledge of charge also. The wave function IS the particle and with the right

6For consistency, note that the potential energy of a 1S orbital for a nucleus of charge Qn has:

W) = wivior = [vs L eapon = [ 20 Qu_ Qe y 0 [ Qn dQur)

4dmeor 4meor d(vol) dme, T

(Y"1 Qe)d(vol) =
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Hamiltonian represents everything physical particles would do. The electron field in QFT is
understood to contain knowledge of electron properties over all space-time. My perspective
is to assume that space-time processes all these particle locations and potential interactions
as a simulation of all interactions prior to ‘final result.” A time-independent standing wave
continually self-reinforcement aids the ‘materialization’ of active partial charge in electron
clouds and overlapping electron clouds.” They acquire a more ‘real’ status than just ¢ but
less status than that of a discrete measurement. This charge excess behaves as a source of
attraction and interacts with both positive nuclei. This behavior is similar to usual classical
electrostatic attraction. So the quantum overlap integral has taken one intermediate step
towards becoming classical. The reality of this overlap-excess is apparent independently
of active observation. The molecules in a room would fly apart and explode without the
reality of chemical bonding from quantum effects.

We said that the 1S single atom ground state amplitude has an oscillation in time like
a tenting shape which points up and then points down and then up again. This is like the
lowest mode of a drumhead which rounds up and then depresses down and then up again
for the lowest sound wave. The molecular orbital (MO)-wavefunction also vibrates in time
due to the energy of the system. So, an Hs™ or Hy molecule has a 1 that looks like a
suspension bridge which faces up, then inverts itself down, and then up again with time.

How about hydrogen atom angular momentum orbitals with waves going both ‘for-
ward’ and ‘backwards?’ Two of the lowest Legendre polynomials are P} = cos(f) and
Py = (3cos?(f) — 1)/2. We could rewrite these as P; = (et + e7%)/2 = cos(f) rep-
resenting a superposition of a wave in the positive and negative theta directions. And
Py = (3cos?(f) — 1)/2 = (3/4) cos(20) + (1/4), where cos(26) = [e*??? + ¢7120]/2. This
again resembles a fixed shape due to interference between forward and backward moving
waves where theta is some omega t: 6 = wt.

Note that physicists and chemists express some orbitals differently. The Legendre poly-
nomial for £ = 1,m = 1is P} (cos#) = (1—[cos §]?)'/2, but that is just sin #. Then physicists
write usj41 o sinfe™?: and chemists write ap, o< cosf but also 1)gy,, o sinf cos¢ and
Papy o sinfsin¢. Which is OK since et = cos¢ 4 isin¢. This allows chemists their
p-“lobes” with one side having plus amplitude and the other having minus amplitudes for
a labeled figure-8 picture. The usual “p-lobe” pictures are for amplitude squared — but
does that really occur prior to interaction with another atom? When does the Born rule
occur? If a 2p, plus side amplitude lobe combines with a a 1S atom orbital, the electron
density in that side is enhanced so that the effective size of the opposite unused p-lobe is

For the hydrogen atom with a nucleus of just one proton, this becomes (V) = 7h2/a02me ~ —27.2 eV
(one hartree). This charge density view is not very useful for the time dependent moving electron case, and
there is no repeating reinforcement there. But it seems to be true here. Also note that if 1" suddenly
ceased, you and all your surroundings would suddenly explode.

"How much reinforcement is needed? Perhaps there is some characteristic time constant 7 for each
system so that an adequate time can be expressed as a fraction of unity by (2/7)tan™*(t/7).
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diminished. The Born rule changes the density of the electron cloud.

In QM, it is permissible to linearly combine base states with coefficients which can be
complex to obtain new candidate wavefunctions. The ground state of carbon with its four
outer electrons in shell ‘2’ can recombine its 2S and 2p orbitals as follows: 1s522522p® —
1s%(2s'2p;2p,2pl) [12]. And then these four outer electrons can then be added or sub-

— (e.g., alobe s +p, +py, +p. in
the i+ +k direction). These orbitals all had about the same energy, so promotion of one
2s electron is a minor change. Each of the equivalent sp® new orbitals has the same size,
shape, and energy. Depending on chemical need and lowest energy, other hybrids could
be formed. Chemical bonds do not have to be localized at the ends of lobes. For example
benzine has strongly delocalized electrons in m— bonds near all six of the 6C ring.

?

tracted together to give ‘tetrahedral hybridization, sp®

One implication of the 1D hydrogen atom to the 3D S wave is that one should not think
of a particle or wave passing directly through the singularity at the proton nucleus. The
expectation value of < p? > for the 1S state is calculated to be h?/a3 and < 22 >= 3a2.
So, AzAp = /< 22 >< p? > = /3 h. The expected kinetic energy is
< KE >=<p? > /2m = +h?/2ma,? ~ +13.6eV. But the expectation value of potential
<V >=< —e?/4dme,r >=< —h?/a,mr >= —h%/a,>m ~ —27.4 eV. So the net energy of
the ground 1S of hydrogen is again F ~ —13.6eV. This is just a special example of the
virial theorem that (T) = —(V')/2 with ((1/7)) o 1/n?, or:

(7) (WIT(P)) = (A/2) [V (r)|4)

where the potential V is of degree A = 1 here.
This is fairly straightforward. But it is difficult to discuss what the kinetic energy is like
when atomic orbitals superimpose.

Measurements for long-distance entanglements are most easily understood by the Cramer
‘backwards in time’ transactional interpretation (‘TT’) of QM [13]. The discussion is for
time-dependent Schrédinger’s equation — but what about the bound state time-independent
Schrédinger equation? Could these transactions also occur in the short-distance entangle-
ment of chemical bonding? Well, there would no longer be the usual ‘sources and sinks’,
but there could be communication links between different ‘space-time cells’ (sub-quantum-
mechanics). Certainly, QM for the more macro world of sources and sinks must derive
from a sub-quantum world; and ‘TT’ could derive from a ‘sub-TI’ handshaking agreements
across cells. We think of stationary-state orbitals and bonds in terms of back-and-forth
motion of waves. If there were back-and-forth communication in time, it might be hard to
tell the difference. Cramer theory ‘derives’ the Born rule ©*1 as a handshaking agreement
between an offer wave 1 from a source and a verify wave moving backwards in time from
a receiver sink to the source, ¥*. Could it be that the Born rule derives in general from
reinforcements that include backwards in time verify wave components?
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I am tempted to define a new word, ‘Qureal’ or ‘quantum real’ to refers to a state
of being part way between the classical world of observations and the quantum world of
possibilities.® And the particular example is covalent bonding where the enhancement
of overlap behaves as a Coulomb source of negative charge between nuclei. These time
invariant standing waves represent a reality below the ‘possibilist world” of TT by Ruth
Kastner [14]. Although entanglement has been verified many times using the polarization
of photons, it has not yet been verified for electrons (for example, electron spin). Most
people believe in it, and testing may be done in the near future. TI can use psi-star for
back in time verification for light because a photon is its own anti-particle. But electrons
going back in time are positrons and move at sub-light speeds. TI needs to elaborate on
its mechanisms for the case of massive particles (or matter waves).

1]
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Reality of Schrodinger W-Waves?

Dave Peterson, 9/8/18 — 9/14/18

For the last 80 years, physicists have pondered whether Schrodinger quantum
waves might be “real;” and if so, then what kind of field are they made of ? (... for now
just call it a “matter field”). Conventional positivistic Copenhagen dogma emphatically
says “There is no quantum reality.” But the community view has been gradually
changing over time against Copenhagen. Now we have ongoing and strongly felt
“interpretation wars” between “ontology versus epistemology” --meaning that some sort
of quantum reality does exist versus the standard claim that quantum mechanics is
merely a theory for calculating experimental outcomes (instrumentialism). A partial truth
might lie in-between — a rarely considered “quantum omelet” with both egg and cheese
mixed together.

This note discusses whether Schrodinger waves are even the right topic to
consider. Spatial waves carrying momentum p = h/A are merely postulated in quantum
mechanics [QM = non-relativistic quantum mechanics]. | call the joint starting foundation
E = hf and p = h/A as “Postulate Zero” for quantum mechanics [DP_2015]. The textbook

postulates prefer to be in the form of operators: p =-ihV and E =i d /0 t, but these

operators draw out momentum as a density of waves in space and energy as a density
of waves in time (so postulate zero is there). But in relativistic RQM, p=h/A is derived
from a more fundamental rest mass vibration f, = m,c?h. These considerations are
discarded in standard QM thus making philosophical discussions somewhat “off-target.”
By itself, the p=h/A formula is still valid since it is a low speed case of the more
encompassing special relativistic theory. Note that the momentum wave is not
something possessed by the particle. A double-slit apparatus moving towards a particle
“at rest” would see the same interference pattern as when it is the particle that moves
[Shuler].

In relativistic QM, the nature and origin of wavelength A is due to loss of clock
synchronization seen by moving observers—a purely relativistic effect. In other words,
it can be viewed as an artifact of Lorentz transformations between frames of reference.
Although well known historically (e.g., de Broglie, 1924), this concept is almost never
considered in interpretations of QM. Suppose that a “particle” is really a localized bundle
of electron field quanta with some spatial extent and that all “parts” of this field are
synchronized perfectly in phase with each other. The usual 1S-orbital of the hydrogen
atom shares this trait; but its exponential decay profile may have a tighter degree of
localization. The field extent can be considered as an array of very tiny clocks with their
“second hands” moving incredibly quickly—like 10% revolutions per second! An
observer with relative motion, velocity V, sees these clocks as skewed [ref.Shu] from the
‘leading edge” to the “trailing edge” (say distance “X”). This means that a number of
complete cycles difference could be seen over the extent. In relativity, relative motion
shortens lengths, so let £ = X/y where Lorentz-factor gamma = 1. Then signals from the
sides towards the “middle of the particle” will appear to propagate with speed c+V from
one side and c-V from the other [ref. FOW]. The time difference between these two
signals will be seen as At =VXy/c? , a term in a Lorentz transformation. It is a clock de-
synchronization term that would always be zero for classical physics (with effectively
infinite speed of light) but is non-zero for relativity. During this time difference, there can




be several cycles of clock rotation difference between front and back — and this
continuous phase difference becomes space wavelengths.

To understand this better, we first might be inclined (wrongly) to think simply of a
moving electron as a “traveling vibrator” forming a spatial wave — but this is not a de
Broglie wave! We would have Agassica = V/fo which is very different from Agg =h/mV=h/p.
To be relativistically correct, the “classical” wave would require phase velocity Af, = v,
instead of V. (and v, = c?/ V in special relativity -- as discussed below).

As an example, consider a 1 keV electron (here meaning KE = 1000 eV/c?) with
momentum p = (2mE)"? = 32 keV/c traveling with a de Broglie wavelength A =h/p =hc/pc
= 0.387 angstroms [where h = 4.135x10™"° eV - sec. or hc = 12.4 keV A]. Electron mass-
energy is 511 keV/c? giving a rest frequency of f,= m,c?h =1.26x10%° Hz (126 exa-
hertz!). And the speed of the electron is about V=0.063 c. Then the wrong-formula A =
V/f, = 1.5x10™" m = 150 fm which is 258=c?/V? times smaller than the de Broglie
wavelength from special relativistic Lorentz transformations of a base frequency.

Timeline Background:

1. Planck’s Constant, h: is a term in Wien’s Law for black-bodies [1896] tested by
Paschen [1897], and then as discrete Planck bundles E=hf [1900] and Einstein
[1905 — photoelectric effect].

2. Light has momentum: p = h/A = hk = hf/c=E/c by Stark [1909] and Einstein
[1916]. (k= 2m/Aand i = h/21).

3. de Broglie electron wave momentum p=h/A came from special relativity [1923-

1924] and explained the Bohr atom as having integral number of wavelengths

around circular orbits, nA = 21Tr,.

Birth of non-relativistic Wave and Matrix Quantum Mechanics, 1926

Alternative QM: Bohmian “non-local hidden variable” theory [by de Broglie, 1927].

Formulas from de Broglie’'s Nobel Prize Lecture, 1929: the electron has a rest

mass vibration E,=hf,=m.c?. Then he applied special relativity equations: f =

vi,=E/h, p = ymoV, V- Vpnase = €% So: wave momentum p = ym,V=EV/c® =
hf/vonase = h/A. [See Appendix for proper Lorentz transformations].

oo s

7. Electron matter wave self interference: first seen in 1954 using an “electron
biprism” which was just a thin charged wire crossing an electron beam (gold
coated 3 micron spider web strand— [ref. AA]). Then an e-beam double slit
experiment showed interference in 1961 and one-at-a-time single electron
interference in 1989.

Discussion:

A preferred definition of “real” stresses things that are not so dependent on
relative motion between object and observer. Then, the most likely fundamental
quantum wave reality is that all small massive particles have a very rapid time varying
scalar phase vibration representing energy E,=hf, = m,c? — and that is indeed a
relativistic invariant. This is also true for even large composite particles (like Cgo and
larger molecules), but a detailed explanation has not yet been made clear.

A big problem is that the Schrodinger wave p=h/A being non-relativistic ignores
any rest mass vibration, has a strange relation between frequency and wave-number



given by v, =phase speed = fA = velocity/2 (phase-speed lags real speed, and its kinetic
energy KE=p%2m). It inherits p=h/A but then throws away its relativity parent. In special
relativity, total energy  E?*= (m.c®)*+(pc)>.  [see triangle below]

If it is associated with waves with wave-number k = 211/A, then the energy formula can
be re-written as: (Aw)*=(w,)? + (chk)®. Then a standard formula for “group velocity”
Vparige = 0 W/ 3 k = ke?/w = ¢®/vy with “phase speed” vy= w /k = f A . So the product is
Vv =c®. [We won't discuss here the strangeness that one has to square what are
called “probability amplitudes” to get to actual measured results — the mysterious “Born
Rule” that no one has yet derived clearly]. In the Pythagorean triangle above, as well as
a created wavelength, the base frequency is also altered to a higher frequency seen by
an observer.

We could say that we are addressing the topic of quantum reality with respect to
the wrong ball-game. Relativity is a fundamental requirement. Ordinary quantum theory
does address light waves; but their speed, c, is obviously relativistic—so we have to
deliberately restrict discussion about them in conventional QM (and for light, both phase
and group particle speed = Af = c¢). The Schrodinger space phase wave p=h/A depends
on relative motion and so has a lesser degree of reality than something that is invariant.
But, as humans, we often choose to say that what counts is that it is real to us in our “lab
frame.” (!) And QM focuses on what “the observer” sees.

It is a misfortune of history that de Broglie’s math is rarely taught to students —
largely because conventional wave mechanics quickly followed in time, was incredibly
successful, and then effectively dominated over de Broglie’s views. Relativity could be
set aside for special use in relativistic QM and quantum field theory (QFT). Also, de
Broglie math was first printed in French in 1925 without heuristic polish and was not
translated into English for 80 years.

Here is the basic picture (imagine right triangles with better drawn hypotenuse —
connect the ¢'s with line segments):

Energy Momentum triangle Frequency right triangle
hypotenuse 0 0
E =mc?=ym,c® | hypotenuse = f =y f, | side
angle 6=arctan(yB) | pc / angle 6 | =c/A= pc/h
/0 0 /0 0
E,=moc>  =hf, Base=f, = “rest frequency”

These sketches show that as relative velocity B =V/c increases, angle 6
increases and transforms the rest frame base to now include momentum and wave-
number seen by the moving frame. The relativistic factor gamma will often be nearly y =
1. So, the production of de Broglie wavelength is cause by an upward rotation of the
base into newly created space waves. A momentum 4-vector and a wave-number 4-
vector transform the same way and can be considered as proportional using Planck’s
constant, h or i =h/2m . The Pythagorean theorem for a right triangle says that new total

(moving) frequency f 2= f,2+(c/A)%

In relativity, all inertial frames are equally valid. Apart from Bragg electron
diffraction from crystals, a standard test for the presence of spatial waves is the resulting



interference pattern from electrons passing through a double slit (a focus of the
recently selected book: Through Two Doors at Once). But the same interference pattern
will be seen if the electron is considered at rest and the double slit apparatus with screen
approaches the electron at some speed V (1) [Schu]. Now an electron at rest has an
infinite wavelength (1 = h/0 = o©) —so how can it interfere? The answer again is that
only relative motion matters. de Broglie Wavelength is not a distance in the sense of a
ruler in space! From crystal or slit diffraction, we cannot deduce backwards that a prior
phase speed or phase wavelength has fundamental existence.

Matter Waves such as electrons can split into two paths and interfere with
themselves [AA]. We cannot say that an electron “particle” travels both paths. It must be
that an electron is a localized matter-field that delocalizes at it travels and finally gets
localized again at the end [Wheeler's “Great Smoky Dragon” with well defined head and
tail but vague “smoky” middle]. The wave can take many paths through space-time. The
end result is again a localization associated either with an (incomprehensible) wave
function “collapse” or an early determined Bohmian spatial preference from initial
conditions. Neither is very satisfactory. Bohm mechanics needs no collapse but depends
on a “quantum potential” and an environmental wave function producing non-local
effects. The establishment of such a wavefunction is mysterious. It is as if the electron
knows where it is going to go because “it has already been there.”

Conclusion:

So, are Schrodinger’'s y waves real? They exist only as a relative de-
synchronization of the primary at-rest matter wave vibrations and so themselves lack
fundamental reality. They act as if they are somehow real to us in our Lab frame and
participate in basic 4-vector transformations (E,p) or (w,k). The observer enters in the
sense of establishing a relative speed between particle and detector/observer, and an
observer at a different relative speed would see a different wavelength (it is relational).
One cannot make a Lorentz transformation of the wave-length because it is already the
result of Lorentz transformations. Those equations act to effectively rotate a base
frequency up into an effective wavelength.

AfterThoughts:

The spatial extension of the electron field for a single particle is very strange and
interesting. For low momentum, the wavelength can be very long. In quantum field
theory, the quantum electron-field permeates all of space-time; and a “particle” is mainly
a localization of the excitation of the field (a quanta). A particle is not a little spinning ball.
A current “meme” aiding this understanding is, “There are no particles, there are only
fields.” Strong localization occurs at particle creation and particle annihilation at the end
— but with a very diffuse in-between. Localization also occurs during interactions such as
the vertex of a Feynman diagram. Probing an electron at high energy localizes its field,
and then we can say that the electron seems “point-like.” Another thing that forces
localization is the exclusion principle. It says that if an electron in a region possesses
certain quantum numbers, then any other electron with the same quantum numbers is
not allowed to intrude or overlap the same region of space-time. This is especially
interesting in white dwarf stars. Explanation from first principles is still unsatisfactory but
shows that the concept of electron fermion spin and the exclusion principle are
consistent (the “spin-statistics” theorem).



p=h/\ comes from relativity. But why and how does relativity work? Why should
all observers see a constant speed of light regardless of motion? For us, it is just a
given: physical reality has to be Lorentz invariant. The “why” of relativity carries over to
the “how” are conservation laws enforced? Energy, momentum, angular momentum and
quantum numbers have work out upon detection/annihilation, and the mechanisms are
unclear (more givens). How does entanglement occur (forces conservation laws) --and
distance seems not to matter. Exactly what is a “matter wave.” How do multi-particle
wave functions operate in configuration space? In our current understanding, after a long
distance, remaining very very tiny y —amplitudes don’t matter — somehow they still work.
We are still a long way from understanding the foundations of physics. And we do live in
a “preposterous universe.”
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Appendix notes:

1). Another approach to deriving p=h/A is using the two standard space-time
Lorentz transformations: 1. t'=y(t-Vx/c?) and 2. x’ =y (x-Vt)

where frame L’(x’,t') has relative velocity V with respect to a particle at rest in
frame L(x,t). The particle (localized electron matter field) has intrinsic vibration
E.=hf,=m.c? in frame L being observed by frame L’. [The term yVx/c? tells how clocks
are no longer synchronized with each other (so different parts of its extended vibration
have different phases.]

Pick initial time t=0 and let wave period At' = 1/f where f = yf, = ymoc.
Solve equation 1 for x: Ax =Atc?/yV = Vhc?/yhf =hc?/Vymoc? = hlyp where p = ym,V.
And then use transformation 2. for AxX’ = yAx = yh/yp=h/lp=A !
[the view from frame L’ about a particle lin L]. Lambda is the distance between phase
peaks because delta t’ was chosen to be one over frequency.



An electron is waves of what?

Dave Peterson, 10/6/17 -11/1/19 (revised, preliminary)

What is an electron quantum mechanical psi-function made of ? [Jones].
What is a generic answer for what is vibrating common to all cases of E = /iw ?
What is the fundamental reality or substance of so-called “matter waves” ?

Scope:
The class of interpretations of QM considered here are “realistic” and apply to

each measured event rather than being “epistemological” where psi only represents the
knowledge of an observer over an ensemble of data events. Examples of realism include
the “de Broglie-Bohm” interpretation, the “de Broglie double solution,” and the
“transactional” back-and-forth-in-time interpretation. We don’t really have to say what a
quantum wave is — we are already familiar with its behaviors (although some of our
beliefs might turn out to be wrong). It can be called a psi-wave (the y-wave of a y-field)
lacking any substantial properties that exist in the classical world.

The de Broglie relations for matter waves represent information about matter. de
Broglie relations are basic in two different arenas: Relativistic quantum mechanics
(RQM) where E = Aw = y moc? refers to an intrinsic frequency numerically representing
total mass, and the momentum p = ik is due to relative motion clock-de-synchronization
of a standing wave source w,-phase (an artifact of the Lorentz transformation). This is
contrasted with non-relativistic QM which excludes rest mass-energy, has E = KE + PE,
and where the formula p= mv =h/A is just an empirical fact and postulate.

“‘Matter-waves” or “energy-waves” or “information waves” or something else (“y-
waves”): Matter is concentrated energy mostly localized spatially within some confined
volume. That describes quark/gluon-composite protons and neutrons with m, = E/c?
where quark masses only contribute a tiny portion to the total mass. Although photons
are also called “particles,” they are massless; so we might wish to call their waves
“‘energy-waves” instead. But, as discussed below, @ -waves or de Broglie waves in
general are clearly not energy waves, they are more like “waves of information” that can
be decoded to give energy or momentum. But then we want to think that there must be
some “substance” or field that carries that information. We can give it the name “y-field”
with perhaps detailed physics to be defined in the future.

It might be intuitively tempting to say that the de Broglie wave is electromagnetic
for an electron and for massless photons. Or perhaps an electron’s mass-producing
give-and-take of “hypercharge” in the “Higgs-field” makes an electron wave. Note that
the Higgs field interactions leave charge and spin intact, so perhaps they don’t “vibrate.”
Each unique type of quantum field can produce an elementary particle quanta with the
attributes specified by that field. A quantum phonon wave is something quite different,
mechanical vibrations of nuclei on a lattice. And then we have large composite neutral
macro-molecules also demonstrating de Broglie waves with wavelength A =h/Mv where
M is the sum of all the masses of its entities. These waves seem to be only
energy/momentum information waves can that assist in guiding the particle.

This over-riding commonality of de Broglie relations for all of these cases is
profound and implies a higher-level quantum-energy principle of the Vacuum and an
expanded definition of “quantum energy” or “pre-energy.” Whatever it is that forms



energy, it is constrained and governed by an “energy supervisor” that controls the
packaging and shipping of quanta. So, a quantum wave may be composed of multiple
superimposed things together such as a pseudo-electromagnetic field, A, combined with
hypercharge fluctuation, Y, but always also with a common “pre-energy-information
wave.”

Massive quantum particles can have many attributes, the most important of
which are the mechanical matter attributes of observable energy and momentum, E and
p, encoded in what has been most commonly referred to as their quantum mechanical
“‘matter waves.” Irrespective of amplitude, energy corresponds to the number of wave
vibrations in time, and momentum is the density of wavelengths in space (the gradient of
the phase, e.g., @ =k-r-wt). For spherical or dipole waves, long distances can lead to
extremely faint amplitudes. But they don’t seem to be lost in background noise and act
like a “dedicated” wave for a particle.

The de Broglie relations of 1924, E = hw and p = h/A = #k, originally derived from
relativity theory where E was intended to be the total mass/energy of an object. So, for
4-vectors (E,p) and (w, k) we write p" = k". Quantum energy is equivalent to the
fundamental vibration of a mass in natural units — and we factor in a value for # that
translates this to our “people sized” units like SI (~MKSA). In quantum mechanics with
wave-functions, psi, we talk about an operator E on ¢ = ih d w/ 0t and an operator p of
Y =-iAVy that reveals the wave densities in time and in space; the operators are the
space-time decoders of information in a wave.

In non-relativistic QM, energy E = KE + PE uses just kinetic energy, KE = p%/2m,
and totally ignores an underlying mass-energy. Foundationally, rest mass and its
frequency, m, and w,, are invariants of Lorentz transformations. Kinetic energy of
motion = (y-1)mec®=E —E, forv <c (so E= Eo+KE, and w =w.+w ke). Itis
interesting that quantum energy vibrations for rest mass versus KE can be decomposed
and added together this way.

Establishing the classical theory of energy conservation was a long and difficult
process. Even the idea of kinetic energy was absent in Newton’s 1687 Principia. But
then we've added and interconverted electrical and electromagnetic energy,
electromagnetic potential energy, gravitational potential, chemical, nuclear, thermal,
sound energy, and wave energy. It wasn’t until 1850 that William Rankine first used the
general phrase “the law of the conservation of energy.”

In the quantum world (QM), the Schrodinger Hamiltonian H = KE +PE ensures
that a wave function solution of Hamiltonian operator Hy = Ey will be consistent with
this energy conservation. In quantum field theory, conservation of energy and
momentum is dictated and imposed by stated delta functions such as 8*(py + p2’ — p1 —

p2).
Particular Case Examples:

Single massless photons obey p"=#k" but are able to pass through, refract in,
and reflect from complex glass arrays on optical benches in a way very much like a large
electromagnetic wave interacting with all the electrons in the glass. We are thus tempted
to say that single photon waves at least in part are electromagnetic. Beam splitters can
split single-photon waves into parts that can interfere with each other later on. The final
detection is again one single photon (and we can now detect and also emit single



photons). Coherent superpositions of a large number of photons become more light-like
with lower quantum fluctuations.

It is sometimes convenient and even effective to model a single photon as an
electromagnetic wave such as the “Riemann-Silberstein” vector y(x,t) < E+iB , but there
is no rigorous quantum mechanical justification to do so. Quantum and Classical are
intrinsically different arenas, and there is no such thing as a position operator for a
photon. Generically, it is then wrong to say that A is only electromagnetic. It is at least
also something else, a “matter wave” or “energy wave” unique to the quantum world. It
is never exactly like anything with which we are familiar in our classical world, and it
obeys different quantum rules such as “wave-particle duality”. It can be said that “all
quantum states comprise two physical components: one is the source of the energy
(radiation, lattice vibrations, particles) and the other is the energy state” [Street]. We can
call it a “p-wave” but it is not y(x,t) with any definite position.

Electrons diffract from metal crystals as if they also might have electromagnetic
waves somehow mapped from classical to quantum. They have an electric field from
their charge, but diffraction comes from their quantum waves. Unlike the classical case,
a fundamental quantum-vibration of an electron cannot radiate energy but does
propagate ephemeral quantum waves .

We also have neutral neutrons diffracting through silicon crystal interferometers —
certainly not from electric interactions (but their spin magnetic moments can interact with
silicon nuclear spins ).

An ultra-cold Bose-Einstein condensate (BEC) forms when the thermal de
Broglie wavelength A is near the interatomic separation so that neutral atom
wavepackets collectively overlap their non-electromagnetic matter waves { -- the half-
integral spin of alkaline nuclei and the half-integral spin of electron-shell can form an
integral spin boson atom}.

Elelmentary particle muons and quarks (p,u,d,s,c,b) also obey de-Broglie
equations and can form temporary joint “integral-wavelength” composite-particle
hydrogen-like orbitals with their antiparticles (ignoring spin, and m, and the 1S states).
Examples are: e*e” positronium with E,oc 1/n?, pu* dimuonium, the s strange quark
combined with s-bar to make a ¢-meson, ¢ with c-bar charmonium or J/y like mesons,
and b with b-bar “bottomonium” or “upsilon” mesons. The case for weak particles like
neutrinos and W’s and Z’s is less clear, but they obey quantum field theory (QFT) which
includes QM (mostly).

And finally, we have very eye-opening experimental examples of huge macro-
molecules such as C® “buckyballs” (1999) still obeying A = h/Mv where M is nearly the
sum of all their atomic masses. The macromolecules showing laboratory interference
today are much more massive than sixty carbons (e.g., 25,000 amu ! , [Arndt, 2019] ).
Despite tiny wavelengths much smaller than the molecules, the matter wave can pass
through two slits much more widely spaced than molecular size. This is a challenge to
realists.

Now, for electrons, we might imagine that an elaborated y wave contains enough
information about electron-particles that an electron-wave passing through two slits
might re-construct a physical electron at detection where “intensity of presence” y*y
rules. It would be ridiculous to talk about end-point reconstruction for ultra-complex
macro-molecules. A simple de Broglie wave passes through both slits, but the big



particle must only pass through one of them. There is no re-assembly, the continuously
moving particle hits the detector still as a particle “guided by the wave.”

Matter waves can scatter off of other matter; and other interactions such as
charge-charge are covered by the Hamiltonian energy conservation requirements. It
could be that quantum waves carry more attributes than just energy and momentum
(such as multiplication by a spin wavefunction), but E and p are the two covered by de
Broglie rules. We now know that quantum waves for electrons and photons also can
possess orbital angular momentum, £, as well as spin angular momentum, s.

The de Broglie wavelength represents a center of mass degree of freedom
ignoring all internal structure. For a classical composite system, total mass is obviously
the sum of the individual masses: M = £ m,.. But in de Broglie quantum mechanics we
are considering the idea that composite particle frequencies result in a summing of their
frequencies: Wy = Z W . Here the idea of additive energy and additive mass with
additive frequencies is somewhat strange, and “it appears that this remains an unsolved
problem” [Shuler]. One author speculates that nonlinear interference effects may be
needed.

For perspective, consider the case of positronium (which is similar to the
hydrogen atom problem). A wavefunction for the combined electron (e) and positron (p)
is the composite state: W(re,rp) = We(re)Wp(rp) 2 Wrel(re-rp)Pem(Rem) for relative motion and
center of mass motion. A product wavefunction is separable and allows separation of
variables. Now, for simple de Broglie waves of the form ¢ =exp|[(i/#)(px-Et)], a product
wavefunction ® =@, > exp[(i/7)({p1+p2}x — {E4++E}t ]. If energy is the total
mass/energy, then E4++E; = w1 + wy = My+M;, the sum of component masses. But,
admittedly, this is just a loose hand-waving argument that doesn’t really come close to
solving the problem.

So, it seems that the most fundamental reality is that all particles even including
macromolecules with summed mass-energy (E = ymc? < 20 TeV curent upper bound) POSSESS

some sort of fundamental vibrations, E = hv =hw (or E, = hv, =hw, for particles “at

rest”). A logical upper limit is to this must be < Mpjne = 1.22x10" GeV/c? = 21.7 ug (and
20 TeV is 2x10™ eV).

Discussions:

Names, Properties and Use of Matter Waves:

The philosopher Ludwig Wittgenstein said, “The limits of my language are the
limits of my world.” Historically, and pragmatically, it was compulsory to only use
classical words and a classical measuring apparatus in discussions on quantum
mechanics. But the quantum world strongly differs from the classical world and demands
its own terms. One cannot even begin to discuss any possible sub-quantum “reality”
without using new words and making some attempt to define them adequately. Most
importantly, the horribly ambiguous term “real” has to be broadened from classical
physics to a separate “sub-quantum-real” at the level of psi , @ rather than |y|* . Most
discussions of and articles on sub-quantum mechanics involve people talking past each
other because they are unable to convey what they mean when they use inappropriate

o

words. { My writing has always used the prefixes “pre-”, “qu-" or “psi-” for: “pre-real”, “qu-real,”




“psi-real,” “qu-wave,” “qu-spin”, or “psi-energy’}. The physics philosopher Ruth Kastner uses
terms like “quantumland” -- a large domain of “pre-spacetime” (pre-spatial-temporal or
“PST”), sub-empirical possibilities for quantum states and their interactions. She refers to
the “possibilist” world of y — a term essentially validated by Fermi’s Golden rule where g
knows about its end results being affected by a “density of final states” that is also used
in the Purcell effect (validated about 1990 using a semiconductor micro-cavity). An atom
in an excited state “cases-out” its entire environment before any actual emission takes
place. It explores all possibilities for every final single event. In addition, in the relativistic
realm, particles such as photons or electrons can come into existence — emerging from
possibilities.

The orthodox meaning of y in Copenhagen quantum mechanics is “waves of
probability amplitude;” an interpretation that is familiar but also numbingly opaque. The
name is certainly appropriate “for all practical purposes” [Bell’s acronym is “FAPP”]. But
that need not be the whole story. Matter waves could be “quantum-real” prior to
measurement but eventually couple to a separate last stage action “Principle of random
selection” or “stochastic choice” of y*y “intensity presence” -- a two-step process
resulting in every particular “collapse” event. John Cramer’s two step process is initial
“offer waves” encountering possible receiver candidates which then broadcast quantum
waves backwards in time to a source resulting in a “transaction.” This has the virtue of
explaining the mysterious Born Rule, y*y. Alternatively, Bohm might have been right
with his “non-local hidden variables” that avoid the concept of collapse altogether. The
standard view of psi is very unsatisfying — but few try to go deeper. No one is
comfortable with “collapse.”

Rather than just being postulated, the de Broglie matter-momentum wavelength A
=h/p derived from a Lorentz transformation of this rest-mass frequency due to relative
motion, v, for the wave 4-vector k" = (w, k) [Peterson] . This matter-momentum
wavelength A =h/p might then be considered to have a lower (non-invariant) reality
because it depends on the relative velocity, V, between source and observer. In 1924,
Louis de Broglie said that matter wavelength A represents a loss of clock
synchronization seen by moving observers —a purely relativistic effect even at low
speeds. That is, the Lorentz transformation of time has the term yVx/c? that tells how two
clocks in different frames of reference differ in synchronization over distance. In other
words, p=h/A can be viewed as an artifact of Lorentz transformations between frames of
reference and can be considered “real” only in a relevant frame of reference. The greater
or invariant reality is the particle rest mass and rest frequency.

Quantum mechanics is presently a theory of measurement that has typically
avoided discussion of any causal reality. The Schrodinger psi y(x,t) is just a solution of
Hy = (KE+V)y. What sort of things can go into a wavefunction: There are of course
terms with scalar energy and momentum perhaps in terms of w’s and k’s, amplitude fall-
offs with distances and angles, angular momenta (maybe referring to quantum numbers
like s, £, j,n, m...things that might be conserved). Pauli matrices may be included for
fermion spin, and there may be a vector term for photon polarizations. Mostly, these
things do not refer explicitly to electromagnetism. Interactions of particles and fields are
expressed via terms in the Hamiltonian rather than the wavefunction.

There is a broader version of the Schrodinger equation called the Pauli equation,
and it can also include the electro-magnetic vector potential, A, spin in magnetic fields,



0B, and electric potentials, ¢. But again, those are in the 1927 Hamiltonian rather than
psi.
It is expressed as [Gurtler] :

Hlw) ={(p-gA)’/2m + q¢ — qhp.o - B/2m}|w) = ih d |w)/ d t = E|y) ,

where “sigma” means Pauli vector matrices, p is the operator (-iV/h ), and v<c spinors

could be introduced as y 2> (y+, y.) if desired. For neutrons, the dipole moment p,un
might only interact with a magnetic field, B (or “magnetic Bragg scattering” from a crystal
lattice).

There have been and still are many confusion factors that muddy the waters of
understanding quantum mechanics below the level of measurement. We don’t yet have
the right view — perhaps because a right view is unbelievably wild or too unbelievably
obvious. And quantum field theory [QFT] doesn’t add much clarity to quantum
mechanics [QM] because these subjects differ in math and interpretations. In standard
(non-relativistic) QM, observables are called “operators;” and Coulomb fields and
measuring devices are classical. In quantum field theory (QFT), fields are basic and y’s
are operators for creation or annihilation of field quanta in various normal modes -- and
the fields are chaotic. A quantum field is an entity existing at every point in space which
regulates the creation and annihilation of particles. QFT identifies a wave with the
superposition of an indefinite number of particles, and particle numbers are elementary
excitations of their underlying quantum matter field.

And considering the photon again, the relations E=Aw and p = h/A were found
first for light quanta and then later for matter. Conventional electromagnetic waves do
have energy due to electric field E*E’s and magnetic field Bs. And they can carry
relativistic momentum and angular momentum. But there is no consistent way to add up
the little bits of energy in each wave crest to obtain a full quanta of mass and momentum
— a photon just isn’t classical.

And for weak interactions, it isn’t clear that the arena labeled as “electroweak” is
a separate realm by itself. Kaku (QFT p. 380) says that the theory of leptons given by the
Weinberg-Salam model is actually flawed by the presence of anomalies, and the true
model requires quarks to cancel the anomalies. Anomalies can destroy renormalization.
The photon apparently is a mix of W and B massless fields after Higgs-breaking. In that
sense, the photon is electroweak. However, the “weak field” is usually thought of as just
the massive vector bosons W by themselves.

Each type of quantum field permeates all of space-time for an overlapping set
that Frank Wilczek calls “the Grid.” The names of the various quantum fields separately
include: (e, y, T) charged lepton fields, 3 types of neutral neutrino fields, 6 quark fields
(u,d,s,c,b,t), EM photon field, electro-weak massive boson fields (Z°, W* -- after
electroweak symmetry breaking! {EWSB} ), the Higgs field and 8 gluon boson fields.

But counting them is hard because many of them exist in multiplets: the Higgs doublet,
left-handed lepton doublets, right-handed electron singlets, both left and right handed
quarks of various flavors and quark doublets, and gluon/color triplets. The Higgs field
does not interact with gluons so that they have no mass.



What the “matter wave” might be depends strongly on a chosen interpretation of
quantum mechanics. Having waves in configuration space, entanglement, superposition,
complex numbers, and collapse weigh heavily against any conventional reality to the
wave function and encourage epistemological interpretations (knowledge of ensemble
behavior to an observer).

Elementary Particle Mass and Vibrations due to interactions with the
vacuum expectation value (vev) of the all-pervading Higgs field:

Small elementary fermion particles are quanta of their separate quantum fields,
and their masses theoretically come from exchanges of hypercharge in the universally
permeating Higgs field [see Discussion below]. But, overall, the interactions with the
Higgs field only account for less than two-percent of the mass in the universe — much of
the rest is mass-energy M=E/c%. The frequency of this interchanging (called “zig-zags”)
is the fundamental frequency [see references at end]. Penrose addresses this as the
Dirac equation coupling “two 2-spinors, each acting as a kind of source for the other” (~
“zitterbewegung”).

But, for all particle cases and masses, de Broglie waves are common to all
regardless of origin; hence these waves are generic, and k" is often called just a “matter
wave.” Its expanded interpretation is still a common topic of unresolved debate. Perhaps
the hypercharge exchange with weak-isospin (A Y,, vs. A T3) transcends the fermion
field names of the exchanges. But large composite “confined energy” particles need a
way to sum all these (Y,,T3) frequencies up to the larger total matter wave frequency
and with boson forces also contributing. A present conundrum is how to transition from
Higgs field “zig-zags” to elementary particle quantum field mass/frequencies upwards to
hadrons (localized confined energy) and then to large molecules. And then we need to
be able to transition the concept of mass up to the cases of classical usage like bricks
and planets and galaxies.

When we study electron mass from Higgs interactions, we learn that the electron
is composite in “zig-zag’s” and that the rate of zig-zag goes with the mass of the particle
(how well it couples to the Higgs field). The zig-zag rate for the electron is similar to f =
mc?/h which is much smaller than that for the heavier t-quark (at 173 GeV). It might be
that the “vibration” of the electron at rest is really “zig-zags” (e.g., [Tanedo],[Penrose], [
Strassler] ). And Zitterbewegung may be appropriate and real and relate to the mass of
fermions.

Penrose adds that zigs correspond to the top “2-spinor” of the Dirac 4-spinor with
helicity %% (1-y°) for a left-handed wavefunction, g, and the zags have helicity %% (1+y°)
for a right handed wavefunction, wg. Only the zigs interact with weak particles W*, W", Z°
and not the zags. Only the zigs go with the decay of the neutron fermion. For the
positron, the reverse is true—only the zags. The neutrino also is a left-handed particle
with only a zig. Now we know that the neutrino has a wavelength A =hc/E for energy with
only a zig, so its oscillation is not due to zig-zags (some physics beyond that).

In terms of the third component of weak isospin and weak hypercharge, this is
what takes place when an electron bumps into “the Higgs”:

e (Ts= ", Y=-1) interacts with the Higgs field condensate which has quantum
numbers Ts= -'/, and Y=1, so the e, er “oscillation” is as if e, gives a “charge” Ts=-"/,
and Y=1 to the condensate to become eg (T3 =0, Y=-2) and the other way around.



Using one set of possible names for these components might be [Tanedo]: The
electron and the “anti-positron” (also called eg ) are constantly switching identities back
and forth (both have charge -1 but the e is L-handed while the anti-positron is chiral R
and cannot interact with a W. The physical electron is a mixture of these two alternating
components. The positron and anti-electron particles switch back and forth (both have
charge +1 but the anti-electron is R this time and can interact with W while the “positron”
is L and cannot.

Electron: e, left-chiral, charge -1, can interact with the W, Y=-1, T3 =- 2.
Anti-electron: pg, right-chiral, charge +1, can interact with the W

Positron: p_, left-chiral, charge +1, cannot interact with the W
Anti-positron: eg, right-chiral, charge -1, cannot interact with the W, Y = -2.

In “Zig-Zag” oscillation, the electron e, gives one unit of hypercharge Y to the
Higgs Vacuum expectation value, vev (246 GeV), and becomes eg (with Y = -1 > -2).
Then eg retrieves one unit of Y from the vev > e (Y =-2 - Y= -1 again). The electron
charge Q = -1e stays constant because weak isospin, T3, compensates for each change
in hypercharge.

“Within the electroweak theory, there isn’t an electroweak force, there are always
multiple forces at every stage.” The Higgs field “rearranges the weak-isospin and
hypercharge forces, making the photon out of a mixture of the W* and B, the Z° out of a
different mixture of the W?* and B” gauge fields [Strassler ]. When we say U(1)y x SU(2).,
we are thinking of the B as hypercharge (Y) and the W’s as weak isospin (T).

Quantum Mechanics emerged in an early sub-picosecond ultra-dense period of
the Universe when everything was up close and personal (essentially no distance
separations). All interactions were at the speed of light—all connections were light-like —
but that doesn’t mean light as we think we know it. The photon epoch began at 10
seconds after antimatter annihilation. But the emergence of the first photons was at
EWSB at 1072 seconds (ps). Prior to that time, there were no photons nor any massive
particles. Mass is a sub-light slow down due to zig-zagging. So, did quantum mechanics
exist then? That regime hasn’t yet been tested.

Conclusions:

E = hw says that the mass/energy of an electron or any other massive particle is

intrinsically specified as a “vibration.” { With spherical symmetry, perhaps this can be
envisioned as a broad “s-wave” sharing the space of the “particle”}. It could involve a
vibration of each individual type of quantum field but is more broadly a superimposed
generic law of Nature covering all cases including photons. Lattice phonons can also be
considered to obey de Broglie relations except that phonons are “quasi-particles,”
momentum is specially defined “crystal momentum,” energy uses periodic boundary
conditions, and relativity doesn’t apply. Energy transfer is quantized and energy levels
are harmonic oscillator levels.

Quantum vibration in general is quantum and not classical, and one difference for
the quantum world might be an intrinsic use of complex numbers similar to use of
quaternions for spins and hypercomplex Clifford algebras for QED, for EW “forces” and
gluon QCD. The mathematician Michael “Atiyah felt that the four division algebras — real



and complex numbers, quaternions and octonians — provided essentially the only
mathematical natural way to account for the number of fundamental forces (four) or the
number of generations (three) in the standard model” [arXiv:1910.10630)] .

Topics in modern physics may add new perspectives such as Higgs field zig-
zags. de-Broglie waves might also be primarily information waves such that mass-
energy is coded and decoded as identical to the concentration of vibrations in time, and
momentum is the linear density of wavelengths in space.

Energy is King, and the rules of its quantization and conservation are imposed
from on high; and energy transfer is in bundles of naw. “All quantum states comprise two
physical components: one is the source of the energy (radiation, lattice vibrations,
particles) and the other is the energy state” [Street]. The substance that vibrates is not
anything familiar. We can use the term “energy wave,” but it is not yet energy.

The resulting picture | most like corresponds to the “de Broglie double solution”
where a particle is a wave-formed “soliton” with a frequency matching (and probably
causing) the wave of the y-field. This picture came before any quantum-mechanics but
was so challenging that it was quickly simplified into what is now called “de Broglie-
Bohm” theory (“dBB”). The soliton became just a particle position (a “hidden” variable)
“guided by a Schrodinger wave, y(x,t).” de Broglie wasn'’t able to complete this ideal
because it necessitates use of non-linear equation; and the idea of a soliton did not yet
exist. But its development is still encouraged [Collin].

Now whether people like it or not, dBB is functionally equivalent to orthodox
quantum mechanics but has a very different interpretation — it works and gives the same
answers. Itis not forbidden because it is a “non-local” hidden-variables theory — and we
now know that ordinary QM is also “non-local” (correlations violate Bell inequalities). |
would like to see some transactional “back-and-forth-in-time” physics added on to
explain non-locality. People often don'’t like that a particle is a point with a well defined
position — but the vibrating soliton smoothes that out. It is consistent with the latest
mantra, “there are no particles, everything is fields.”

Appendix:

Ontology is “the branch of metaphysics dealing with the nature of being: what
entities exist and what are their relationships within a hierarchy. It is concerned with
things, events, properties and facts about the reality of what is there. The philosophical
views of physicists have evolved with developments in physics. Relativity makes topics
like the coexistence of objects frame-relative and favors events over things. “Quantum
mechanics could jeopardize both an ontology of events and an ontology of things.”
Physics used to be about ontology but then became positivistic based on observation.
But we can ask, Observation, information, measurement and data — About What? “What
could be the primitive ontology which could give rise to the appearances which our
senses collect [Durr].” Einstein said, “It is the theory that decides what one can
observe.” And, “The supreme task of physics is to arrive at those universal elementary
laws from which the Weltbild can be built up by pure deduction. There is no logical path
to these laws; only intuition.”

The major argument about interpretations of quantum mechanics has been
whether the wave function is ontological or epistemological (also a question posed to
SETI for aliens to answer -- perhaps in jest ). Epistemology is the philosophical field
concerned with the questions, “What do we know?” and “How do we know it?” The wave
function would only represent our knowledge of what happens as observers. The word
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“real” is poor because it is presumed to mean “classically real.” A sub-quantum reality
would be something else (a different ontology).
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Concrete Hidden Variables _ Rev. 3
Dave Peterson, 11/27/16- 12/6/16, for Cosmo:

Overview: We have been told that Bell inequalities and Bell tests for EPR experiments imply that no local
(or classical) hidden variable (HV) explanations can suffice for the “unexpected” correlations between two
EPR detectors in actual quantum mechanical (QM) experiments. Desiring an intuitive model that could
work, we might suppose it to be due to pre-determined polarizations emitted from a source (pre-established
coordination). And, without familiarity with concrete examples of what a hidden variable A can be, we might
weakly retain this idea in the back of our minds. Indeed one HV example included here is fairly close to the
correlation for actual quantum mechanics (HV-A, see Fig. A and Fig. C). Surprisingly, a recent survey on
the beliefs of physicists [10] showed that a third still say that physical properties exist prior to and
independent of measurement, and only a third say that HV’s are impossible. But a third also have general
ignorance of Bell tests.

John Bell presented his revolutionary “Bell Inequality” for the Einstein-Rosen-Podolsky
(EPR) entanglement paradox in 1964. Using essentially classical arguments, he showed that
“any physical theory that assumes local realism cannot also predict all of the results of quantum
mechanics [1].” He did this by introducing hidden variables represented abstractly by the
symbol “lambda” and derived special inequalities that would be violated by actual experiments
for entangled EPR particles. This involves performing one experiment with a pair of set angles
(a,b) and then another with a different set angle, ¢, and then comparing them. The first Bell test
looked something like this: Correlation C(a,c) — C(b,a) — C(b,c) <1
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Fig. 4. Predicted polarization comelations for a guantum mechanical en-
tangled state (solid curve) and a hidden-variable theory (dashed line).

Figure A: A standard hidden variable comparison for probability P(V V) versus the difference

in angle of detectors (dashed line). Quantum Mechanics [QM] cosine curve (solid line) violates
this at angles near 20 or 70 degrees (Figure taken from reference [2] ).

Examples shown below include: 1) A derivation of the standard quantum mechanical
correlation p(V,V,) = -é cos? (b — a) . 2) The local hidden variable “Triangle Plot” HV-A Fig.A, (3)




The interesting QM result using A’s with Malus’ law projections in HV-B. (4) A more intuitive
LHV in HV-C (but still not as good as HV A), (5) And further discussions.

An example of one of Bell's arguments is available in a recent paper for our Boulder
Cosmology group [1]. There are now many different types of test inequalities (e.g., “CSCH”), but
they are all still called Bell inequalities. Well-tested experimental violations of Bell inequalities
show that all local hidden variable approaches are doomed as a class. This was a major
advantage of having a general abstract derivation. But, to really understand it intuitively, we
need to show some concrete plausible examples of what a hidden variable might be.This paper
largely avoids Bell inequalities and instead focuses on continuous graphs (like Figure A) for QM
versus local hidden variable mathematics over all possible difference angles.

The initial proposed theoretical setup considered two oppositely directed spin
polarizations from a central singlet state having total angular momentum zero. Particles are
directed to two different spacelike separated detectors labeled A and B for spin measurement
orientations labeled a and b. For spin, this might be Stern-Gerlach magnets with different
north-to-south rotation angles (a and b). It is hard to actually do these spin angular momentum
experiments; and it was found that use of photon polarizations was much more practical.

v V
Va Vb

. /)
H

A B
Polarizer Tilt Angles for photon detection.
' Figure B.

Almost all experimental tests to date have been done using photons with a polarization
basis that can be labeled as horizontal and vertical, H and V [see Fig. B], and considering just
two entangled photons and two polarization detectors for the early experiments. For our
convenience here (which is allowed) suppose one detector (say A to the left ) has untilted xy
polarizer axes (angle a = 0 = vertical V). Bell's key new idea was to consider rotating the other
detector by an angle that is not the traditional b= 0, 45, 90, 135 or 180 degrees but rather some
angle in-between (e.g., see graph differences in Fig. A). Initial experiments used sequential two
photon decays from atoms in an atomic beam (e.g., excited Ca-40 decaying to green and violet



entangled photons [6]). But now it much more convenient to get entangled photons from laser
beams passing through non-linear crystals (e.g., nonlinear crystal Type-1 down-conversion
sources so that the two output photons both begin with the same polarization HH or VV or their
superposition. To process this for detectors A and B using a hidden variable, A, we need to
specify: Its name, its probability distribution o(A) [which does not have to be uniform] , explicit
functions for individual measurements

A(\,a) and B\, b) [e.g., A= A(a—\)] or how they are going to be used (what are the rules).

We require: <A > = [ o(MdhA(h,a) and <B> = [ o(Mdh B(h,b). And then

for measured outputs using intuitive hidden variable, A, and_joint settings a and b: we need to
integrate [1].

P(a,b) = [ o(MA(a,MB(b,Mdh, where 0 <o(\) <1 and [oMd\h= 1. EQN 1

This is the standard LHV form. Notice here that the separate LHV detectors A and B
only depend on their local settings a, b, and A .For averages, we sweep through an ensemble
of hidden variable values according to a probability density o(A). The hidden variable here is: a
pre-determined input photon polarization angle = A [very light lines in Fig. B] and use of sine or
cosine electric vector projections onto polarizer axes.

What makes the actual quantum mechanical case different from intuition is that
polarization is not defined prior to measurement (passing through the polarizer to a detector).
But as soon as one photon is detected the other instantaneously (non-locally) “is projected into
a state of polarization parallel to” the first result (V or H , e.g., see Aspect [5]) . Whether this is
a photon on A or on B is totally random (collapse is random). | call this reduction “SNAP-TO”
(as in a soldier snapping to attention or a computer visual “snap to grid”). This is different from
the intuitive but naive idea that perhaps the photons were initially tilted at the same angle from
the source and kept that alignment up to the time of detection (called “real”). For that case, the
initial hidden variable angle could be anywhere from 0-180 degrees (i.e.,0- mradians), a uniform

distribution [o(A) = cnst. = 1/n radians, so that [o(Mdh=n(1/n) =1, A€ [~ 1/2+7/2]--an

ensemble of all possible predetermined polarization angles. This provides a concrete example
where the hidden variable lambda is merely any predetermined tilt angle for both of the photons
per event.

QM Actual Quantum Mechanics Calculation Let's begin by first looking at the
actual physical QM calculation for the coincidence of detector hits for vertical polarizer settings
[2]. Begin with a left polarizer A having angle a =V = “|” and right polarizer B having angle b and
V_b “/” and look at probability coincidence P(VV) meaning V’s being vertical in the tilt angle
bases of their respective polarizers [Fig. B]. Let the initial polarization state of two entangled



photons be given in a neutral untilted basis: Egn. 2

Wepr > = A/N2 [|[V>|V> + |[H>|H>],s0 |Vu> = cosa|lV > —sinalH > and
|Hy> = sina|lV> + cosalH>. Let|\pp-> = cosO|H, >|H,> + sinb |V, >|V, >,
“‘DC” means down conversion, entangled photons are 1 and 2 on the untilted vertical (y axis)
and horizontal (x axis). And we make the initial laser beam entering the nonlinear crystals for
down conversion to have polarization at 0 = 45° so that cos® = sin® = 1/+/2 . Then
[y>5c = |W>gpr  There are four basic types of ‘Bell states”, but we will only use this one.
Then project the down converted state onto tilted-vertical polarizations as in Fig. B. Then

PVV) =P(V.V,) = | <V <V [Wpe > = ( 1/v/2) |sinasinb +cosacosb|)
but cos(a—b) = cosacosb+ sinasinb, soP(VV) =cos*(a — b)/2 ANS.

Or, if we set angle a at 0 and replace angle b by the difference angle o= » —a,

PVV) =P(V,Va) = | <Vo|<Vy| Wpe>= (1/V2) [sin0sina +cos0 cos a| )*
= cos>a. /2. (Again). We can rewrite this also as:

P(VV) = (1/2) cos®* (b —a) = (/D[] +cos2(b—a)]. EQN 3

The resulting parameter used for actual quantum mechanics tests is solely the difference
in tilt angles of the two detectors [say angle alpha = o = (b — @) ]. QM calculations result in a
Bell correlation depending on cos(2a ) [note: for fermion electrons it would be just -cos(a.)].
Suppose again, by rotational symmetry and convenience, that the left device A-angle is vertical,
a =0= “|”; and there is a particular lambda angle A ~ “\’, and right detector tilt angle may be
a="“/". For the quantum case, a hit on the vertical detector “|” snaps the other photon also to |
so that the only relevant polarizer angle to project onto is alpha for the second detector, B.

 —

HV-C A ‘ B‘

HV-A — 8| |
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Figure C: Correlation Integrand shapes for overlap of A and B for Convolution.



Example HV-A: 2 joint snap-to’s without Malus’ law, The Triangle Plot (Fig. A)

Now, what about those plots we’ve seen before of “naive” triangle (capital Lambda
shape or “tent map”) approximating the quantum cosine curve. Straight slanted lines go from
the top of the cosine curve to its bottom valley — a not too bad approximation. Well, this case is
for an implementation of hidden variable density using step-functions. This first concrete
example is also the most popular example. Instead of vector electric projections to the
polarization axes, we snap-to when within a certain domain of angles. This rule is that If angle
HV A = “\" lies within 45° of a. = “/” and 0 = “|", then they both registers as V =“|" [e.g., ref. 2].
Here we are not using sine or cosine projections. In electrical engineering (EE), this o(A)
distribution is called a “rectangular” or Pi= ITshape. The probability
density Q(\) = hII(2\/m) = height h = 27 for || < w/4 = 457, (else 0).

+1t/4 +1t/4
Then, [ oMWd\ = [ AIIQMmdh = 1.
—m/4 —m/4

The domain width of lambda is w = [t/4 — (— w/4)] = /2. The special EE shape functions

II(x) and A(x) are both understood to have unit height, and the form AIT( (A — a)/b) is centered at
a, has total width b and height h. We require . to be close to both the left and right detector
polarization (A, B); and we care about the_overlap correlation (angular overlap width =W
radians) Figure C.

This is exactly the problem shown by animation in Wikipedia [3] for convolution that
outputs a triangle shape (please look, it is kinda neat! See Fig. C). Convolution calculations can
be hard and often require numerical methods, but ordinary calculus can also be used [e.g., 7].
This case with uniform distributions is much easier: there are no curves or slopes in these
functions, so we can just apply simple geometrical thinking. Since we’ve conveniently chosen
detector A to always have a vertical orientation (a = zero tilt from vertical), we can position the
lambda density also at rotation zero leaving us with detector B with rotation alpha (the difference
from b minus a angles). Overlap enables both a and b to be in range of A = + m/4.

P(VV) = [o) AV ,h=0)B(a, Mdh = [ o —0) II2[\ - 0]/7) TIQ2[\ — a]/m) d\

This has the correct LHV form of Egn. 1. And we also normalize the Maximum probability (when
full rectangles overlap) to be N= 0.5 when the difference angle

a=0.SoP =h(Nh)(W =w) = (2/m)(0.5)(t/2) =0.5 (half because we are ignoring another
output that could have been P(HH)). There may be two domains to consider for overlap width W
= right overlap minus left of overlap domain: [Slope Functions, Eqns A1 ]

a>0 =W =a/2 —a,andoa< 0 = W(a) = nt/2 + a, so
P(VV)=MhDW = 1/2 — o/m.

And these are just the equation for the triangle (Fig. A) with left slope up and right slope down
ending at + xt/2 [Figure A]. For the fermion-electron case, the slopes would end at & -- twice



as wide. Bell's theorem says that it is impossible to find any local hidden variable example that
can give actual quantum mechanics results. So Example HV A modestly fails to agree with QM.
But, this seemingly kludgy “double snap” ends up being much better than some other attempts
with local hidden variables (such as HV C below).

Example HV-B. Simple Malus’ Law projections of pre-existing photon polarization (angle
A onto two analyzer orientations and b or 0 and o = (b — @) . This sounds like a hidden variable
calculation and lambda might really project initially onto the polarizers. But then lambda gets
discarded. Overall, this is a little strange.

A detection on the “|” detector here leaves the other photon where it was at A = “\” (no
shap-to) so that the electric vector now has to project to the difference in angles of o — A ="/- V"
. [We are assuming Malus’ Law for real electric fields of a photon projecting onto the polarizer
angle for detector A and separately for detector B]. Classical calculations may then require an
integration over the ensemble of all local “hidden variable” A angles.

Compare, QM versus use of HV= lambda and trig projections onto two polarizer angles:
+m/4

P(VV) =P(V,Vo) = [ | <Vo|<Vd| (Vy> |V, >+|H;, > |Hy > /2 - o(Wdh =
—m/4

= ((1/2) fI< V|V >< VoV, > + <V |Hy ><Vo|H, >1 oW)dh =
=(1/2) f( cos(0 — &) cos (o — L) + sin(0 — L) sin(a. — 1) )2 o(Mdh < Egn.Bl.

=(2) [ [sin® A sin®> (0. — \) + cos®> h cos*(0. — \) — 2sin h sin (a. — ) cos A cos (0. — V)] o(M)dh

+7/2
o(\) = (height h= 1/m) for |\| <m/2 = 90° (else 0). Then, [ o(Md\ = 1.
~n/2

At first, this approach might be another Convolution Integral. Goal, for each alpha, evaluate the
integral for lambda and then sweep through possible alphas for a final plot of P(VV) versus the
polarizer difference settings alpha.

A peak result occurs for alpha = 0:

P(VV)@a= 0) = (0.5)f(coszk+sin2 7\)2 oMd\ = O.Sfl oMdh = 05(1) = 05.
And for o = 45°, integrand A1 = cos M(1/v/2 )(cos )+ sinh) — sin\((1/+/2 )(cosh — sin \) =
= (1/v/2 )(cos®\ + coshsin\) — (1/+/2 )(sinhcosh — sin® \) = (1/+/2)(1), P(VV) =1/4

BUT, look more carefully at that integrand in Eqgn. B1. Eqn. B2 :
cosacoshb + sinasinb = cos(a—b)= cos(0— Acos(ao. —N) =cos(0—h— (o —A) =cos(a) !!

And then: P(VV) = P(V,V,) = cos*o. /2. This result is just QM ANS.



The lambda contribution subtracts away! [l only noticed this after doing a spreadsheet
calculation]. There is no need for convolution over all lambdas. The lambda angle can be
anything or everything.

This HV lambda pre-existing orientation works like QM

And, note that Eqn. B1 is not in the LHV form of Eqn 1. Contributions from A and B are mixed
together (arguments with (o — A) and (0 — L)) . But Local hidden variables require separating A
and B in the HV equation.

Most HV equations begin with finding averages of results for tests A and B separately.

For example, <B(v) > = [ o(Mdh B(h,v,a) where v is a preparation direction (like H or V). If

we let Bh,a) = |< V||V, >, then B = cos?(a. — \)/2 = cnst. (very constructive) Egn A3.
One might think that a proper approach should really include horizontals:

Bha) = | <V (V, > +|H, > = |cos(a— L) + sin(o— V)|
= |2 sin(o. — A +m/4)|*. And it is not clear that this should be dismissed

HV-C: A more intuitive proper LOCAL hidden variable calculation using cosine-squared.

Somewhat like Egn 3 above, begin with an optical Bell calculation for the individual detectors:
Let

+71/2
A(a, M) =Ncos*(a—1), = <A> = [ Ncos*(a—M\) d\n =N/7)[(a—N/2 + sin2 (a —W)/4]
-11/2

evaluated at limitstoget <A> = N/2 = 05N. used 9(\) = 1/m and the sine contribution
drops out). [ A “normalizer” N was added just in case we wish to modify all results at the
end.(for example getting a better fit to the QM result using N = /2 —— a fudge)]. But we really
should be using just N = 1.

So now we can evaluate the correlation of a and b using the standard LHV form Eqgn. 1.

+7/2 +7/2
P(V,V,) =<AB>= [ (d\/m) cos*(a— M) cos’(b—M) N> = [ (d\/m)[(cos(a — Wcos(b — N)]* N*
—m/2 -n/2

At first this form looks like another convolution is needed (Figure C). But it can also be done just
using calculus.

Expand (cos x cos y)* = (0.5 cos(x+y) + 0.5 cos (x — y))*, and use [ cos*zdz = z/2 + sin2z [4.

Theresultis P(V,V,) =<AB> = 1/8 + cos* (a —b)/4. # OM : cos*(a— b)[2!
We might kludge this up by using N>= 2 — <AB> = (1/4 + cos®(a — b)/2)

But it is still poor because of the 1/8th or 4 offset value. We actually did much better using
what seemed to be silly rectangles in HV-A.




[As a check, for

a= 0(max), 1/8 + cos?(0)/4 = 3/8, also = [ cos*\d\ = (3/n8)(/2 —— m/2) = 3/8.

Non-Local:

For reference, the most popular “non-local hidden variable” is the de Broglie-Bohm
“position” x(t) along with the velocity of a moving particle. Remember that Copenhagen doesn’t
believe in the existence of trajectories, but dBB ~ QM works [9]! It is equivalent to usual QM but
in a different form and different interpretation. In Bohm theory, “the non-local correlations are a
consequence of the non-local “quantum potential,” which exerts suitable torque on the particles
leading to experimental results compliant with quantum mechanics [8].” dBB is not very popular,
but it was intended as just an example of non-local hidden variable theory -- and as a

counter-example, it revealed an error in von Neumann’s “proof” of no hidden variables.

A separate class of non-local hidden variables was introduced by Leggett in 2003 along
with a new inequality for testing. Assumptions are 1: realism (pre-existing properties
independent of measurement) e.g., polarization u for A and v for B, 2: “physical states are
statistical mixtures of sub-ensembles with definite polarization where” 3: Malus’ law cosine
projections apply for each sub-ensemble. A new nonlocal parameter, 7, is introduced for
arranging measurement settings across space-like separation of detectors A and B (often called
“Alice” and “Bob”). Large statistics averagings are arranged (or contrived) to satisfy some QM
expectation values. The contrivance is complex, so as just a partial sketch: the distribution for
L €[0,1] is decomposed into two parts for A at value L and into 3 different parts for B. For
example:

A = Ala,u,)) = +1forhe€[0,L), —1forhe€[L,1],L = 05(1+u-a), B = B(a,b,u,v,\)
That is, Bob does all the statistical contriving [8], and he knows about Alice’s settings “outside of
space-time”.

Actual testing of Leggett versus QM result in plots somewhat like Fig A that differ significantly for
tilt setting difference a ~ +30° showing that “non-signalling correlations” don’t work.

Conclusions:

In the mathematics above, we have bypassed the vast subject of “Bell inequalities” tests.
Instead, we have addressed the continuous graphs of QM correlations versus local hidden
variables models as a function of two polarizer-detectors having tilt angle differences,
o= (b—a) (e.g., Figure A with QM versus concrete example “HV-A” with a modestly good fit).
We have derived the fundamental quantum mechanical correlation equation:

P(VV) = cos’a/2,and we used this result to attempt a LHV for A and B as cosine-squares
(HV-C, but it didn’t work very well -- much worse than HV-A). Then we came up with an example




HV-B that unintentionally ended up being the same as QM. But thought revealed that it wasn’t
Local.

A great majority of current journal articles seem to solidly support the conclusion that
Bell-theory implies non-locality (“spooky action at distance”) and the impossibility of Local
hidden variables (LHV’s). Yet, a recent survey on physicist’s beliefs express residual doubt [10]
at about one-third of physicists. Additional beliefs from the survey suggest that 2/3rds believe
that true randomness is inherent in QM detections, 2/3rds believe that we need to have
interpretations of quantum mechanics; yet %’s believe either in Copenhagen or simply don’t
care (which is another aspect of Copenhagen).
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DeBroglie-Bohm Interpretation of Quantum Mechanics.

Dave Peterson, 4/28/10- 5/30/10.

There is actually a course on Pilot Wave Theory (PWT) at Cambridge [1].

I like this interpretation and suspect that it could also be tied to Cramer’s
transactional interpretation. Its lack of general acceptance may be historically due to
Bohr’s charisma, Heisenberg’'s antagonism, and Bohm’s unusual personality and life
(McCarthyism defeating American Marxism, studies in psychology, consciousness,
Krishnamurti, fearfulness, depression). But physics should not depend on authority
figures, it should be objective.

The key formulas of the deterministic Pilot Wave Interpretation of Quantum
Mechanics from Louis De Broglie (1924-1927) and David Bohm (1952) are the ‘usual’
Schrodinger Equation:  1): ih dy/at = Hy = -X(h%2m;)V%p + V(X4,....X,) and the
“Guidance Equation” 2): m;dXj/dt = Vi(h Im In ¢) = V;S(X;, ,Xn, t)

where S = phase. This equation simply says that particles actually exist in non-
relativistic quantum mechanics and have the properties of a continuously changing
location, X with a velocity v = dX/ dt governed by the pilot wave psi, 1. The X’s are in a
configuration space; the guiding wave propagates in multidimensional configuration
space, and that is the source of nonlocality and entanglement. Note that just as 1 is not
a classical field, the Bohmian particles are not classical particles—they are not bearers
“of properties other than position” and velocity. Since deBB uses both ¢ and X,
‘complementarity’ is not needed and ‘measurement’ is unnecessary. The horribly
misleading term ‘measurement’ should be dropped anyway—use ‘experiment’ instead.
Measurement pre-supposes that what is measured pre-existed prior to measurement.
Equations 1) and 2) are Postulates in Bohm theory. A third postulate for p = y*y could
be added (but some claim it can also be derived). Unlike Copenhagen, no other
postulates are needed.

Bohm writes a polar form: y(x,t) = R(x,t) exp(iS(x,t)/h) =|y]| e*'".

The velocity field is intuitively straightforward when the exponent is a plane wave: S =
px-Et so that VS yields p: v = dX/dt ~ hk/m = (h/m) Im(Vy/ ¢) = (h/m)Im VIn ¢ = VS/m
= j(x,t)/ Jw(x,t)? | with j = probability current. There are coordinates (x;) and also the
positions of each particle in a system, X; where positions are sometimes called “hidden
variables” but are also often the measured result of an experiment (not so hidden). In
“standard” (Copenhagen) QM, there are no particle trajectories or intermediate positions.

This is all that is needed to discuss Bohm philosophy. But if one desires causal
details about the particle trajectories , then an additional complex Quantum Potential, Q,
is also useful:
Newton’s Law is F = -VU = ma = dp/dt = d(VS)/dt [1]. So consider:
A(ViS(x,t))/ot = V; a(Im In y)/at = V; Im [(h Ap)dg/ot] = V; [(ip){h*/2m; Vi - V ¢} ] =
Vi [{0%2m; Vi - V gl ¢] = -V, [V + Q] = m; a. This suggests that one should set:

3). Quantum Potential Q = -3 (h%2m; )V3|y |/ |y |-



For stationary states (e.g., the ground state of the hydrogen atom), the velocity field and
Q are independent of time and the velocity is zero! The quantum force —VQ cancels the
classical force — VV, and the particle is at rest. A particle between two impermeable
walls also has a particle at rest. Take away the walls, and the particle will be
accelerated to its expected speed,v = = hk/m, by the quantum force —VQ.

For the two-slit experiment, a particle actually passes through either the upper or lower
slit and the usual psi wave goes through both slits. The particle trajectories from the
quantum forces are highly non-intuitive and non-newtonian [8]. But a particle from the
upper slit will only appear above the medial line on the detecting screen. The elaborate
electron trajectories can be worked out. For massless photons, the curved trajectories
can also be calculated and are different than for massive electrons [11].

In Bohmian mechanics, there is no need for a collapse postulate. The wave function of
the total system (the universe) is described by the Schrodinger equation and never
collapses. Collapse only pertains to the subsystem. Figures of the Quantum Potential
away from the slits show flat mesas separated by short precipitous valleys. The
derivative F = -VQ is zero for the usual detection peaks (semi-stable trajectories) but
have kinks for the inbetween trajectories (rapid forces between classical peaks).

There now is actually a course on Pilot Wave Theory (PWT) at Cambridge
which teaches this interpretation [1]. In deBB, “probability refers to the probability that a
particle is at some position, rather than to its probability of being found there in a
suitable measurement.” PWT is just standard QM with this single semantic change in
the meaning of a word. QM is a “dynamical theory of particle trajectories rather than a
statistical theory of observation.” It is claimed that all the interpretation problems raised
in non-relativistic QM are essentially solved by the pilot-wave approach.

Feynman had “considerable respect” for Bohm; Hiley showed “how to obtain a
Bohm approach in the momentum representation” [non-commutative quantum
geometry”, 2005]; and Bell was inspired to do his work after reading Bohm. Those who
respect Bell should respect Bohm. The Feynman Path Integral integrates L = T — V over
all paths while PWT integrates L = T — (V+Q) along precisely one path where amplitude
curvature Q = (i?/2m)V?R / R is the quantum potential.
Psi ¢ in PWT is a real physical field which influences particle trajectories.

A mistake by the founding fathers of QM was their insistence that familiar conserved
Newtonian terms such as momentum, energy, and angular momentum still had meaning
in the world of quantum mechanics [3]. Heisenberg said that defining a physical quantity
means specifying how to measure it, but the act of measurement and the apparatus
alters what might have been there. Bohm has real particle positions, but the trajectories
are “strange” and non-newtonian. Taking m times v might be called ‘momentum’—but it
is no longer conserved. “The energy of the particle is strictly conserved only in special
cases like stationary states. “Because the quantum potential can be large even when
the quantum field is small, it follows that we will inevitably have non-conservation of both
energy and momentum resulting from the fact that complete isolation of any quantum
system is actually impossible.” [7, pg 39]. The resulting structure of “standard”
Copenhagen mechanics is strange, and standard quantum mechanics doesn’t hold
logically together. It is like the “Escher Waterfall” picture where each section looks ok
but the whole is nonsense. [Similarly, in my old copy of Messiah from a class in 1966, |




had drawn the “Devil’s pitchfork”—2 bars becoming 3 prongs—to show what | thought of
its characterization of quantum mechanics].

There should not be any authority or dogma in physics. “A philosopher, engineer,
mathematician, or chemist might accept the authority of the majority of physicists. But, if
you are a physicist yourself, you are in the position to decide for yourself.” [3]. But first,
there has to be awareness that there is any controversy at all—that fashion actually
exists in physics more often than just rarely.

“The best current PWT models fields for bosons and particles for fermions. In all cases
studied, the usual predictions are reproduced. One doesn’t need both the field and
particle ontology for the same object” [1, Lecture 5]. In PWT, “True observables of the
theory—the things that immediately present themselves in experiments --are the
positions of particles, particularly that of the apparatus pointer.” “The ‘hidden variables’
are the observables...” [Lecture 4]. Rather than the old name of “Hidden Variables
theory,” Bohm preferred “Causal Interpretation.” [7].

Decoherence is a diminution of interference, and is a concept introduced by Bohm.
Decoherence does NOT solve the measurement problem in QM. The different branches
still continue to exist but stop interfering. It doesn’t make the second Schrodinger cat go
away. Note that Bohm theory is a “formulation” requiring calculations like the path
integral formulation.

There are no instantaneous quantum jumps in PWT. Changes are a continuous
process. And wave collapse and splitting universes are seen as “utter madness.” “Pilot
Waves subsume quantum concepts of measure, complementarity, decoherence, and
entanglement into mathematically precise guidance conditions on position variables. “ In
contrast, some Copenhagen concepts are expressed just in words. The borderline
between unitary development of the wave equation and its collapse from the quantum
world into the classical world is vague.

The ‘particle in the box’ (x = -a to +a, lowest energy level ) has y =(1/2Va)(e*
+ e™ = 2cos(kx)) = cos(kx)Va where k = 2n/A = n/2a. The fixed f(x) shape is due to
interference between left and right moving waves. The polar form is ¢ = Re™™ =
[cos(kx)Vale™™.  Current j = (ih/2m)[yVy* - y*V] = (A/m)im (yp*Vp) = R?VS/m.

Then current j = (h/m)Im(real) = 0, and VS = d/9x (0 -iEt/h) = 0 too. So the particle
velocity is zero! However, the supposed operator for KE is p/2m = -h?V?yp/2m =
(Ak)*p/2m > 0 — there is a disconnect between Bohm and Heisenberg views. Other
stationary states like the Harmonic Oscillator [yn(x,t) = un(x) €' ™ would also have zero
particle velocity.

The more general alternate form is vy = V(2/L) sin(nzx/L) for x from 0 to L. This
could also be written in complex form as y = (-i /L )(e** — e™). The quantum potential
is Q(x) = (-h¥2m) V?R/ R = (+h%2m)(k? = n?n%/L?) so that Q is now what would have
been the particle energy, p2/2rn. Again, the particle is not in motion. Q has no
dependence on x so that force in the well =-vQ = 0.

The hydrogen atom is slightly different: v, (r, 8, ¢,t) = un(r,0,¢)e™= ™. Notice here
that the Legendre Polynomials for 6 could be expressed in complex notation, e.g.,
P, = (1/2)(3cos?0 -1) = (3/4)cos 20 + ¥ where cos(20) = (1/2)[e'* + ™% ] from —n to + &t
radians. This again resembles a fixed f(8) due to interference between forward and
backward moving waves which cancels any net velocity. But, ®(¢) = e ™ does imply just




positive velocity quantization—so here v = 0. The atom doesn’t match the standard
stationary form except when m = 0 — then the electron is at Bohmian rest. Here we have
the phase exponential exp[i(m ¢ - Et/h)]—which describes a “rotating plane wave.” In
this sense, it resembles the old Bohr atom orbits. In a special case of a superposition of
1s and 2s orbitals together, the electron particle vibrates radially with a radial period near
t~4x 107" seconds.

PWT-course Lecture #6 showed Bohmian calculational methods like finite
difference equations for trajectories. And PWT lecture #7 addressed, “Why does nobody
like pilot-wave theory?” The answer is largely fashion. Bohm theory is called a strange
alteration of standard quantum mechanics—but really Bohm theory is DeBroglie pilot
wave theory which is the original quantum mechanics—not a new alteration of
Copenhagen. In QM, philosophical discussions are necessary. Philosophical questions
“diminish the dogmatic assurance which closes the mind against speculation” [Russell].
Alternative interpretations enlarge our conception of what is possible. Einstein and
Schrodinger remained incredulous at stated certainties like, “In Quantum Mechanics
there is no such concept as the path of a particle.” [Landau and Lifschitz].

Like Copenhagen, Bohm theory doesn’t reveal a physical mechanism for how
nonlocality occurs. Other questions are: does the wave  carry diffuse mass, charge,
and spin rather than the particle. Bohm theory suggests that spin lies in 1 rather than in
the particle. Doesn’t dipole-dipole force require random charged atomic dipoles? (rather
than a fixed charge location). It wouldn’t make sense for m, q, or s to be diluted by
propagating everywhere.

The extension of PWT to quantum (non-classical) spin is accomplished by simply
letting —ih V> ok - (-ihVk — exA(qk.t)/c) and iha/at > iha/at exd(qk,t). Instead of y*y use
Y™ which is now the inner product over spinor space degrees of freedom. That is, use
the Pauli Equation where y(x,s) = ¢(x) (°,) — two component spinors.

Pauli: Ey =ih dy/ot = [(p —eAlc)? /2m — eh/2mc o-B + e¢p]y. (Bjorken/Drell p13).

A criticism of Bohmian Mechanics is its believed lack of a relativistic form.
“Several ‘Bohm-like’ models for relativistic quantum mechanics and quantum field theory
do exist [9]. A good model should reproduce the predictions of QFT and include non-
relativistic QM as a limiting case. In addition, the theory should possess ‘beables’ —
clear ontology or entities with ‘being.’

Bohm made a ‘Bohm-Dirac’ theory where dXy/dt = ¢" axy/ ¢y™p where o is Dirac’s alpha
matrix. But it uses a ‘common time for all particles’ — not Lorentz covariant. This
distinguished frame model is ok because it cannot be identified experimentally. Also
there are “Field-beables for bosons and particle beables for fermions.” Fermion number
can vary, but its states are ‘real.’

The Mach-Zender Interferometer examines wave interference after two beams merge
from a rectangular path. The paths are constructed to initially provide constructive
interference for one outcome direction and destructive interference for the other. This is
usually facilitated by having two beam splitters (BS) using opposite orientations. Light
hitting a semi-mirrored metal surface is reflected by = (half a wavelength phase change).
If light passes through glass first before the mirror (the opposite orientation), it is
reflected from the back side to air interface (a lower index of refraction) and hence has




no reflected phase change. The destructive output then results from the phase change
difference of (x + ) for one path minus x for the other . Penrose likes to refer to another
case of i (90°) from each mirror resulting in A¢ = i* — i instead — but the result is the
same.

Figure: Mach-Zender Interferometer:

M | null path output ‘2’ =>
/ [->> output ‘1’ constructive => wave detector.
I | BS2 [W> =y >+ [ >
| ‘path r’ |
| | BS, has reverse orientation from BS,
I I

>/ | standard Mirror, M

BS1 path ‘t’

Bohm trajectories follow probability current streamlines, and individual particles stick to
these flux lines. The medial line of a two-slit interference experiment does not have
crossing streamlines because of the symmetry of the currents. The above figure would
become a particle detector if beam splitter BS, were removed. Then Copenhagen
(CQM) will believe that outcome ‘2’ comes from the transmitted lower path ‘t’ and ‘1’ from
reflected path ‘r'. Their particles plow straight through the BS2 region. But Bohm QM
will have no crossover of current or particle trajectories at the BS2 location so that
instead ‘2’ comes from ‘r’ and ‘1’ comes from ‘t’. This is one of the strongest differences
in beliefs. CQM believes that pathways have inertia—continuity of momentum. BQM
only sees mv = VS following flow without conservation of classical p.

Englert, Scully, Sussman, and Walther (ESSW, X. Naturforsch 47a, 1175, 1992 )
challenged Bohm trajectories using the incomplete Mach Zender Interferometer for
particles (as a particle detector without BS2 present). There was considerable
controversy about their claims over the next decade [12,13,14]. ESSW suggests a which
way detector in path ‘t’ at bottom (a small change in an n = 63 Rydberg Rb atom passing
through a micromaser there). So one can measure the output particle energy and know
which path was actually taken. Having a Bohmian particle detected at 2’ after traveling
the upper path ‘r’ but yet having a small loss of energy would be “surreal.” Solutions
include possible application of EPR, configuration paths which cross “over” each other or
change from pure to mixed states due to the micromaser action. Mixed state incoherent
wave function components can cross. Bohm theory is completely compatible with
standard quantum mechanics and cannot provide any contradictions.

Side note on “Ether:” It is well known that in 1905 Einstein dismissed the ether. But it
is generally not known at all that after 1916 he decided that earlier judgment was too
radical. He really intended to just deny the concept of ether immobility or velocity. His
new belief was that the general theory of relativity was incomprehensible without an
ether—and he continued to refer to it in print for decades. His new ether was : field g,,
= ether.

Empty space has physical properties—physical space is a “primary thing.” The
“old ether” was “inertial ether” and the new ether was “gravitational ether” or “total field”
without any absolute motion. He wished it to also include electromagnetism and in 1924
(“Uber den Ather” — and later) particles also as states of space. In his “Mein Weltbilt”




book from 1934 he says, “Physical space and the ether are only different terms for the
same thing; fields are physical states of space.” [Ludwik Kostro, QC173.6 1572, 1988].

In addition, not everyone is still convinced that Einstein SR is the best interpretation for
special relativity [1,6]. “The pre-Einstein position of Lorentz and Poincare, Larmor and
Fitzgerald was perfectly coherent as presented and is not inconsistent with relativity
theory [J. Bell, 1986, “The Ghost in the Atom”—this is not well known]. Poincare had a
preferred frame with 4-vectors and Lorentz invariance worked out also in 1905, but his
work was eventually nearly forgotten. Interpretations are called: 1. the Einstein 3+1
space and time with equivalence of inertial frames, 2. Minkowski 4D with no past or
future, and Lorentz 3+1 single ether preferred frame and absolute simultaneity — this one
is preferred by the Bohmists. Lorentz was still using the term “aether” in 1911. Dirac in
1951 said, “we are rather forced to have an aether” [of course not the “luminiferous
aether]. Lorentz allows the absolute instantaneous simultaneity needed for EPR
correlations. It is possible to make a Lorentz QFT—QFT doesn’t use rods or clocks or
the speed of light but rather symmetries and Lorentz invariance of Lagrangian density.
DeBroglie-Bohm seems to require a preferred reference frame in order to be relativized.
[But a question is whether John Cramer may have an alternative explanation]. Einstein’s
early view was positivist—a philosophy that is no longer revered.

Cramer: [Quotation from a future space alien in one of his popular science fiction
books: “Our science historians “have derived great amusement from your quantum
mythology. They were particularly amused by your Copenhagen interpretation, with its
state vectors that are altered by the thoughts of intelligent observers, and by your
Everett -Wheeler interpretation with its splitting and resplitting into multiple universes. In
this regard, your culture is unique among those that we have encountered. No other has
provided such a remarkable demonstration of fertile creative desperation in seeking to
understand physical behavior at the quantum level. We find these myths of yours quaint
and charming.”

[ “Einstein’s Bridge,” science fiction by physicist John Cramer, pg. 205].

John Cramer [4] notes that the Everett-Wheeler interpretation came out in 1957 but was
ignored until Bryce DeWitt published an article about it in 1971. Now the theoretical
physics community embraces it “in spite of its conspicuous inadequacy in dealing with
the problem of nonlocality.” Many believe that the Transactional Interpretation of QM
(TI) only deals with photons. But trajectories of advanced and retarded waves do not
have to be at 45°. The handshake for electrons will use “a negative charge with positive
energy wave and a positive charge with negative energy wave, the latter reinterpreted as
a positive energy electron according to the usual Dirac rules.”

A primary perceived problem with Tl is that “it is necessarily deterministic, requiring an
Einsteinian block universe to pre-exist, because the future must be fixed in order to exert
its influence on the past in a transactional handshake.” [5]. “However, while block-
universe determinism is consistent with Tl, it is not required. A part of the future is
emerging into a fixed local existence with each transaction, but the future is not
determining the past, and the two are not locked together in a rigid embrace.”

Matter Interference: In 2003, perfluorinated buckyballs (Csy F4s) became the “most
massive single particles to display quantum interference.” [M = 1632, 108 covalently
bound atoms, size ~ 1 nm]. In a Talbot-Lau Interferometer, the interference decays as
gas is added to the experimental vacuum [decoherence by 10 mbar pressure].
[Physics World 3/05--/18/3/5/1 ].
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Questions:

1. Where in Bohm Postulates 1 & 2 is the configuration space? | think the answer
is in the = over N particles—“Usual” QM just discusses one although entangled
systems may discuss 2 or more. Psi and X also have all the particle locations or
variables built into their definition too. Where is the ‘measurement’ apparatus in
here—it should be part of the configuration, but that isn’t carefully discussed in
the papers | have. Perhaps this becomes clear in the calculational examples (no,
not from the course). Most sources say that the non-local configuration space
shows best in the quantum potential Q. Q is a function of the Configuration of N
particles.

2. Where are the other particle properties besides position and velocity? Where is
charge, spin, mass, momentum, energy? Is a particle without any of these
standard particle properties still a particle. The particle still has the mass, but its
energy and momentum vary with the quantum potential. Articles say that spin is
contained in the modified wavefunction. All of this is being addressed.

Later Notes:

Present Bohmian trajectories for photons are difficult [Ghose, 2001] —a “10 x 10
dimensional representation describes spin-1 bosons.” [Kemmer, 1930’s, using special
matrices]. This provides a consistent relativistic QM for spin 0 and 1 with a conserved
four-vector current [15]. The equation is (ih B, 9-+ myc Ty = 0. For massive bosons, v =
cpand I =1. For photons, T and ;s contain Maxwell equations and

v=cy TPy /(p'Tvy). The setof 2-slit photon trajectories resembles those
for the case of electron interference (smooth streams for constructive peaks with kinks
inbetween).

“The literal identification of eigenvalues with real physical quantities is the
fundamental error in quantum measurement theory.” [Lecture I ].

Heisenberg’s uncertainty principle ‘undercut Schrodinger’s premise that an
electron’s position and velocity could be simultaneously specified.” But, in Bohm theory,
mv is not a conserved momentum classically called ‘p’.

“Positivitism was abandoned by American philosophers several decades ago,
with physicists lagging one or two decades behind in this regard. It is hard to find
American philosophers nowadays who will defend positivism, but it is not at all that
difficult to find physicists mouthing positivistic slogans, particularly when in deep
guantum mode.” [letter from Shelly Goldstein to Steven Weinberg, 1996].

Virtual particles are considered only in perturbative expansions. This picture
should not be taken literally! Exchange of virtual particles may not be real.

How is Bohm Theory different and unusual:




Having a particle position actually existing is not at all incompatible with having a
particle velocity. Bohm theory is the simplest quantum mechanics and resolves or
avoids the metaphysical paradoxes of Copenhagen QM. If history could be replayed
and if Bohm theory had existed alongside deBroglie theory at a time just after the
Schrodinger equation, the Copenhagen interpretation might never have existed and we
would all be “Bohmists.”

For standing waves (particle in a box, linear harmonic oscillator, S states of
atoms), the Bohm particle is not moving—is also stationary. But for atomic orbits with m
values > 0, the Bohm particle orbits like a Bohr particle.

Particles move like their probability fluid streamlines. Streamlines do not cross
each other, and neither to Bohm particles. So, for the two slit interference, a particle
going through the top slit stays at the top of the detecting screen. And this is also true for
a Mach-Zender interferometer—the particle motion is the opposite of the mental picture
accompanying usual QM.

There is fad and fashion in physics. After 70+ years of QM, it is not obvious that
the right side won. But there is now much more openness about QM interpretations in
general.
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FIG. 1. Basic setup of the interferometer: A nonlinear crystal
i1s pumped by_ a laser to produce photon pairs via parametric
down-cor.wersmn. Directing the pump beam back through the
crystal_ gives a second possibility 1o create the photon pair.
Reflecting the pairs created in the first process back into the
crystal makes them indistinguishable from pairs created in the
second process, and interference occurs.
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FIG. 1: Fig 1. A Franson interferometer. Two photons travel in opposite directions from an EPR

source. Each photon then enters an imbalanced Mach-Zehnder interferometer, such that there is
no single photon interference. The temporal pathlengths through the arms of the interferometers
are denoted 7;. Detectors in paths 1 and 3 measure the outputs of the interferometers and the

coincidences between the detectors are recorded.
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FIG. 2. Schematic of the experimental setup. The pump
laser beam of SPDC is divided by a double-slit and incident
onto a BBO crystal at two regions A and B. A pair of sig-
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Appearances of Retrocausality in Entanglement Experiments
Dave Peterson 11/2/18 —11/15/18

Four early classic journal articles on photon entanglement are sampled for
discussion. All use “SPDC” crystal down-conversion to create entangled photon
pairs from UV laser beams. A focus is on “quantum erasures” of double slit
interference patterns with and without significant delayed choice. Delayed
decisions in one system can determine whether interference occurs or not in
another system. Counter to intuition, event times, spatial separation and order of
events have no effect on outcome — as if some sort of “backward-in-time”
quantum communication could occur between entangled particles. One sampled
article shows that when identical photons travel on identical paths, double laser
beam passes through a crystal may no longer be independent; and four created
proto-photons emerge as just two. The efficiency of crystal pair production can
also be enhanced or reduced by external optical interferences. These articles are
from 1994 to 2001, but a later selection from 2012 is also included: “Entanglement
Between Photons that have never Coexisted” (entanglement swapping).
Entanglement correlations can exist with temporal separations.

{See Appendix for discussions for and against some sort of “back-in-time”
quantum information transfer}

Question: can one learn the new quantum mechanics of entangled particles by reading published
journal articles? They are very concise and intended for specialists in increasingly separated sub-
fields. Every word counts. Non-specialists (almost all of us) then have to struggle to decipher
these publications and supplement them with some related literature. Perhaps a good up-to-date
textbook would be a better approach. Is there one?

Many entangled particle experiments reveal distant correlations in space-time
that seem to require “faster than light communications” in violation of special relativity
(spooky action at a distance). It has occasionally been suggested that the quantum
entanglement correlations may be due to back-and-forth communications in time that
emulate instantaneous communication between measuring systems. The “no-signaling”
theorem of quantum mechanics firmly says that no classical-information can be
transmitted backwards in time. A possible solution is to suggest that “quantum
information” operates in a different sub-realm and transmission can be bi-directional in
time. This has been called “retro-causal,” but the term causality refers to cause-and-
effect relations in the classical world. There are now a vast number of entanglement
experiments that disturb traditional thinking and give the “appearance” of some sort of
retrocausal communication. This note discusses a few key examples.

Prior to the 1960’s, people knew that quantum mechanics was weird, but they
weren’t overly concerned about the specter of non-locality. From the 1960’s through the
1980’s there was a “second quantum revolution.” This was initiated by John Bell with his
articles about two entangled particles; and that was then followed by a huge and
accelerating cascade of studies exploring the new frontier of entangled particles. The
goal of this paper is to mention some of its new discoveries and focus on a sampling of
just a few entanglement experiments of this frontier.

The short list of new topics introduced in the last half of the 20™ century include:
Bell Inequalities, Mach-Zehnder interferometry, Quantum Erasures, Delayed Choice



Quantum Erasure, Hanbury Brown & Twiss effects, Quantum computing, Quantum
cryptography, Quantum Teleportation, Entanglement Swapping, Coherent states, GHZ
states, Hong-Ou-Mandel effects (HOM), Bohmian Mechanics, “Entanglement and
nonlocality in multi-photon systems,” effective de Broglie wavelengths of n particles,
photon orbital angular momentum (OAM), Trapped lons, Decoherence, and other
numerous topics in Quantum Optics. There are many experiments incorporating some of
these topics that demonstrate clear non-local behaviors.

As a prequel, consider an old 1927-type puzzle for a simplest one-photon
example: place cool radioactive nuclei at an origin and observe gamma rays heading
toward a 180 degree curved detection screen. For each decay, there is only one spot on
the screen; and all the other “possible” spots are then denied actuality. There is also a
reaction kick backwards on the nucleus. Are the directions of the back-kick and forward
spot location correlated? - yes, of course, due to conservation of momentum. But one
can only see the correlation after the screen spot has appeared some time later after the
recoil. When does the kickback occur? -- immediately at time zero before the spot shows
on the screen. It is a challenge to imagine how that can happen.

Most of the following discussions require looking at the actual journal articles for picture
Figures and details (available on Web as listed below).

A: The Essence of the Herzog Experiment -1994 Ref: [Frust].
[The Layout geometry of the test affects the efficiency of down conversion! ].
See Figures in: T.J. Herzog, J.G. Rarity, H. Weinfurter, and A. Zeilinger,

“Frustrated Two-Photon Creation via Interference,” PRL 72, #5 31 Jan 1994 OR

https://www.univie.ac.at/qfp/publications3/pdffiles/1994-04.pdf

Given: A UV laser beam passes through a down-conversion crystal from the left,
reflects from a mirror back through the crystal again allowing the possibility of two pairs
of lower energy photons. {Topic of e-mail group discussion for Boulder Library
Cosmology group, Sept. 2018}

Usual Intent: Most of these experiments with forward plus reverse throuputs
wish to generate four “real” photons on four separate outgoing paths: two to the left and
two to the right. And this would happen with very low efficiency [probability squared or
amplitude |a |* ~ 10 ' per UV-photon input]. But, in this case, the pair productions are
not independent.

Herzog’94: The right side photons are separately reflected backwards --folding
the four paths into only two precisely distinct paths to the left and eventually producing
two “real” photons at the final detectors. Immediately to the left of the crystal, consider
the special simple case of created photons overlapping on the same paths at the same
time and same distance with all differential phases set to zero. The two pairs become
entangled and their amplitudes can now interfere. Because they are bosons, they
interfere with a + sign: @ =a [sqi1+s2i2 ] 2 s182 & iqip 2 “s & i” with path identity before
D and D; detectors {y is symmetric under inter-changing of pairs}. Then probability
goes as (W|y ) = 40® enhanced above just a? because of boson entanglement and how

that affects quantum down-conversion events.



IF the final path photons had instead been fermions, then interference would have been
anti-symmetric under exchange: g <[ (s-i)- €' (s-i)] so that y*y o 2-2cos¢$ = 0 for
phase ¢ = 0 (identical particle overlap would have been Pauli-excluded!). But then, of
course, we wouldn’t have been able to generate two photons from one in the first place
{lepton number is conserved}.

Brainteaser: Detection, D, collapses the superpositions and randomly says that
only one of the creation pairs “actually occurred.” The measured enhancement of
detected photon rates was due to the possibility of either of the creation pair events
occurring. Detection happened more than 10° wavelengths after the crystal pair creation
event #2, and the first pair-creation event #1 happened ~300,000 wavelengths prior to
that [tp > t, > t4]. These three events mutually coordinate without caring about their order
in time. It would appear that the quantum world of possibilities possesses some “reality”
below classical reality.

{Some Details: UV pump laser beam A, =351.1 nm passes through an LilO3; non-
linear crystal with “phase matching” inside the crystal > red As= 632 nm “signal” photons
exiting the crystal at a shallower angle than companion 789 nm “idler” photons. The final
trajectory to a signal detector, Ds, is configured to only allow signal photons. There is
fine stepper motor control of reflecting mirrors for phase interference scanning output.
Coincidence counts of both D; and Ds detectors together reveal the original 351 nm
pump waves.}

B: “A Delayed Choice Quantum Eraser” [Kim, 1999]:

See figures in: Wikipedia /wiki/Delayed-choice_quantum_eraser (Kim 1999).
Original article, “A Delayed choice quantum eraser,” PRL 1999-2000 pdf at
https://arxiv.org/pdf/quant-ph/9903047.pdf Yoon-Ho Kim, et. al.,

Despite the complex experimental figure, the physics here is just standard
Young’s phase interference -- but coupled with entangled partners. Two ray
interference at a transverse-moving detector can be destroyed by removing a beam
splitter in a distant complimentary system.

“The which-path or both-path information of a quantum can be erased or marked
by its entangled twin even after the registration of the quantum.” Nothing in these tests
is really being “erased”—they simply defy our beliefs that later events should not be able
to affect earlier events. For entangled particles, time-ordering is often violated — our
beliefs were not valid. Traditional wording of “which-path” knowledge preventing
interference is “physically unsatisfying and needs some elaboration.

In this experiment, a pump laser excites two sets of pair creations at the same
time with one pair traveling through a close-up double slit hole and the other through the
other slit (slits A and B). One ray from each slit travels to a relatively nearby single
detector D, which can be moved sideways to show possible interference patterns from
gathered statistics of clicks. The other entangled ray from each slit goes into a prism and
then through beam splitters and mirrors into four more remote detectors such that outer
detectors (D3, D4) see unique paths identifying “which slit” origins ( A and B, and hence



no possibility of interferences). These detectors are 2.5 meters or 8 ns farther out than
Do. The other two paths simultaneously go through a common beam splitter into
detectors D4, D,. These interfere and then allow traditional interference in the entangled
paths to the D, detection. The “both-path” (1,2) interference erases “which-path” (3,4 =A

[l

and B) marking each s and its “".

The tests output four “joint detection rates” Ry1, Roz2, Ros, Ros between D, and the
other four detectors. The joint detection amplitudes for the outer detectors only have one
contributing amplitude, but the others have interfering amplitudes A(1&A) + A(1&B) and
A(2&A)- A(2&B).

The “Schematic of the experimental setup” [Figure 2 in the article ] appears
complicated. But if one thinks of photon paths as flexible wires that can be bent, then
Figure 2 can be converted back to a simpler conceptual picture in Figure 1 (that is
important for understanding). It is also very important to see that the paths from detector
D4 to BS; beam splitter and to D, have double lines (both red and blue in the color
drawing shown in the Wikipedia version of the Kim article). The experiment shows four-
photons as double sets of down-conversion pairs of photons passing immediately
through a double slit that could produce usual screen interference wave profiles
[ensemble of detector D, clicks versus translation distance x] while their complement
photons go into a distant interferometer with three beam splitters going to four detectors.
What happens at a later time in this interferometer affects whether early time screen
interference is seen or not.

Suppose we consider quantum-wave light paths to be like bi-directional
transmission cables that can transport quantum information forwards and also
backwards in time (not like classical cables). A new-perspective might be that when
screen-interference does occur, the diamond shape of the Mach-Zehnder interferometer
path segments forms a functioning “closed circuit.” But if just single path outer detectors
click (photon dump), then no interference occurs. One can then suspect that the term
“which path information” goes with “no closed path circuit.” A later photon dump makes
its entangled photon simply dump too — and interference can occur when late time
photon clicks have a closed circuit connection to the D, screen-interference clicks.

This report produced a lot of controversy about what’s “really” going on {e.qg.,
[Bram], [Fank] }.

C: An early 2002 “simple” Case: Two photon quantum eraser:

{This involves only two photons but is not quite simple since it interchanges three
different basis sets for polarizations: Linear, Diagonal, and Circular. So extra math is
needed}.

In this test, two-slit interference is activated. Then it is destroyed and then
activated again thus erasing previous non-interference.



See Figures in: S. P. Walborn, et. al., “A double-slit quantum eraser”, Phys.
Rev. A. 65 (3):033818 https://arxiv.org/pdf/quant-ph/0106078.pdf , 2001. Also chosen
as introduction in Wikipedia, https://en.wikipedia.org/wiki/Quantum_eraser_experiment

[Experimental Details:  Two entangled photons are created using Type |l
nonlinear birefringent crystal { B BaB,O, or “BBO” } spontaneous parametric down
conversion “SPDC” that outputs an ordinary and an extraordinary photon o-ray and e-
ray. One ray will have vertical polarization and the other horizontal polarization, V or H
(depending on setup). Output light exits in two tilted cones for H and for V that overlap
at two crossover points so that we cannot differentiate between H or V. The pump laser
input has UV-wavelength 351 nm - y + y at 702 nm exiting at 3°. A lower photon path
or “signal’ s ray (label “L” or “s”) travels 42 cm to a double slit having opening and
spacing both at 200 microns. Upper and lower downstream detectors are located about
a meter away. There are coincidence counters for Dy, and Djower (0r Ds) which can move
laterally to show interference fringes from the double slit. But note that correlation can’t
be stated until after there is data available to correlate.

Initially, in the Walborn journal article, the created photons are linearly polarized
in a Bell state of entanglement:

W) =gy = (H)|V), +|V)|H). )V 2 =k (HV + VH), in simpler form, ordered
first by lower signal “s”- beam and then by the upper beam to detector: product order
|L)|U) or s u, with U upper path lacking any interferometry in all cases. We letk =1// 2

~ 0.707 for convenience of notation. This is a natural starting point for type Il SPDC.

The lower s-beam illuminating the double slit gets divided into two exit beams s
and s,—for slits 1 and 2 . These are each still entangled with the upper beam U (or u).
W, =k(Hs1Vu + VsiHy ) and also y; = K (Hs2Vy+Vs2Hy). The usual two-ray interference
can result as probability Ps o< (1+cosA ) where A is the phase difference between the
paths s and s,. The upper beam goes to a movable detector that could reveal an
interference pattern in its count statistics versus lateral displacement.

Next, we position quarter-wave-plate (QWPs , A/4) circular polarizers in front of
one of the lower slits for “right handed or counter-clockwise” CCW polarization and the
other CW for left- £ handedness. This “marking” of the slits by r and { polarized ray
labels causes the interference pattern to vanish due to new “which path” information.

A later modification is to finally add a 45 degree polarizer in place before the
other upper path detector, D,. Since “diagonal” polarization d = k (H+V), this allows both
H and V light (or r and £ light) to pass through both slits and allows interference again.

“Entanglement ensures a complementary diagonal polarization in its
partner, which passes through the double-slit mask. This alters the effect of the
circular polarizers: each will produce a mix of clockwise and counter-clockwise
polarized light. Thus the second detector can no longer determine which path
was taken, and the interference fringes are restored.”



Now some math (not shown in Wikipedia—and elaborating Walborn
assumptions). This is an aside exercise in relating three types of polarization basis
sets. All are used in this journal article.

Right circular polarization is defined as |r) =r = k (H+iV), and € = k (H-iV).
The addition of H and V out of phase produces a “cork-screw” or helical E field.
For diagonal polarization we can switch to a new diagonal basis: d and & for +11/4 tilt and
—T1/4 tilt transverse polarization. These are orthogonal, so clearly (d|6 ) = 0 as also do

(H|V) and basis (r|f) =0 . At will, we can translate between these three choices of
polarization bases.

Solving for H and V from above we get: in circular polarization basis,

H=xk{+r)and V=« (t-r).

The original polarization states, H and V, have no angular momentum, while
circular polarization does. Conservation of spin requires that £ and r terms be balanced
for zero net spin.

Wave functions have phase a in € as a gauge degree of freedom, -- meaning
that it isn’t really functional. For diagonal a =45 degree rotation, we consider e '™ =
cos(Tr/4)+isin(11/4) = 0.707 + i 0.707= K +ik = K(1+i). A term k (1-i) = -ik e ™ is also used
in what follows below. {The wave function set is still “essentially’ the same with or
without the phase}.

The definition for diagonal d=k (H+V) and & = k (H-V) .
{Walborn somehow seems to reverse these symbols}
Or,H=xk (d+d )and V =k (d-8). Using these three sets of relations
{for H,V,r,t .d,0 ) yields:
[y =r= (%2 )(d(1+i)+d(1-i)). Similarly, |[£) == (Y2 )(d(1-i)+d(1+i)),
As a quick check, (r|r) = ( 2 )(d*d+5*d +(i-1) |[dd | ) = (2 )(1+1+0) =1 =100%
probability.

Solving for the diagonal basis in terms of the circular polarization basis gives:

d=(%)(r(1-i)- L(1+i)and & =( Y2 )(r(i+1)+L (1-i) ).

To understand and simplify these somewhat strange and complex forms, we now
consider and remove phase, a. Factoring out the phase, we have d = ke“(r-it )
and d =k e (£ -ir).

But, the overall phase is not functional and can be ignored and deleted:

sod=z k(f-irandd= k(r-if).

Then, r =k (d-id ) and € = k (8 —id) = -i (d+id )

[Caution: If you read Walborn and its shortened Wikipedia version together, note that
Wikipedia simplifies and alters the Walborn scenario: WIK begins with UL order

( £ r+rf) for the lower quantum state with its resulting circular polarizations. Then for U,
filtering out £ leaves term ryf |, If U measures a linear H, then kH({ + r) + ikV(r-{) leaves (£
+ r) lower so slit rays can interfere.

But Here we follow Walborn who begins with the Bell y = |¥* ) = k(HV+VH), a different
starting point that doesn’t quite agree with the assumptions in Wikipedia. Order here is
LU instead of UL. The L slits split w1 and w, which are considered separately. Then a
DIAGONAL filter (not just H) is applied to U leaving diagonal d interferences for s, and
So.




As example, another original Bell state y = « (HH -V V) = ( V2 )[(#+r)(X +r) — {(£-r)(t-r)} =
(rf+12r) -{like the Wikipedia case. But Walborn claims the state y = k (HV+VH)
instead.]

Now, ... finally! .... we can return to the quantum erasure experiment now with a
diagonal polarizer inserted in the upper path. What does it do and how does it affect the
lower path?

[UL ordering] In the upper path we insert a “diagonal” filter — H tipped up by 45
degrees. Then, for the Upper path, we switch to diagonal representation. g = ( %2 )[(d-id)¢
+ (6 —id)r ] with the lower path set up to have circular polarizations, £ and r.

Selecting polarizer d in U forces a collapse to (%2 )d (1€ -i r) which is a superposition of
both left and right rays — and that can go through the circularly polarized lower slits!

So, interference has been turned back on.

In more detail, the two rays from the slits 1 and 2 of the double slit mask have separate
wave functions: @y = « (HsV, + Vs Hy) 2 witysa: @y with s=>s4, and g, with s,.

Then with the two different quarter wave plates in front of the slits, we convert s
to circular basis notation. [LU ordering]
Rays: g4 = k([ s1 Vu+irS1Hu), and g, =K (I’ oV i Lso Hu)

This choice ensures that the orthogonal form (y.|y2) = 0 and (y4|y,) = 1.

Now switch from H&V to d and 8, where H = k(d+d ), V = k(d-6 ),
Also r=k (d-id )and t =« (6 -id ).
Expand Rays. Add and Reorganize
Y =K [( VA )(61+ |61) —id2]d + (d2+id1 —i® 1) o)

Then the U d-polarizer on U path collapses the d term and selects

W =kKI[(% )4+ i01) —id,] for L —a combination of the two rays together.
So, we now have clear two ray interference in the lower path.
We have erased the non-interference!!

{Walborn doesn’t delete the e' phase and leaves the (1-i)/2 ‘s intact.

And his final equation #14 has: |w) =( 2 )[ (ds1-ids2) du + i(Os1+i s2)0y ]

{l see no way to obtain this equation—so we have an important disconnect!}
If U filter has d or &, the two lower s rays interfere either way.

Both math solutions re-activate interferences.

D. Entanglement Between Photons that have Never Coexisted.
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Figure: “Experimental Entanglement Swapping:

Entangling Photons That never Co-existed” [my favorite entanglement
picture].

A UV laser beam enters from the left through an SPDC crystal (yellow) where it
can output two lower energy entangled photons. Photon 1 goes straight to a detector
(green) while 2 goes to a Polarizing Beam Splitter (PBS). The laser beam passes
straight through the first crystal into a second one where two new entangled photons are
created. Photon 3 and 2 coincide exactly at time “ d” on the PBS with 2 and 3 becoming
entangled and 2 then getting detected. Then 4 continues to its final detection. 1 and 4
are now entangled although 4 originated well after the creation and detection of photon

1. {The transactional interpretation of QM would say that the detection of photon 4 sends a
confirmation wave back in time from photon 4 at f along a convoluted path to the sources of the offer wave
thus establishing correlation. But in this case there are two sources.}

Spac

Time

The actual experimental setup was somewhat different and more complex than
the basics of the figure above. Rather than two crystals, there was only one with two
laser pulses passing through it separated by At = 1 =105 ns. The first surviving photon 2
(at initial time t=0) goes through a long delay line (31.6 meters) so that it can have an
encounter event with one of the second photon pairs #3 (at t = 7). Photon y, and y; (2
and 3) are then combined at the PBS and projected onto a Bell state. In path 1 is a
polarization rotator (HWP at angle 8,) and another along path 2 (angle 8,). Setting these
to zero allows the usual polarization states: |hh) , |hv) , [vh) and |v v).

The single photon polarization detectors at b, e, and f help identify these states.

Now we need to address Bell States and SPDC (spontaneous parametric down
conversion of a laser pump photon into two lower energy entangled photons). The four
Bell states are: |W*) = k(|HaVb) * |VaHb) ) and |®*) = k(|HaHp) % [VaVy) ) where k = 1/( 2
~ 0.707 (for convenience of expression).

The most commonly discussed Bell state is |¥") produced by type-Il SPDC with
exact phase matching. In general the state can be y = (JHV) + e |VH))//" 2 [Brida]. For
mismatching values of + 1 /L (length of the crystal), the output pair is p = |¥°) . Similarly,
a type-1 SPDC BBO crystal can produce a continuous set of polarization-entangled
states from |®*) [for 8 = 0] to |®") : @ = (JHH) + €° [V V) )/ 2. PDC crystals are
birefringent with polarized rays having two different indices of refraction. For type Il, an
ordinary output ray is V and is called “idler,” and the extra-ordinary ray is H and called a
“signal.”



In this paper, tilting of a compensating crystal in the downwards paths 1,3
“control the phase ¢ of the state, e.g., for ¢ = 11 the resulting state is |\V°). The four
photon state is |W), ® |¥) ; at times zero and tau. Including the staggered delay times
for upward path photons 2 and 4 modifies this to four terms summarized by time 0, 7,7,
and 21: |W)4 =|¥),; ® |¥) 2 Which ends up containing + terms over all four Bell
states.

The single photons 2 and 3 combine at the PBS, ~(h+v)® (ht v) > terms like hh,
vh, hv, and vv. They arrive as photon-bosons at the PBS at exactly the same time so
forming hh or vv terms both either transmitted or reflected (like HOM effect). So these
get projected onto a |®*) ;; or a |7, state.

Then characterizing the first and last now entangled photons 1 and 4 requires
gathering data for a quantum state tomography (QST). This is “the process of
reconstructing the quantum state (density matrix) for a source of quantum systems by
measurements on the systems” [Wikipedia]. The results of this agree with the states
|®*yor |®7) when plotted as a 4x4 square of {hh, hv, vh, v} x {hh, hv, vh, vv}.
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Notes:
Define Entanglement:

“An entangled system is defined to be one whose quantum state cannot be
factored as a product of states of its local constituents; that is to say, they are not
individual particles but are an inseparable whole.” For two entangled photons, the
polarization has to be indeterminate -- not horizontal, not vertical, not circular, just a
blank that has yet to be filled in. Entanglement represents property conservation by
superpositions of alternate possibilities. For bipartite systems, entanglement implies non-
locality — nonlocal correlations where one constituent cannot be fully described without
considering the other.

Entanglement Properties can include polarizations: H, V, [+), |-) ; electron spin

up or down, path entanglements, and boson occupation numbers like the NOON states:
|2,0) +]0,2). This occurs in the “HOM” effect when photon encounter a beam splitter and
arrive within the coherence time (they “merge”). There is also “entanglement by path
identity.” (Zeilinger). It is rarely mentioned, but entanglement superpositions are a
way to enforce conservation laws given a world of possibilities. The possibilities
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here are that A could see an H or V but the SPDT output H and V relationships are at
least preserved in the outcome.

Discussion of possible “retrocausality” in quantum mechanics:

PRO: Perhaps the earliest suggestion of a back-in-time explanation for entanglement
correlations was by Costa de Beauregard in 1953. This is called the “Parisian Zig-Zag.”
Since 1986, John Cramer has been the primary source for “The Transactional
Interpretation of Quantum Mechanics” (TIQM) based on Wheeler-Feynman absorber
theory of electromagnetism. This is an important arena with thirty years of literature; so |
will leave this subject for, “Look on Google.” People who don’t study this will have
limited imaginations. They might imagine that a quantum state between emitter and
absorber is a single time directed thing while TIQM says it is a back-and-forth “process”
of transactions ending in a “hand-shaking” agreement to transfer a quantum.

Similarly, Yakir Aharonov’s theory of weak measurement within the Two-State-
Vector Formalism (TSVF) “is based on the assumption that quantum interaction involves
a combination of past and future state vectors and also involves back-in-time
communication” (again, see Google for details). Huw Price says that if the quantum
world is time symmetric or reversible land is also real, then retrocausal influences are
required. (2012, Phys.org.news 2017). Mathew Pusey and Matthew Leifer agree. If QM
is incomplete, retrocausality might complete it.

Then there is Roger Penrose (“Road to Reality” p.603) who proposes that
quantum information can flow Zig-Zags both forwards and backwards in time.
Entanglements are created locally (at the same place, same time, from same atom, from
same input photon, necessarily close together). There is a distinction between “ordinary
or classical information” (evolving only forwards in time) and quantum information which
is different and referred by him as “Quanglement” — “it is appropriate that the name
suggests entanglements” and it can flow both forwards and backwards in time (like zig-
zags). A “guiding principle behind Penrose’s twistor theory is quantum non-locality.”
[p963]; but, despite much study, it is still in a primitive state of development.

“Most if not all interpretations of QM involve action outside the light cone: Bohm
uses pilot waves; Copenhagen has wavefunction collapse; TIQM has Wheeler-Feynman
absorber theory, which uses a different kind of pilot wave; Consistent Histories assigns
probabilities to events in the past; Many Worlds has interaction between alternative
universes.” (Phys.org.news). ‘“If retrocausality is allowed, then the famous Bell tests can
be interpreted as evidence for retrocausality.” (phys.org)

CON:

“With the relational interpretation you need neither action at a distance nor
retrocausality.. just give up the metaphysics of ontological realism. Or, one may merely
assume that multi-particle physics takes place in “configuration space” (e.g., a particle
moving along the x axis and another along the y axis corresponds to one point on an
x,y,t space. [But why is that allowed? They might be jointly connected by a “zig-zag”
path]. Another choice is to simply deny any kind of quantum realism — that is consistent
with the Copenhagen dogma that there is no reality below measurement. Two articles on
the quantum eraser both deny the need for retrocausality [Fank][Gass]. It is easy to
deny a sub-quantum reality simply by saying that psi is a probability amplitude—how real
can that be? Well, one could think of psi as some sort of sub-real matter wave
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analogous to the electric field amplitude so that when it is squared it is like energy
density (psi*psi) -- possible real existence density. In general we get some possibility
intensity. Then step two after that is to add a “Principle of Random selection” to definite
outcomes (“PRS”, mechanism unknown, but equivalent to a transaction hand-shaking
agreement). Then we get a probability as if the wave were a probability amplitude (for all
practical purposes, FAPP). The PRS selects a target and cancels the other
possibilities. Because of PRS pure randomness, there is never a classical cause and
effect and there is “no signaling.”




THE DENSITY MATRIX

DAVE PETERSON

ABSTRACT. Quantum mechanics can be formulated either by a density matrix formalism
or by the more common state vectors belonging to a Hilbert space. The density matrix is
increasingly finding more relevance and application. For example, an entangled state can
be “pure” (perfect correlation between two systems) while each of its individual systems
sees “mixed states” (such as unpolarized light). This can be discussed by reducing a
density matrix from the combination into density matrices for each part separately.

1. INTRODUCTION

The density matrix concept was introduced separately by Lev Landau and John von
Neumann in 1927 to describe statistical ensembles of systems. It has special use in prob-
lems with entangled systems and in discussions of decoherence and quantum entropy. It
can even be considered as an “interpretation” of quantum mechanics: Steven Weinberg
[1] recently proposed that we rely on the density matrix as the description of reality in-
stead of physical states in terms of ensembles of state vectors. The density matrix has the
advantage of applying not just to the usual “pure states” of most introductory texts on
quantum mechanics but also to mixed states given by probabilities and not just quantum
superpositions of pure states. An example of a pure state is vertically polarized light,
|[V) = L(|R) + |L)), in-phase superposition of right and left circularly polarized light. In
contrast, Unpolarized light is a mixed state statistical ensemble with 50% probability of
being R or L or also polarizations horizontal or vertical.

Since there are two base states here, the density matrix, p, would be represented by the
simplest case of 2 x 2 matrices with a general form [2]:

. ail ai1s + tbio A B +iC
(1) '0_<a12—ib12 a9 >—><B—ZC 1-A >,e.g., (

The density matrix in general has the following requirements:

S =
= O
N——

1) pf = p, the density matrix is Hermitian (equals the complex conjugate of the transpose
about the diagonal). This means that the diagonal elements are real, and the off-diagonal
elements are complex conjugates.

2) Tr p=1=100% (‘Trace’ is sum of diagonal terms), so if A = aj; then age =1 —ag;
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=1-A

All eigenvalues Ay of p must be nonnegative, 0 < A\ <0 or p < 1.

For a pure state, p?> = p, so Tr(p?) = 1, but a mixed state has Tr(p?) < 1.
Expectation values for an operator A can be calculated using (A) = Tr(pA) [4].

3)
4)
5).
6). The density operator evolves in time as: ih% =|[H,p] =Hp— pH.

Eigenvalues of a matrix, A\, are found as usual by solving the “Characteristic Equation,”
polynomial det|p — A\I| = 0 (subtract lambda from diagonal terms). For the density matrix
form above, this gives A> — A\ + A — A? — B> — C? = 0. Solving by the quadratic formula
and having A > 0 requires that: (A — §)? + B2+ C? < + . This can be plotted as a unit
Ball B? in Figure 1 with center at A = 0.5 and radius 0.5. The boundary of the ball (or
3-disk) is the two-sphere of pure states 2, and the interior is mixed states. An arbitrary
pure state is defined by the latitude and longitude on the sphere. For bases like up and
down, u and d, we can have: |¢)) = VA| 1) + 1 — Ae™®| |) (where ¢ here is the polar

angle). Photons that pass through a vertical polarizer would have A = 1 with all other
terms zero; ie., only the pure state at the north pole of the ball with a;; = 1 in equation (1).

Instead of Dirac “inner-product” order “bra-ket”, the density operator (matrix) is de-
fined in terms of “outer products” like “ket-bra” [t))(¢)| 3. Suppose we have a quantum
state that isn’t known well. But there is some probability, p, that the state might be |¢)
and some probability, g, that it might be |¢). Then the density matrix is defined as

p = pl){Y| + q|¢){(¢| [3]. If both p and q (etc.) are non-zero, we have a mixed state;
but, If only one of these terms is given ( say p = 1, ¢ = 0), then we have a pure state,
p = ([E)(] . Notice that for a pure state, p = |¢) (] - [¥){w] = [¥)(] = p. * Geo-
metrically, if we plot the pure state points [¢), |¢) on the Bloch sphere of figure 1, then
the location of the mixed state given by p is a point along the chord joining the two outer
points at relative distances given by the probabilities, p and q. That is, p will lie some-
where inside the sphere. The collection of all such points is the solid ball. Two pure states
at antipodal points across the sphere are orthogonal pure states (e.g., (0[1) = 0, (u|d) = 0).

One can easily imagine that a point inside the ball could result from an infinite number
of possible chords through the ball each with its appropriate probabilities and outer pure
state points. This means that the information contained in the density matrix (point p) is
much less than that of the chord that produced it. The particular knowledge of the pure

1Equality results in the equation A — X = 0 = \(\ — 1) with eigenvalue solutions A\; = +1 and X2 = 0.

2The term “Bloch” sphere (Felix Bloch, 1946) is now often used for qubits and pictured with state |0)
or up at north pole, state |1) at south pole, state (|0) + |1))/+/2 for x intersection, (|0) +i|1))/+/2 for y and
no specified radius or location. The Bloch sphere has an earlier relative called the Poincaré sphere dating
back to 1892.

3This resembles projection operators P, = X|u;)(u;|. If we were dealing with Euclidean vectors, we
would call this outer product a dyadic (Gibbs, 1884). Its terms would contain unusual things like products
of unit vectors, ], kk....

4 p*> = p because the middle expression is (¢|¢)) = 1 from normalization of psi.
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Fig. 1. Geometrical interpretation of the 2x2 density ma-
trix.

FIGURE 1. Bloch ‘sphere’ B® (3-Ball) of density matrices for a 2-state sys-
tem centered at 41, from reference [2]. The boundary sphere 9B% = S?
represents “pure” states, while the interior consists of mixtures. The point
A = B = C =0 is the south pole of the ball. The properties of B are also
discussed in Penrose [3].

states is lost. Still, that density matrix is adequate to calculate the results of experiments,
e.g., (A) =Tr(pA) .

2. EXAMPLES

To express the density operator in matrix form, we first select a basis {|u,,)}. Then,

(2) =S el = prn = (mlplun) = S piluim 165) (Vilun).
Rows and columns are labeled by the basis indices. For the unpolarized light example
above effectively containing plane polarizations randomly in the H and V directions, we
have a 50%- 50% blend of the states V = ﬁ(|R> +|L)) and H = ﬁ(|R> — |L)) so that

1

(3) p =5 H)(H|+ 5 |VIV| = 3|R)R| + 3|L)(L], or p = < 0 1 )

(e}

like the example in equation (1). The density matrix is the same whether R,L or H,V is
used as a basis. Light only has two polarizations so that some of its math is similar to the
case of electron spin one-half (like orientation of a Stern-Gerlach magnet showing spin up
or down in a z-direction).
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As Penrose emphasizes [3], the above density matrix pertains for all possible orientations
such as:

6= 5 N+ DU o= N [+ 3] =)= 0m p=5 )N+ 2N\
have the same identical matrix form, p. As shown in Figure 1, this density matrix is rep-
resented by the central point which is called “maximum mixed.”

Trace: Examine Requirement 5 from the introduction: look at Tr(pA) knowing that:
Tr(A) =3 ,(i|Ali) and >, |i)(i| =1 at first just for the simplest case p = [¢)(¢)|  [5].
Then, Tr{pA) = Tr(|0){B]4) = S, G10) (6IAJ8) = 1AMl 6) = (W1 AT|0) = (5] A[).
So, (A) = Tr(pA). For the more general mixed state case, p = . p;|[¢;) (i, we simply
have a sum of terms in the calculation.

If we apply the density matrix p = 41 from the example equation (3) onto say a spin-z

operator S, = Lo, we would obtain (Spiny) =Tr(pS,) =0.

The Pauli ‘sigma’ matrices are most often presented by:

o (1) () (0 %)

Any 2x 2 density operator can be expanded using the Pauli matrices along with the identity,
I as:

_1 N | 14+a3 a1 —1ias
(5) p—2(I+a 0)_2<a1+ia2 1—as >’
which obviously has the form of equation (1). The vector @ = (a1, az,as3) is called the
“Bloch vector” about the central point 3/ of Figure 1. The equation could also be ex-
pressed using the hypercomplex quaternions H = {1,¢q; = +io;} (Hamilton, 1843). A
maximum mixed density matrix like p = %I has no distance, @ = (0).

The particular case examples above tend to be boring, so lets now create a partially
mixed state. Prepare a merged beam of electrons with spin-up or spin-to-the-right in a
50% — 50% probability combination. That could be done by combining the output of two
Stern-Gerlach magnets with a vertical orientation and a horizontal orientation to give |u)
and |r) = ﬁ(|u> + |d)) while blocking out any down and left spins |d) and |l). Each of the
separately prepared spins up and right are pure states. The resulting density operator is
now:

= lu(ul + & - 3(lu) +d) (ul + {d]) = Flu)(u| + £(|d)(ul + |u)(d| + |d)(d]). Then the

density matrix is:

[ 3/4 1/4 . _ (/2 12
(6) Ppartially mized = < 1/4 1/4 > ) while |7"><7’“ - < 1/2 1/2 >

by itself is a pure state (Block Sphere at the x-axis). p? # p, so p does not represent a pure
state. But (|r)(r|)? = |r)(r| which is a pure state. The Bloch vector for pis @ = (1/4,0,1/2)
or |a| ~ 0.56 < 1.0.
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The diagonal elements in a given basis are always the probabilities to be in corresponding
states. The off-diagonals measure ‘coherence’ between any two of the basis states.

3. ENTANGLED STATES

A large number of copies of the same prepared system is an ensemble state, and density
matrices are largely used to describe ensembles (with probabilities measured by frequency
distributions). Density matrices can be applied to entangled particles when we have an
ensemble of pairs or groups. The most common current way to prepare entangled pairs of
photons is using laser beams on a nonlinear crystal. Sometimes an initial photon of some
wavelength will split into two photons each having nearly double wavelengths to conserve
energy. in SPDC (spontaneous parametric down conversion process) two conical beams are
formed where one has vertically polarized photons and the other has horizontally polarized
photons. With care about geometry, two divergent rays can show entanglement where a
joint state is: |¥) = ﬁ(\H>|V> — |V)|H)). We let one ray go to system A (often called

“Alice”) and the other ray go to system B (often called ”Bob”).

We could consider a state in system A to be labeled [1) 4 and a state in system B to be
|¢)p. If these two states are independent, then the combined state may be written as a
tensor product of the two states in order: |U)ap = [)a®|p)p  [6] (perhaps conveniently
written as just |¢)|¢)). This expression refers to “separable states” or “product states.”
Joint states are called entangled if they are inseparable (cannot be expressed as simple
product states). The HV states from SPDC are an example of entangled states. There
is a quantum state given for the system as a whole but its component states cannot be
described independently. “There is no way to associate a pure state to the component
system A. Alice doesn’t know if she will receive an H or a V photon, but once she does
know, the state of Bob’s photon is immediately determined (as a V or an H). Comparing
the results of the two systems will always show perfect correlation (in the absence of noise).

In 1930, Paul Dirac introduced the idea of a “reduced density matrix” as a “partial trace”
of the composite density matrix for A over the basis of system B. “The reduced density ma-
trix for an entangled pure ensemble is a mixed state,” e.g., pa = $(|H)a(H|a+|V)a(V]a).
A necessary and sufficient condition for a bipartite pure state is if it reduced states are
mixed. For light, two entangled photons together are a pure state, but each system sepa-
rately effectively sees unpolarized light.

For the reduced density matrix of A, Susskind [5] says that we ‘filter out’ Bob’s half (or
a composite 4 x 4 matrix) to just get Alice’s effective 2 x 2 matrix. Avoiding operator outer
products, the numerical matrix values for Alice are given in his notation by
Para = »_p ¥*(a,b)1(a’b), where a and a’ are spin states like u,d, and we force Bob’s spins
to be the same, b = ’. For dimension 2 bases of u and d, we have:

(7) Paa’ = @ZJ*(aa UW(G,, u) + w*(a,a d)¢(a,7 d),
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e.g., component pgy = w*(dv U)”L/f(uvu) + ( ) ( 7d)
Then for a particular entangled state vector like |¥) 45 = #f(\ud + \du>), we would obtain
1/2

0 1 /2 . Note again that

the usual maximum mixed reduced density matrix, pa = (

this corresponds to the center point of the Bloch sphere.
A and B are highly correlated, but A and B by themselves are random.

4. vVON NEUMANN ENTROPY:

Von Neumann (1932) defined a quantum entropy by a formula similar to a previous
classical Gibbs entropy as:

S(p) = —Tr(plnp), where p is the density matrix. One may use either natural logs or
log base 2 (loge = In or logs). If p represents a pure state, then its entropy vanishes (the
rule p = p? implies that S(p) = 0). Or, we could say that a pure state can always be
written in its eigenbase as:

(8)  p1=1¢)®| = col x row(1l 0) = < (1) 8 > . So, S(p1) = 1log(1) 4+ 0log(0) = 0.

For a finite system, the entropy tells the degree of mixing of the state or the departure
from a pure state or the minimum number of bits (log2) to store the result of a random
variable. A student’s understanding of this may be initially blocked by the strangeness
of the idea of taking the logarithm of a matrix. For square matrices, one can define this
as a series expansion of matrices (like that for taking the exponential of a matrix as for
Lie groups). And the knowledge that logs and exponentials are inverses can be applied to
advantage. But there are also many special tricks for doing it more simply than this. And

sometimes, the results are unexpectedly simple (such as In < é 1 ) = < 8 (1) ) ).

For a maximally mixed state such as the example in equation (1) where po is the central
point of the Bloch sphere, entropy is maximal [8]:

e (R ) = () o

One of the easier tricks for calculation of entropy is the following: Since p is a positive
semi-definite operator, it has a spectral decomposition such that p = Y. \i|p;) (@] where
|pi) are orthonormal vectors, \; > 0 and > A; = 1 [7]. Then the entropy of a quantum
system with density matrix p is the sum: S = -3 \jIn A\; = —Tr(plnp)

O N
O N

The above can be applied to the case of a bipartite entanglement entropy as the von
Neumann entropy of either of its reduced states. That is, for a pure state pap = |V)(V|45,
it is given by: S(pa) = —Tr[palogpa] = —Tr[pplogpr] = S(pp) where py = Trp(pap) and
pB = Tra(pap) are the reduced density matrices for each partition.
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W) = %(|001> +1010) + 100))
The simplest one is the 3-qubit GHZ state: |GHZ) = %. Another important
property of the GHZ state is that when we trace over one of the three systems we get

Trs ((000) + [111))((000] + (111])) = UCUOOFIDAL wpich is an unentangled mixed state.
It has certain two-particle (qubit) correlations, but these are of a classical nature.

CONCURRENCE: can be defined for representing entanglement for two qubit states.
C(p) = max(0,\; — Ay — A3 — \q) in which Ay, ..., A4 are the eigenvalues, in decreasing order,
of the Hermitian matrix R = \/\/pp/p [6] with p = (o, ® 0y)p*(0y ® 0y) the spin-flipped
state of p,o, a Pauli spin matrix, and the eigenvalues listed in decreasing order. Other
formulations[edit] Alternatively, the \.s represent the square roots of the eigenvalues of
the non-Hermitian matrix pp. Note that each )\; is a non-negative real number. From the
concurrence, the entanglement of formation can be calculated.

Monogamy is one of the most fundamental properties of entanglement and can, in its
extremal form, be expressed as follows: If two qubits A and B are maximally quantumly
correlated they cannot be correlated at all with a third qubit C. In general, there is a
trade-off between the amount of entanglement between qubits A and B and the same qubit
A and qubit C. This is mathematically expressed by the Coffman-Kundu-Wootters (CKW)
monogamy inequality:

Cfl g+ C’ic < C’j( BCY where Csp,Cac are the concurrences between A and B respec-
tively between A and C, while Cy(pc is the concurrence between subsystems A and BC.
[cite Quantiki]

It was proved that the above inequality can be extended to the case of n qubits.

If a pure two-qubit state is written as ¥) = a| 1) + b 1)) + ¢| {1) + d| 1), then
concurrence is C' = 2|ad — bc| > 0.
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5. APPENDIX

The Schridinger equation an be written for density matrices, p(t), as ih-2p(t) = [H, p(t)].



QUANTUM MEASUREMENT

DAVE PETERSON

ABSTRACT. The concept of quantum measurement poses many problems for students of
quantum mechanics. One of the biggest problems is the von Neumann postulate about
non-unitary reduction of a wave-packet. But is this really a fact or just a convenient
ad-hoc assumption? Quantum measurement is poorly defined in almost all textbooks.
[Preliminary].

1. INTRODUCTION

Discussions of measurement postulates found in quantum mechanics texts have key state-
ments such as, The state of the system immediately after a measurement is always an eigen-
vector of an observable with a resulting eigenvalue (e.g., [1]). This is sometimes called the
“projection” or “collapse” or “reduction” postulate and is often followed by the comment,
“If we perform a second measurement of an observable A immediately after the first one
(that is, before the system has had time to evolve), we shall always find the same result.”
The term “eigen” is German for “characteristic.”

This postulate can be confusing to students for a number of reasons:

e physics texts are rather notorious for not defining their terms in plain English:
How is the word “measurement” defined? What is a “state,” what is a system?
Instead, we have mathematical statements such as “the state of a quantum mechan-
ical system is described by an element of an abstract vector space” or Hilbert space.

e If one is picturing a state as say a wave-packet, a measurement may collapse the
wave so that it no longer exists. So how can we talk about it after it is measured?
(e.g., a photon forming a developed spot on a photographic plate). Measuring the
position of a photon destroys the photon and hence is not a projective measurement.

e We are drilled to remember that ‘A phenomenon is not a phenomenon until it is a
measured phenomenon’. We are not supposed to talk about deduced values that
have not yet been measured (counterfactuals).

e The equations of quantum mechanics are linear, but “collapse” is non-linear (and
random and non-deterministic and irreversible ). And the mechanism for this is
largely unknown.
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e A wavefunction may be a linear superposition of different states which should evolve
deterministically in time. But measurements always reveal only one particular defi-
nite state. How this can happen is largely unknown and is called “The Measurement
Problem.”

e There are a variety of interpretations of the mathematical formulation of quantum
mechanics, and some of them don’t believe in collapse or quantum jumping into
eigenstates.

o Measurements depend on macro-apparatus which is deemed to be largely classical.
But some believe in “quantum all the way up.” How do we obtain classical answers?

e Physics texts gloss over the topic of measurement. They don’t give many useful
examples. They don’t say much about state preparation, entanglement with ap-
paratus, possible derivations of the “Born Rule” for output probabilities, history,
people, and philosophy.

Can we resolve these problems? First, we can show examples in which a state is projected
and preserved for awhile prior to detection and destruction.

2. SOME ILLUSTRATIVE EXAMPLES OF M EASUREMENTS

The concepts of measurement processes come largely from Johnny von Neumann’s 1932
book on quantum mechanics [2], and this became “the Bible of the so-called Copenhagen
interpretation of quantum mechanics” [3]. He largely accepted the philosophies of Bohr
and Heisenberg who thought of wave functions as representing “our knowledge” of quan-
tum systems (rather than any underlying physics or reality in the wave function itself).
That is important because an experiment reveals information, and it is preserved after the
measurement (so we can talk about an “after” of “our knowledge”). Also, not many are
aware that he was motivated by thoughts about the Compton effect, so we need to talk
first about that.

Compton Scattering: The original Compton experiment of 1923 scattered 17 keV x-rays
from electrons in the atoms of a carbon target . He observed that the original photon
wavelength is increased after scattering as if they were quanta on recoil electrons. This
was very important because it convinced skeptics that photon quanta were real. If photons
are scattered at an angle, then there is energy-momentum loss from the photon which is
transferred to the electron. Detection of the electrons requires that the photons now have
specific reduced E and p at some opposing angle. The final photon and electron momenta
are required to satisfy conservation of momentum. Then if p.’ is measured, we know p,’
and could later measure it to be what we deduced. That is, the momentum state |p.)
must have jumped with the interaction (have been projected) prior to later measurement
verification [5]. von Neumann then knew that the properties of the yet unobserved partner
must have been determined by a first measurement (projected onto the partner). Note that
this idea is very similar to what takes place in EPR entangled pairs where a measurement
on one party results in a projection on the other. And its values could exist at intermediate
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times prior to any final measurement.

Single Photon Null Experiments: The Compton example had two particles which inter-
acted with each other. Roger Penrose [4] has simpler one particle examples called “null
measurements.” His book The Road to Reality uses the symbol U for the smooth unitary
development of a wavefunction and R for state reduction (non-unitary jumping). It is
his hope that some future mathematics will include both of these evolutions as limiting
cases. His R process is also called the von Neumann projection postulate. One example
is a photon encountering a 45° tilted beam splitter (50%/ 50% BS) which either trans-
mits a photon or reflects it: [¢0) = |7) + |p) (rho for reflection). Detectors (apparatus)
terminate the end paths of the reflected and transmitted beams. If it is known that a
photon goes into the beam splitter but is not detected by the transmission detector, then
it is immediately known that its state is the reflected beam (psi is reduced to the reflected
state rho, |p)). Methods now exist for incoming state preparation so that we can know
when a photon is actually entering an apparatus. Similarly, if a circularly polarized photon
hits a semi-reflected mirror (50%/ 50% M), it can be transmitted or reflected backwards.
But reflection changes the handedness of the polarization to a new state: [1)4) = |74)+|p—).

Single Photon Polarization: There are various ways to separate out components of po-
larization of light. One old way is by using a crystal of calcite which has different indices
of refraction for different polarizations. A crystal can be oriented so that an ordinary
ray passes straight through (say a vertical polarization, V) and deflects a horizontal po-
larization, H, upwards. Little photocell detectors can be positioned on the resulting two
beams (say “h” for a high deflected H beam and “z” for the zero-undeflected V beam. An
experiment involves both the beams and the apparatus together, H with h and V with
z. A technique called “down-conversion” can convert a high frequency photon into two
entangled lower frequency ones, and one of those can be detected and give notice that the
other single photon is propagating into an experiment. Then, a triggering of the h detector
for the H polarization means that we know there is no photon in the V channel for the z
detector. The triggering of one informs the other.

Stern-Gerlach, SG: A specially shaped magnet (sharp angle on one side and wide
iron face on the other) can give an inhomogeneous magnetic B field (VB) which can
alter the path of little magnetic dipoles passing through the field (e.g., silver atoms with
single 5s valence electrons). A neutral silver beam will then split into two beams for
spin-up and for spin-down. Atoms with spin 3/2 A will split into four beams with spin
+3/2, +1/2, —1/2, and — 3/2 h. Use of SG deflected beams is one of the most common
textbook examples of state preparation. If a silver atom is deflected into an upper beam,
then a repeat experiment with another similarly oriented SG magnet will keep it in the
upper beam (projections repeat). The spin-up state is preserved over multiple experiments.
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A simplest spin-1/2 matrix example is an incoming beam of silver atoms in a superpo-

sition 1) = al0) + b|1) of spins down and up which ends up in only-down spin states. Let
the projection operator be Pj|i)) = b|1):

0

b

W r=mai=(§) o 1y=(g ) aarmw=(g ) (5)=(

A second projection would give Py Pi|¢)) = Pi2[¢)) = Py|p) = b|1).

o

The SG experiment is often used to demonstrate a projective measurement. The
Feynman Lectures [7] for example discuss “filtered” Stern-Gerlach paths for spin-one atoms
in which the lower separated beams are blocked so that only an upper spin-one-up beam
passes through. Then a second SG apparatus on that filtered beam will only result in
another spin-one-up output beam. The apparatus projects the possible incoming states
into just a spin-one-up final state. And since a projection operator has the property that
P P = P? = P, a second projection won’t change the state.

Unfortunately, in Stern-Gerlach (SG), the strongly inhomogeneous magnetic field is too
perturbing to conserve angular momentum (so this commonly used example really doesn’t
apply to a von Neumann measurement) [5]. But an equation like (1) would still apply to a
polarizer on a light beam which is in a superposition of horizontal and vertical input states.
And a second similarly oriented polarizer would not change the output light polarization
resulting from the first polarizer.

[B] Mathematically, a measurement in quantum mechanics can be considered as a set
of measurement operators {M,,} over an index of output states. For the simplest case of
projective measurements, the measurement operators are the elementary projectors (such
as M, = [0)(0] . If 1) = al0) + b[1) , then py = (| M| My|9)) = (9]0)(0]¢)) = |af>.
(like in the Born rule). A two-qubit state could have operators like M,, = [00)(00| . An
observable M can be decomposed as M = YXmp,,. A projective measurement is repeatable.

The most general kind of measurements are “POVM’s” (positive operator valued mea-

sure) which can be applied even when we have imperfect measurements that fail. These
are called generalized measurements and are non-projective. We create a set of positive
operators F; > 0 which sum up to the identity, one ( X E; = I).
Example of POVM: Suppose an experimenter is presented with two non-orthogonal states
given by: [11) = |0) and |t/2) = (|0) + [1))/v/2. He would be unable to distinguish between
them by usual projection methods. What he can do instead is apply POVM elements
which at least will never make an error of mis-identification [13][15]:

V2 . V2

(2) E1=1+\/§!1><1\, 2= 1/

(10) =[O = (1)), Ez=1—E1— Ea.
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An outcome of E; > 0 implies that the state must have been [¢)2) because (¢1|E1|¢1) = 0.
And Es > 0 implies state |¢1), and E3 > 0 implies “no-inference.” Unlike projective mea-
surements, here we have F;E; # 0;;.

Introductory quantum mechanics tends to deal with closed quantum systems that ideally
do not interact with the environment — an external quantum system. This is an unreal ab-
straction relevant to projective measurements and unitary operators. In thermodynamics,
open systems exchange energy and matter with their environment. Similarly, real quantum
systems generally do exchange information, energy and entropy with their environments.
In these systems, evolution is no longer unitary and the Schréodinger equation becomes
inadequate [14].

3. DECOHERENCE

According to Wikepedia definitions, “quantum decoherence is the loss of coherence or or-
dering of the phase angles between the components of a system in a quantum superposition.
One consequence of this dephasing is classical or probabilistically additive behavior.” The
concept goes back to 1970 in studies by Dieter Zeh. Its main advocate now is Wojciech
Zurek who states, “Decoherence selects preferred pointer states that survive interaction
with the environment” [10]. His definition is, “Pointer States are the preferred set of states
of an open quantum system that are singled out by the persistent monitoring by the en-
vironment. They entangle the least with the environment, and are least perturbed by
decoherence.” He introduced a new name, “einselection” for “environment-induced super-
selection.” In his analysis, he elevates the von Neumann projection postulate to a core
postulate, “Immediate repletion of a measurement yields the same outcome.

Examples of measurements include determining a range Delta x for a free particle fol-
lowed later on by a determination Delta p (Ap). “QND” Quantum Non-demolition mea-
surements avoiding back action. Cavity photons crossed by Rydberg atoms. Von Neu-
mann’s non-unitary reduction of the wavefunction eliminates off-diagonal elements from a
pure-state density matrix to get a mixed state. But it is possible to avoid this by unitary
operators involved in the coupling of a system-detector pair to the environment (e.g., [12]).
Decoherence has dissipative and dephasing contributions (modification of populations of
states and randomization of relative phases of quantum states).
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Nobel Prize for Topology in Exotic Materials.

David Peterson, 10/9/16 - 11/24/16 - 12/31/16 Revision 1.

On October 4, 2016, the Nobel Prize in physics went to Thouless, Kosterlitz, and
Haldane “for theoretical discoveries of topological phase transitions and topological phases of
matter.” Half of the prize was given to David Thouless for two key advances: In the early
1970’s it was believed that superfluidity and superconductivity were not allowed for very thin 2D
layers. Kosterlitz and Thouless showed that wasn’t true with the use of topological concepts.
And then in the 1980’s, Thouless helped explained the mysterious “Integer Quantum Hall Effect
again using topology and “marked the discovery of topological quantum matter.” Since then,
condensed matter physics of topological materials has blossomed!

[ Nobel prizes were awarded on December 10, 2016. But Thouless has not yet presented his
work yet. Hopefully he will submit an essay sometime in 2107.]

This note mainly focuses on the Integer Quantum Hall Effect (“IQHE” or just QHE)
[e.g., see Figure 1 below]. One author declared in general, “The quantum Hall effect (QHE) is
one of the most remarkable condensed-matter phenomena discovered in the second half of the
20th century. It rivals superconductivity in its fundamental significance as a manifestation of
quantum mechanics on macroscopic scales.” [5] It “is now used to maintain the standard of
electrical resistance by metrology laboratories around the world” and measures the fine
structure constant alpha accurately to 10°%.

Typically, IQHE needs a two-dimensional electron gas (2DEG), and that can be formed
in a thin layer of semiconductor next to an insulator (called an “inversion layer” , e.g., AlGaAs on
GaAS). The thickness of this gas may only be 30 angstroms but still can form a broad holistic
layer over the relatively large semi-rectangular Hall probe area. The quantum Hall effect is
macroscopic! Temperatures < 1 kelvin and magnetic fields > 10 tesla are often also needed [but
graphene can show effects at room temperature]. Applied voltages in the long x direction of a
rectangle cause a build-up of voltage in the y width direction, so conductivity technically needs
be a 2D tensor: J, = 0,E; (includes Jx = 0x/Ey) . Hall resistance is measured in the cross y

direction and was observed to change in integer steps on plateaus .

Oy = ve?/hor 0y = — h/ve* =Ry [v. Ry =h/e* ~25.6kQ is called the “von Klitzing constant
(and is good to 9 figures). [note that the fine structure constant is

a = e?/4me, he [SI1, so Ry determines o. 1. A requirement for topological integer plateaus is
having imperfect materials (doping ions, surface roughness, random disorder -- and most
materials do have uncontrolled imperfections). Large magnetic fields are needed to see the
biggest “ground” plateau. And, note that (with the right setup) going to 30 T may introduce an
unexpected “fractional plateau” (1/3rd ) -- a separate and very weird arena with largely different
physics (see Fractional Quantum Hall Effect FQE in a section below).



Details of the IQHE are intricate, dovetail in an almost conspiratorial way, and are
difficult to the point of first requiring reading an entire book on the subject (such as that of David
Tong, [1] ). Robert Laughlin (Nobel 1998) would insist that this new physics is “emergent” from
collective phenomena and can not be mathematically deduced from fundamental physics (the
whole is greater than its parts). Others will try anyway but with some mystery and opaqueness.

Before a more detailed view of all this can be discussed, it is necessary to first introduce

several preliminary topics: the standard Hall effect in classical physics, Topology, Landau
levels, Anderson Localization, Fermi levels, and Edge modes.
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[Source: K. v. Klitzing, G. Dorda, M. Pepper: New Meathod for High-Accuracy Determination of the Fine-
Structure Constant Based on Quantized Hall Resistance, Phys. Rev. Lett. 45 (1980) 494-497, Figure 1.]

Figure 1. IQHE Plateaus shown by quantized electrical resistance Rxy versus applied
magnetic field B and labeled by Landau level integers, i. Continuing B to above 10 T would
reveal the i=1 plateau. The Landau Level (LL) spikes are for direct lengthwise resistance Rxx >
0 and occur at the transitions between plateaus. On the plateaus, Rxx = 0.

Classical Hall Effect:

Every freshman physics text presents the classical Hall effect of 1879. If a current, I,
flows through a thin metallic strip that has a strong perpendicular magnetic field, B, going
through it, then a potential difference develops between the sides. Some density of charge
carriers, n, in the strip flows with a slow drift speed v and experiences a cross field force



Fy = qv, x B_with current I, = nedwv,  Where delta is thickness (very thin) and w is cross

width in the y-direction. Then,
Fy = ev,B = BI_[newd. ButV = Fw,so, V, = I,B./ ned .

And resistance R,, = V /I, = B/ned Eqn. 1

The formula says that even to get micro-volts of voltage will require high magnetic fields
(like B =1T where tesla = 10,000 gauss in current college labs) and extreme thinness (6 ~20
microns or less).

The American physicist Edwin Hall used thin gold leaf for his conducting strip and
revealed the effect well before the discovery of the electron. So what he revealed was that the
quantity “ne” flowed through the gold as a negative current. Positive current flow would give an
opposite side-to-side voltage (good for semiconductor positive hole flow). Using E as the
induced electric field sideways and J is the current flow density through the strip, a “Hall
coefficient” was defined as:  "Ry," = E,/J, B, = V,d/[,B = — 1/ne [Eqn. 2]
showing a way to measure carrier density or magnetic field B (“Hall effect probe). Note that this
unfortunate naming convention is different from the Hall resistance above, so resistance is
R, = BR,/d. The rewards of this classical measurement are knowledge of charge density for

carriers and resistivities for materials. And in the 20th century, carriers could be “holes” with an
effective positive charge. One should also study the “Drude Model” which adds a friction term to
cyclotron motion in the form of a scattering time, t . It is this model that makes clear that
conductivity should be treated as a 2x2 tensor leading to resistivities:

Q,, = Me/ne*t versus the usual Qy = B/ne. And when we find that

0, #0, then o, = 0 =0, = 0 ! (unexpectedly the system is then a perfect insulator). The
longitudinal Rxx depends on sample composition and sample length.

Topology:

We tend to think of topology as the counting of “holes” through geometric objects
(something through which a string can thread); and for one hole, we consider a coffee cup to be
“the same as” a donut. The number of holes represent “topological invariants” that are usually
integers. But, the term “hole” can also apply to objects of any dimension. So, for example, the
inside of a sphere is called a 2-hole (something that can be filled with water). There are also a
variety of types of topological indexes and other concepts that are hard to picture.

One goal of topology is to identify properties of objects that are invariant under
continuous deformations. A simplest example of a topological concept is that of “deformation
classes” or “path components” of geometric regions, S. This means that for any two points,
there can be a continuous path ending on the points, and this idea obviously applies to a
2-sphere, or a torus surface, or infinite Euclidean spaces E" . The symbol 7,(S) =0 is used for



the set of all path segments that can be deformed into each other. A virtue is that “global
topological properties are robust against local perturbations [7].”

But, if there is a forbidden “gap” separating two materials, then there is no continuous
path between them. The idea of a forbidden barrier also applies to physical “phases” so that
solid ice is separate from water fluid ( liquid/gas) on a pressure versus temperature plot (a path
does exist between liquid and steam by going around the “triple point”). There is a “phase
transition” between between solid and fluid states. We now know that there are other types of
phases in condensed matter physics such as topological superconductors, topological
insulators, superfluidity, and now the quantum Hall states. In IQHE, there is a phase transition at
specific energy levels so that a normally insulating material suddenly becomes a good
conductor.

The role of topology in condensed matter physics often enters through quasi-momentum
on the “Brillouin torus.” For crystals, electron states depend on the geometry of the lattice
which generally repeats from atom to atom. The potential energy is periodic like the lattice, and
the wavefunction is also periodic: u(x + na, y+nb) = u(x,y) for a rectangular lattice. The
primary difficulty is dealing with the vast variety of possible types of crystal structures. Including
momentum gives a “Bloch wave:” y(r) = e*" u(r) where k is the crystal wave vector and
momentum p = hk.

The simplest rectangular physical lattice has another view called the “reciprocal” lattice
with primitive cell sides: A = 27t/a and B = 2rt/b which is effectively a Fourier transform of a
simple physical lattice. Reciprocal lattice points or vectors G in this Fourier space are
G = hA + jBwhere h and j are integers. Crystal wave diffractions are satisfied when Ak = G. A
cell of size A x B is called a “first Brillouin zone.” Because of periodicity, the opposite sides are
“identified”, and that means homeomorphic to a torus ( 77 for 2d and T* for 3d.). “The

fundamental group” for the torus is: 7, (T%) = m,(S") x m,(S') = Z x Z , where Z is the set of
integers (e.g., representing “winding numbers” about a circle).

This means that there could be non-contractible loops (rather than the previously mentioned
arcs) around the torus representing many integers of winding numbers. [Note that S being
“simply connected” implies that m, (S) = 0 and 7, (S) = 0 ]. “The full ensemble of states over the
Brillouin torus is always trivial.” But an energy gap can cause a split into two well separated
sub-ensembles each with non-trivial topology. This is related to Thouless’ original Chern
topological index. “The Chern number is topological in the sense that it is invariant under small
deformations of the Hamiltonian.” [21]

As a short hint on these topics: Chern number, Berry phase, and classical
“Gauss-Bonnet” Euler characteristic can all be calculated as integrals.
K(sphere) = (1/2m) [KdM = x=2-2g.E.g., %(S°) = 2, g=1-y/2 = 0, and y(T*) = 0[23].
M

K is the “curvature” of a Manifold, g = genus = holes/handles for a 3D surface. A sphere has no
handles and a torus has one hole. A simpler example is for a 2D circle



Circle s : (12m) [ Kds = (1/r)(1/2m)(Cir =2nr) = 1= in2D.

circle
The 3D genus and Euler characteristic also pertains to the old high-school geometry: vertices -
edges + faces= V-E+F. For a 4-faced tetrahedron, 4-6+4 = 2 so g = 0 (no holes).

Berry Phase uses Stokes’ theorem to get a form: y = [dS - Q(R) where Omega is a Berry
S

curvature from a Berry connection and R is a vector parameter of time.

The topologically invariant Chern number, Ch, or ¢, comes from the integration of “Berry
curvature.” A nonzero Chern number says that there is an obstruction in applying Stokes
theorem over the entire parameter space [ -- see “Geometry in Modern Physics” [6] ]. If one
wants to see plentiful applications of topology, condensed matter physics is the place to be --
however, the dovetailing of the Chern numbers to IQHE is acknowledged to quite difficult [9].

Many articles on topology and physics deal with the “real world.” But, the topology in the
quantum Hall effect is really a topology in a quantum state” and quantum topology is now used
for many application. “Berry phase is the simplest demonstration of how geometry and topology
can energy from quantum mechanics” and at the heart of the IQHE. This phase shift occurs
when a complete loop is made in some parameter space and is geometric and separate from
the usual Edt and kdx phase contributions. The leading example is the: Aharonov-Bohm (AB)

effect with phase change v = §eA,dx’ (e.g., for a closed path around a solenoid). And this is
C

applied below.

In modern condensed matter experiments, one can additionally see analogue cases of
formation of Dirac monopoles and also Yang monopoles with non-vanishing 2nd Chern number
measured for the first time [7]. A research article by NIST said: “Fundamentally, topological
order is generated by singularities called topological defects in extended spaces, and is
quantified in terms of Chern numbers, each of which measures different sorts of fields traversing
surfaces enclosing these topological singularities. Here, inspired by high energy theories, we
describe our synthesis and characterization of a singularity present in non-Abelian gauge
theories - a Yang monopole - using atomic Bose-Einstein condensates ...”

Topological materials have topological properties that are “robust and insensitive to
perturbations and impurities.” They “stay the same if you continuously change the system:
stretching it, straining it, shaving off some layers — or really any change that doesn’t cause a
phase transition.” [17]

Claimed definitive explanations of IQHE can be shown in several different ways; and one
seems to require “Non-Commutative Geometry,” [Bellissard, 1994, ref. [3] ]. Hall conductance is
a non-commutative Chern number, “Ch.” Thatis, 0., = ve’/h = (e*/h) Ch(P ) interpreted as a
Chern character from a “Kubo-Chern” relation. The first inroad to understanding IQHE
quantization was given in a famous (-ly undreadable) 1982 paper referred to as “TKNN” [8] for its



four authors (one of them being David Thouless). It says “Hall conductance is quantized
whenever the Fermi energy lies in an energy gap, even if the gap lies within a Landau level.”

Landau Levels:

A first step is to talk about electron motion in a thin film with a normal magnetic field, B.
The Lorentz force F = qvB will be balanced out by “centrifugal” force F = mv?/r where
v/r = w = angular motion. The electron will go around in circles with a “cyclotron” frequency”
w. = gB/m where m is the effective mass of the electron. Since Boltzmann’s constant is
ky =8.61 x 107 ¢V /K and lab temperatures are below 1 K, thermal fluctuations have negligible
effect. This allows for the emergence of quantum effects such as quantized Landau levels and
quantized magnetic flux. A typical energy for hw. ~ 10 meV for fields B ~ 10 T . An analogy
with old Bohr, one aspect of circular motion is that a circumference has to be integer multiples of
wavelengths round the circle.

Mathematical Derivations:

The presence of a magnetic field in a z-direction alters a term in the Hamiltonian as
H=(@p- qA)2/2m as if a vector potential A times charge acted as “electromagnetic momentum”
The term (p-eA) is called “canonical momentum,” as opposed to usual “mechanical momentum”
p* ., = mi’. The vector potential is not gauge invariant, and Lev Landau picked a special
‘Landau gauge” for A: A, = — By (oralternately A, = Bx with all other A, = 0 ) which acts
as a simple shearing field indeed giving V x A = B as it should. Then the Hamiltonian could be
written as
H = [(p, +eBy)’ + py2 + p,21/2m . If we were to label an “offset” distance as y, = —p,/eB,

we could write out a term, [mw >(y — y0)2/2], exactly matching the first term above (one has to
expand both squares and match up the terms). The this second degree of freedom is the
coordinate of the center of the cyclotron orbit.

Now, the standard “Linear Harmonic Oscillator” (LHO) has a similar form
H = p*/2m + mw/2y*/2  where the last term incorporates a vibrating spring energy. For

IQHE, we have a (y —y,)* term instead of a y 2 term implying a new off-centering concept.
This displacement can be thought of as y, = kI* where [ is “magnetic length”

| = \[hc/eB = 25.7nm/~/B teslas . In the IQHE, B includes many magnetic flux quanta

®, =hle ~4x 10> Wb -- webers a unit of magnetic flux (or half that value for the case of
Cooper pairs for superconductivity vortices) so that the density of magnetic flux is

B = ®,2nl* .

Using these Hamiltonians in a quantum mechanics setting requires solving the
Schrodinger equation where H is treated as an operator: ¥ = EW. We don’t have to do that



here because all standard texts solve the easier LHO problem and present its wavefunctions.
We then know that the quantum linear harmonic oscillator ends up having quantized energy
levels according to the famous formula: E = (v +1/2)hw ; and because the Hamiltonians are
similar, that will also apply to the energies for circular motion Landau Levels. So energy could
be pictured as increasing in steps of

v=0,E, = hw,/2, andthenv =1, E, = 3ho./2,and v = 2... So AE = hw, ~ 10 meV is the
gap separation energy.

So, electrons may ideally only occupy orbits with discrete energy values.

And, the n above determines the integer n in the IQHE! The Landau level location are where
the IQHE makes its o, jumps in cross resistivity, and the “spikes” in Figure 1 represent direct
resistivity o,,. These are also peaks where the Landau “density of states” [DOS = g(E) ] or
“degeneracy” is high. The strangest result is the occurrence of a “phase transition” of extended
states at every Landau Lever band center (i.e., the “spikes”).

Note that the energy here didn’t depend on the p_ = #ik, , so degeneracies can exist. If
LHO eigenstates are labeled by |¢, >, then the state of an electron can be:

W(x,y) = exp(ikyx) ¢,(y —y,) Which depends on the quantum numbers n and k,. Asthen
values and energy levels rise, it turns out that the now fuzzy wavefunctions increase in radial
size as well [as <r?>> = 2(n+ 1)h/eB (wider circles). And they also have angular momentum:
LW, = hn'W, . This radial increase turns out to be important to the understanding of IQHE.

As mentioned before, these Landau levels can only be observed for very low
temperatures and very strong magnetic fields: 7w, >> kT . Itis important to estimate how
many sublevels can exist in a Landau level (the degeneracy of the ground state). The answer is
N ~ BL.L,/®o, where L is the width of the Hall strip [5] and Phi is a tiny quantum of magnetic
flux. If due to Zeeman energy splitting, it is”typically about 70 times smaller than the cyclotron
energy” [9] for GaAs. The degeneracy increases with the applied magnetic field through a
characteristic area. “There is one electron-state per Landau level per flux quantum.” So, in
tests where the B field ramps up, more electrons can go into the lower LL’s. That is why the
high B fields of Figure 1 reveal the low labels of the LL’s.

Levels are characterized by integer called *filling factors,” v, = hn/eB  where n is the surface

electron density and v, is “the ratio between the total number of electrons and the number of

states on one Landau level.” [17]

“Anderson Localization:”

In general, “electronic conductivity should be directly proportional to the electron mean
free path [4] which is typically ~ 100 nm. But, in 1958, Philip Anderson wrote a complicated
paper suggesting that electron scattering can be much more localized in the presence of many
crystal defects. Doped semiconductors is one example of a disordered crystal lattice (acting
somewhat like random potentials at crystal sites). In Anderson’s electron localization, the



electron zigzags between impurities resulting in a smaller mean free path and hence greater
resistance. If a “localization length” is labeled as &, then |y(r)|* ~ e "5, A short localization
length restricts electron propagation. If motion is free across the entire Hall strip, then probability
is unlocalized or “extended” and constant. In the presence of large B fields, localization is
different; and there is only one critical energy allowing for an extended state (pretty much in the
center of a DOS peak at Landau energy). Disorder broadens the DOS peaks, and anything to
the sides of dead-center still is localized with only the middle being delocalized (a strange
emergent result that is hard to understand in any simple way).

Impurity scattering dominates at very low temperatures. It happens that localization
lengths diverge exactly at Landau levels whereas in-between these levels, direct conductivity
vanishes and Hall body electrons are localized. That means that the plateaux in Figure 1 owe
their existence to localization from crystal disorder. Modeling of the effects of impurities can be
accomplished by using a random potential V(x) in the electron Hamiltonian [1]. Quantized
resistivity persists on these precise plateaux over a range of increasing magnetic field strength,
B, and charge carrier density, n.

The details of LL conductivity are very tricky and subtle. Between two adjacent Landau
energy levels, there is strong Anderson localization; and localization blocks conductivity. Bulk
states are insulating. Exactly at the Landau level, the localization length diverges into
conductive “extended states.” As one increases electron density at a Landau level, the filling
gets added into the bulk localized states caused by disorder so that they don’t add on to net
transport (Hall conductivity is a quantized constant > 0). The conductivity 0, = ve’/h gets

“stuck.” In-between Landau levels, increasing the Fermi level only occupies localized bulk
states. Only the narrow centers of the Landau Levels (LL’s) have current carrying extended
states. o,, >0ando,, > 0, thenQ,, = 0./(0y* + 0, %) = 0, zero direct resistivity too.

Summarizing the above:
Magnify a little part of Figure 1 to consider just one of the plateaus between a direct

“spike” on the left and another spike on the right. The spike itself results from a sudden
increase of “localization length” or “extended state” phase change from insulator to metal
allowing a boost in conductivity so that &€ >> 0, 0, ~ h/e* > 0 along with Q. and R,, > 0. In
the plateau we have the emergence of fixed (stuck, persistent, quantized) non-zero
resistivity and conductivity for topological invariants

Quy and Oy, but also 6, , O, and R, ~ 0. And § ~ 0 means strong Anderson localization.

There are now many approaches to the physics of localization including some that treat
it as a critical phenomenon using a size varying “scaling function (g)"-- as in quantum field
theory (QFT). In 1984, Libby, Levine and Pruisken attacked the phase change problem
incorporating a “theta angle” into the Anderson model [8]. This is an idea of an “instanton
vacuum” and “nonlinear sigma model” borrowed from quantum chromodynamics (QCD) for
quark confinement versus deconfinement. Then there is a “renormalization” flow diverging at




the Landau energies and producing quantization. This means The robustness of IQHE plateaus
is seen as a large scale emergence. It is rather amazing that ideas from high energy physics
may pertain to solid state physics, but they are gathering experimental validation [11]. But also
recall that some of these particle physics concepts originally came from Anderson’s studies in
solid state physics (e.g., the Higgs Symmetry Breaking idea). Unfortunately, Pruisken’s field
theory is qualitative and has not been able to calculate quantitative results. Numerical
approaches then seem best, and the fluctuations seem to be multi-fractal in nature.

The insulator to metal transition looks like a critical point phenomenon of the form:
E/E, = |E./(E - E, )|233 where E, ~ magnetic length, E. = critical pt. LL, E, = characteristic
energy . The power drop-off v =~ 233 is a universal constant. Despite this blow-up to infinite
delocalization, longitudinal conductivity is still finite e.g., 0., ~0.54 ¢*/h . The IQHE phase
change is one of the best known examples of a quantum critical point of a disordered system,.
In this case, it is a continuous phase transition or second order phase transition with zero latent
heat [12].

Fermi Level:

Electrons are half integer spin fermions obeying the Pauli exclusion principle. That
means that two electrons with the same quantum numbers cannot get too close to each other.
The number of states per unit volume with a given energy ¢, (electron volts eV') and degeneracy
g,(g;) isgivenby N, = F(g)g(g; ) = g(€)/[1 + expl(g; — W/kT1, where F (€;) is called the
Fermi-Dirac distribution, and mu is “chemical potential.” The term “Fermi energy” usually refers
to “the (kinetic) energy difference between the highest and lowest occupied single-particle states
in a quantum system of non-interacting fermions defined as always at an absolute zero
temperature.” In a metal, the term “lowest occupied state” usually means the bottom of the
conduction band.

The “Fermi level” or “electrochemical potential” in a metal at absolute zero is the energy
of the highest occupied single particle state including both kinetic and potential energy (the
energy of the lowest state). It is the surface of the sea of electrons such that no single electron
can rise above it. So, the Fermi level is the total chemical potential for work required to add one
electron to the body.

In solid state theory, atoms are packed close together so that their previous discrete
energy levels merge into a band of energies such as the valence band. In semiconductors, there
is an energy gap between a valence band and higher conduction band and the Fermi level lies
in the forbidden gap. In metals, there is no gap and electrons can move freely (conduct). An
insulator means having a large gap (no free conducting electrons). With temperature added,
thermal energy can excite electrons in a band and the Fermi level can be set at an average
occupancy of 0.5 . So some semiconductor electrons can jump up to the conduction band
leaving holes in the valence band. Near absolute zero, electrons fill to the Fermi level with a
number of sub-bands below it depending on the applied B field.
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In IQHE, increasing the B field increases the degeneracy of each LL. That means that
the Fermi level will fall with increasing B field. When the Fermi level lies between Landau energy
levels, then all lower Landau levels will be filled. Or we could say that a decreasing B implies
that each LL holds fewer electrons and the Fermi energy will go up. “But rather than jumping up
to the next Landau level, we now begin to populate the localized states. Since these states
can’t contribute to the current, the conductivity doesn’t change. This leads to exactly the kind of
plateaux that are observed with constant conductivities over a range of magnetic field” [9].
There is a strange conspiracy that the “current carried by the extended states increases to
compensate for the lack of current transported by the localized states. This ensures that the
resistivity remains quantized...” [9].

Edge Potential and currents:

Circular motion of electrons is geometrically blocked at the side edges of a thin Hall strip.
Essentially, the electron performs half a circle there, bounces back and executes another
sequential half circle. This is called “skipping motion” in which electrons can only move in one
direction and cannot backscatter from impurities. The net result is a dissipationless edge current
flowing forward on one side and flowing backwards on the opposite side [1] (chiral motion). This
persistent circulating current is real and measurable. Potential V(x) is highest at these edges,
and the edge material acts as a metal. The Landau levels are pushed up at the edges and can
rise above the Fermi level. But the bulk in-between is more like an insulator. Impurity scattering
is low at these edges, but yet impurities are important for the emergence of the Hall plateaux [1].
The population of edge states traverses the band gap between the valence band and
conduction.

On an energy diagram E versus distance across a Hall strip (0 <y < W ), each Landau
level has a “bathtub” shape (flat on the bottom and rising strongly in energy at the edges). For a
given Fermi level, several of these bulk LLs may lie below that level. For example, at plateau i =
2 may have LL n =0 and n = 1 lying below it. The LL extended states crossing the Fermi
energy level correspond to the transitions between plateaus (the “edge states”). Some sources
suggest that direct current may be “carried entirely by the edge states.” With high B fields, the
electrons that carry current are confined to the edges by the Lorentz force, one for each LL.

When a y- potential difference is introduced across the width, more electrons are
introduced across the width and accumulate more on one side than the other -- the bathtub is
tilted towards one side. The fermi potential is the same on both sides. Hall voltage gives the
Hall conductivity 0., =1./V, = €*/h [1] (and the appearance that current is carried by the edge
states). So, the bulk of the electron gas is an insulator, but along its edge, electrons circulate as
an example of the quantization of Berry’s phases [22]. This is related to the concept of
“topological insulators” with conducting edge states where “spins of opposite sign
counter-propagate along the edges.” (quantum spin Hall [QSH)] states)

10
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The most important observable in IQHE is that cross-conductivity is quantized. But if a
cross voltage has been built up at equilibrium, why should there still be any current? The
answer is that there is always current at the edges of the Hall width, and current in-between can
flow from edge to edge. That flow may be incremental widthwise from one LL state to a neighbor
and then on to an edge.

Integer Quantum Hall Effect:

The Quantum Hall state is the simplest example of a topologically ordered state and
occurs for an electron gas in two dimensions. The Hall conductivity changes stepwise with
increasing magnetic field. But, for ultra thin and ultra cold samples, the physics becomes
quantum mechanical and crosswise Hall conductance can change by integer steps!

Oy =V ¢*/h. This is the Integer Quantum Hall Effect (IQHE). The steps or plateaus have
incredibly precise values enabling ultra-fine electrical measurements.

von Kilitzing [2] in 1980 was the first to discover that conductivity here was exactly quantized and
won a Nobel prize in 1985) [again see Figure 1].

A big question is “Why do the steps change by integer multiples?” and “Why are the
plateaus broad?” rather than changing with magnetic field like the Hall formula. Thouless helped
provide answers to these questions. The plateaus are broad and stable due to Anderson
localization between quantized Landau energies. These plateaus exist “when the Fermi energy
crosses an extended state level.” Why the conductance changes by integer multiples is given
by advanced topology arguments utilizing Chern theory such as that in the TKNN formula. The
IQHE conductance is robust because it is a topological invariant of the system immune to
deformations [9]. A plateau means that the delocalized sub-bands are completely filled. The
conduction electrons cannot jump from one energy level to another, since there are no available
energy levels for them. As a result, the scattering of conduction electrons, with loss of energy,
cannot happen.” [17]

Attempts to model Quantum Hall transitions included an early use of semi-classical
percolation and quantum tunneling. This is still sometimes used but no longer stressed.
Delocalization may now be discussed using Topological Field Theory [wikipedia]. There is
something mysterious about half-filled Landau levels that makes them special and suddenly
metallic. No theory fully explains why the quantization is so perfect and unaffected by the
geometry and purity of the material [21].

“Laughlin Gauge Argument”:

Most explanations of Hall quantization are advanced and difficult. The first explanation
is the simplest and most referenced [13] -- but still tricky. In 1981, Laughlin considered a 2D
rectangular metal strip of length L and width W bent into a circle and also having a normal
magnetic field Ho everywhere on the loop (e.g., from an imaginary magnetic monopole). He
considers the “disordered case with the Fermi level in a mobility gap..” Let there be a current |
resulting in voltage drop V across the width by the Lorentz force. He then considers what

11
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happens when magnetic flux is introduced down through the middle of the circle (where
magnetic flux is defined as the field times the cross sectional area). For this we need to first look
at the Aharonov-Bohm (AB) effect of the vector potential A on electron phase. A is important
because of canonical momentum in the Hamiltonian: H = (p — ¢A)*/2m + ¢E,y. There is a field B
inside the solenoid of radius R but no magnetic field outside, just a vector potential field. For
this A field around the outside of a solenoid (or uniform A field around the ring in this case) at
radius rho:
A, = B,R*/20 = flux/circumference = @/L, Then the AB phase change will be:
eAAx/h = eAL/h = e [h.
If we insist that the phase around the ring be a single valued function (rather than a multivalued
winding function) then the total circle phase change must be integer multiples of 2 pi. So,
AB phase = n2m = 2meAL/h, or A = nh/eL for extended states (or n = ALe/h = @ e/h).
Now add one magnetic flux quantum, ® = h/e h/e (so delta n=1). Laughlin says that this sort of
gauge invariance requirement maps the system back into itself.
This is an interesting result, that one magnetic flux quantum changes the AB phase by one
wavelength around L.

Now notice that power = dU/dt = VI, but V, = § E.dx = —dg/dt, sol = dU/dp = dU/LdA .
L

Laughlin then claims that one electron per LL is transferred from one edge of the strip to the
other edge by ratcheting in successive stages across the width (shift register). This shifting is
related to the magnetic lengths and y’s discussed above under “Landau Levels” . Current flow
in the x direction drives a voltage in the y direction. This current is the transfer of n electrons
across the width so that

I, = ne/At = neV,/Ag = ne*/h ! (using the dt from Faraday’s law above).

So, Hall current in the y direction is quantized.

[Of course, there are some assumptions and details left out and still to be addressed, as they
are in references [12] [13] ]. He adds, “At the edges of the ribbon, the effective gap collapses
and communication between the extended states and the local Fermi level is reestablished.”

Many articles present the above argument as a “Corbino Annulus” instead of a ring. This

model originated in a 1911 study on magnetoresistance. Insertion of central flux then causes
migration of charge from the inside radius to the outside.

Fractional Quantum Hall Effect (FQH).

Beyond the Integer QHE: In 1982, Stormer and Tsui first discovered a new quantum Hall effect
showing that the ratio of electrons to magnetic flux quanta can occur in p/q integers like 3 or %6 !
Particles can act as if they had a fraction of the charge on the electron. This is a new state of

12
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matter. Remember from above that the IQHE identified one electron state to a Landau level and
a magnetic flux quanta. In general, the microscopic origin of the FQH remains unknown, a big
work in progress. But Laughlin presented reasoning for the special case of a 1/q state and
eventually won a Nobel prize (along with Tsui and Stormer). The FQH requires a
“many-electron wave function” (like the 1983 Laughlin example) resulting in fractionally charged
“‘quasiparticles.” This is a type of Bose-Einstein condensate in which electrons are bound with
an odd number of vortices which can have neighboring depleted charge regions leading to
effectively fractional charge.

Resulting composites may be “anyons” that are neither fermions nor bosons. This is dominant
in FQE theory, but no anyon has been conclusively seen experimentally. If they do indeed exist,
the FQH is the place to find them. The IQHE depends on absence of electron-to-electron
interaction, but the FQH depends on it and wants smoother surfaces. The vast number of
fractional FQE bands currently requires doing experiment first and trying to formulate theory
patterns second. IQHE and FQH are examples of emergent collective order supposedly not
deducible from fundamental physics but only from experiment. This follows the new philosophy
of Philip Anderson’s “More is Different” and Robert Laughlin’s “The end of reductionism.” The
FQH phenomenon are very similar to IQHE except for the transfer of fractional quantum

numbers.

FQE is an example of “topological order” with patterns of long-range entanglements, and
the changing from pattern to pattern requires a phase transition. This concept lies beyond that of
topological insulators, topological superconductors, and traditional Landau symmetry breaking.

It may also include high temperature superconductivity and also the IQHE above with a “Chern
number of the filled energy band.” FQE has Chern-Simons gauge theories as their effective low
energy theory. Topological order has “quantized non-Abelian geometric phases of degenerate

ground states.” (Wikepedia).

For the IQHE, we depend on material disorder. But FQE needs minimal disorder (cleaner
samples) to show its fractional value plateaus.

Kosterlitz-Thouless (KT) Transition: Earlier Work.

Before 1960, it was believed that long range order in two dimensional solids was
impossible. In the 1970’s, a new “topological order” was discovered in which 2D vortices and
anti-vortices (which are not whirlpools) pair together allowing unexpected 2D superfluidity and
superconductivity. A 1972 “KT” paper was titled, “Long range order and metastability in two
dimensional solids and superfluids” [15]. The authors first considered standard dislocation
theory and the pairing of “up and down” dislocations but noticed that their observations should
also pertain to vortices in superfluids as well. At low temperatures, pairs of “opposite”
dislocations pair up closely, but at high temperatures they freely separate and allow a viscous
response. They studied what is called the XY model (2D classical rotor or spin model) on a 2D
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lattice. The KT transition lies between high temperature direction correlations (which decay
exponentially fast) and power-law low temperature decay. A Russian, Vadim Berezinskii, did
similar work resulting in the name “BKT transition.” It was noted that superfluid vortices can form
above a critical temperature but not below it. Or, vortices and anti-vortices are free above a critical
temperature but paired very close below it. This is a collective phase field unbinding effect that is
universal in variables regardless of the chosen system being studied and correlation lengths diverge
exponentially [15]. Again, renormalization group equations seem to apply.

A KT transition has been confirmed experimentally in proximity-coupled Josephson junction
arrays, and “quasi-long range order” has been applied to thin films of superfluid helium, thin-film
superconductors, and other systems.

Duncan Haldane:

Duncan Haldane is a British physicist who did his initial work on one-dimensional chains,
and 1D seems less glamorous than the 2D electron gas problems discussed above. In 1981,
Duncan Haldane realized that he could apply KT ideas “to the quantum mechanical 1D spin chain if
he turned one of the spatial dimensions into time. Then the vortices of KT would become tunneling
events between different topological states.” [19].

In 1986, neutron scattering was applied to a mixture CsNiCl which has magnetic 1D chains
making it a quasi-1D compound and verified some of Haldane’s theories. He later discovered
many interesting and unexpected new properties [17] which contributed to later advances in
condensed matter physics and also had similarities to the 2D physics. Haldane was the
youngest of the three winners (b 1951) and had studied under Philip Anderson. Examples of his
1D problems include chains of magnetic atoms, large spin Heisenberg anti-ferromagnet, chains
of fermions versus bosons, 1D conductors (quantum wires and now carbon nanotubes), and 1D
electron gas. His 1982 paper on spin chains showed topological properties due to “the
collective action of the whole chain.” There are “topologically protected excitations that behave
like Majorana fermions, which are their own antiparticle.” He has also been contributing to the
understanding of the fractional quantum Hall effect (FQE). Advanced topological topics being
used include: Chern Simons theory, O(3) non-linear sigma model, solitons, and instantons. And
like the previous discussion, there are analogies of these solid state concepts in high energy
physics. For example, Laughlin believes that the quark charges of ¥ and % e may have an origin
similar to that of the effectively fractional electron charges in the FQE.
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SPINORS

DAVID L. PETERSON

ABSTRACT. Roger Penrose [1] intuitively defined a spinor as an object which turns into
its negative after a complete 2m = 360° rotation; and the action of rotation on a spinor
is always double-valued. Here we consider two cases of spinor maps of Lie (continuous)
groups: SU(2) — SO(3) for rotations and SL(2,C) — SO(1,3) for Lorentz transfor-
mations (metric + - - - ). Both of these maps are 2-to-1. Similar to the way a rota-
tion matrix rotates a vector &’ = R(#)Z, two-component complex spinors transform like
& = u€ u € SU(2). The elements of SU(2) are 2 x 2 matrices containing half-angles,
e~%%/2_and that is imparted to spinor rotations. SU(2) spinors were intended to represent
classical rotations but then also found application in Pauli’s electromagnetic equation for
quantum mechanics. An interpretation of the Dirac bi-spinor (superposition of two Weyl
chiral L and R spinors) is a rapid zig-zag motion back and forth at light speed preserving
the net handedness of rotation.

1. INTRODUCTION

Physicists typically associate the word “spinor” with the 4-component complex column
vector,U(Z, t), used in Dirac relativistic quantum theory or the 2-component column vector
used in non-relativistic Pauli spin algebra. The values contained in the spinor indicate the
relative weights of the various spins (e.g., how much spin-up compared to how much spin-
down). The name “spinor” relates to its first use by Klein for the classical spinning top in
1897. This was followed by its use in geometry by Elie Cartan in 1913, Wolfgang Pauli’s
spin matrices in 1927 and Dirac’s relativistic electron spin in 1928. Spinors are essential
for understanding particles called “fermions” with half-integral spin requiring that particle
revolutions have to “go twice around” to return to their initial state. And, understanding
this goes with the idea of “double-cover” of groups.

Dirac 4-“spinors fully incorporate special relativity including Lorentz group of rotations
and boosts” — they are built into the overall formalism [3]. The weighted strengths of the
types of spin in Dirac spinors can depend on the degree of Lorentz boosting as functions
of E, p, and m. Even general relativity theory finds use for spinors [4].

Throughout this note, we use matrices to “represent” elements of continuous groups.
That means that for any two elements a and b of group G, matrix representations D(a)
and D(b) must obey D(a)D(b) = D(ab). A starting point for the idea of “double cover”
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is the continuous complex group SU(2) having a “2-fold cover” for for the three-space ro-
tation group SO(3) [S = “special,” U = unitary, and O = “orthogonal”]. That means that
every 3 X 3 rotation matrix of SO(3) maps to two different element of the 2 x 2 complex
matrices of SU(2): group elements u and -u € SU(2). That is, there is a 2:1 homomorphism
SU(2) — SO(3). We can say that SU(2) serves as a representation of SO(3), g — D(g),
which itself can be represented by matrices.

The SU(2) group is isomorphic to Hamilton’s quaternions (H) which possess three com-
plex numbers “i, j, k” and was one of the first examples of “hypercomplex” number systems.
These, quaternions, in turn, are a sub-algebra of “bi-quaternions” (complex quaternions,
C ® H) which are isomorphic to the Pauli algebra P = C¢(3,0)R standing for three roots
of plus one where C'¢ means “Clifford” algebra and “R” means “over the reals”]. Using the
more familiar Pauli sigma matrices is more convenient and useful than just quaternions
[themselves labeled as H = C¢(0,2) for having two imaginary roots of minus one — and
then ejes = e3 catches the third imaginary]. The generators of the Lie algebra su(2) are
the i, j, k quaternions — but the Pauli matrices also suffice.

When considering 4-dimensional Minkowski space, relativistic Lorentz transformations
generalize the role of rotations. For a metric of (+ — ——) we have SO*(1,3) — the or-
thochronous 4 x 4 Lorentz transformations A#, preserving orientation and time direction
A°, > +1. Tts complex two-fold covering group is the special linear group SL(2,C), and
SL(2,C) — SO*(1,3) is called the “spinor map.” The group SL(2,C) is the set of all 2 x 2
complex matrices with unit determinant {Ms(C),det M = 1} —not necessarily unitary.

2. DOUBLE COVER AND HALF ANGLES

A spinor is a mathematical object that turns into its negative when space is rotated
through a complete turn, S(6 + 2w) = —S(0). Double cover means that it takes a 4w
rotation to achieve what would classically be a 27 turn. A few simple examples of double
cover includes:

Moébius band: The easiest example to visualize is the twisted “Mo6bius band” with up-
arrows printed on the band. When rotated 360 degrees, the up arrow is seen as a down
arrow, and return to origin takes 720° —two rotations. If one placed a ball on a Md&bius
strip and made it rotate to the right along the strip, its initial spin would be “up”. After
moving through 27, the ball will be seen as rotating down; and after 47 radians it will be
up again.

Euler: Consider the square root of the Euler form e, Ve = ¢¥/2 (call “Root”) which
becomes negative after rotating angle theta through 27 radians (e!™ = —1). Notice that
the mapping from Euler to “Root” is 2:1- double cover.
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Two circles visual picture: Rotate one circle around a fixed circle of the same radius
with a no-slip condition at the circumference point of contact. With the one set circle A
centered at the origin, O 4, initially place the moving circle B to its right on the x-axis and
mark the initial contact point with red ink. A rotating line segment L from the origin joins
centers of both circles through the moving point of contact and advances counter clock-wise
(ccw) at angle 6 with circle B also rotating ccw. In the moving circle, the red mark will
move downwards at angle 6 with respect to line L. But rotation of circle B is with respect
to a horizontal line H through its center Op parallel to the x-axis, and the angle between
H to L is also theta. So, the moving circle rotates twice as fast as the radial line L. When
circle B has a full 27 rotation, it lies just to the left of A at angle 6 = 7. This double-fast
rotating is also clear by visual sketches. This concept is similar to Weyl’s picture of a cone
along a z-axis with vertex at 0 with another identical adjacent cone rotating about it at
two rotations to one.

3. 3-spACE SO(3) AND SU(2):

The rotation group is often introduced using three “Euler angles:” Rotate about a z-
axis by angle ¢, then rotate the z-axis to a new z-axis z’ through an angle § and finally
rotate about the new z’-axis by angle ¢ (some references instead use angles «, 3, ) [26].
Each rotation is labeled by an element g of the SO(3) 3d rotation group resulting in a
rotated element g = g(1)g(6)g(¢) for net action ' = g £. In 1775, Leonard Euler showed
“any displacement of a rigid body such that a point on the rigid body remains fixed, is
equivalent to a single rotation about some axis that runs through the fixed point [8].” So
the rotations through angles {¢, 6,1} can be duplicated using just one rotation, ¢» about
some axis specified by direction cosines, n. Alternatively, one can perform calculations just
using hypercomplex quaternions (often preferred in industry and computer graphics). Cal-
culations can be performed in 3d space or using equivalent SU(2) 2 X 2 complex matrices.
Discussions of spinors occur with respect to complex matrices such as these.

The group SO(3) is a continuous group called a “Lie group” which may also be de-
scribed by first specifying its “Lie algebra” s0(3) in terms of its basis matrices and then
exponentiating to get the elements of SO(3). The Lie algebra is essentially the tangent
space of the group near the identity (the 3x3 matrix I with all ones on the diagonal). So,
the matrix shown below, R,(0) = €3 has differential dR, ~ d(I + 0F3) = E3df for a
tangent “vector” near I.

For infinitesimal rotations about the x-axis, y-axis and z-axis, a basis of the Lie algebra
is a set of infinitesimal generators [9]:

00 0 0 0 1 0 -1 0
(1) Ee=[00 1|, Be=| 0 00],E5=|1 0 0
01 0 ~10 0 0 0 0
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cosf —sinf 0
And as example, R,(0) = exp(fE3) = | sind cosd 0 | for an SO(3) rotation
0 0 0
about the z-axis (like Euler angle ¢ above). These bases are related by commutators:
[Ei,Ej] = Zk Ez'jkEk ( e.g., E1E2 — E2E1 = Eg )

Just as a 3-space vector can be rotated into another vector of the same length, 7 =
R(0)Z, a complex space spinor can be transformed by an element of SU(2) as s’ = u s
where u is a 2 x 2 complex matrix € SU(2). We express that using Pauli sigma’s:

The Pauli ‘sigma’ matrices, P, are fairly standardized and most often presented by:
10 1 0 —i +1 0
0 _ _ _ _ _ 3 _
(2)0—IQ—<01>.0&«—< O)’Uy_<i 0>,O'Z—O'—< 0 _1>.

Pauli used a convention of representing electron spin with respect to a z-axis, so his o,
is diagonal with elements +1 for spin up and —1 for spin down. If the elements of the
2 x 2 matrix o, are real, then the mathematics of spin forces the elements of o, to be
imaginary. The three generating o;’s, ¢ = 1, 2, 3, satisfy the anticommutation requirement
{0s,0j} = 26;; I. And commutation relations are given by [0}, 0k] = 2i€jreoy [9]. For
example, o109 — o901 = 2i03.

_ O

In quantum mechanics, Pauli matrices can be operators operating on spinors, e.g.,
for spinor £ = e o, ay_ (vl a_ (P

A 3-space vector ¥ = (z1,z2,x3) can be associated with a 2 x 2 complex Hermitian
matrix, X, as follows:

(3) X =

S

I3 xr1 — i.%'g >

-0 = T101 + T909 + 1303 = )
101 209 303 <x1—|—zx2 s

{Later, for relativity, including time or z° would add an x,I = ctI to the diagonal of
the matrix [called the (41, &) basis — see Eqn.(8)]; and in relativity, 2 = ct.} The 3-space
matrix & - ¥ is called the “Pauli vector” and is an element of the the Clifford algebra gen-
erated by the Pauli matrices. Again, the basis of X are technically quaternions which may
be re-expressed in terms of Pauli matrices. The matrix u may be expressed in terms of
Fuler angles: the angles 6 and ¢ specify an n axis, and the rotation angle is now labeled
as angle 9 [15].
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As an example of the above, a 3d rotation of a vector (x,y,z) through some angle

0 about the z-axis results in a new vector # = R,Z = (z,y,7 = z) resulting in
2’ = zcos() — ysin(6), and y' = xsin(0) + ycos(0).

This result can also be achieved by operating on the complex matrix X by X’ = u X uf
where unitary matrix v € SU(2). “Dagger” t means “complex conjugate transpose,” and
the X transformation is an example of a “similarity transformation” [or inner automorphism
or “conjugation: x + grg~!]. And In this case, let

e~ 0/2 0 . a b
4) wu= 0 iz | with general form U = TR e SU(2).

where det(U) = |a|? 4 |b]> = 1. [Note that if U = ao, + B0, + coy, then a = a; +iay obeys
a* = —a so that a = ias (pure imaginary) |. The form above says what U’s and u’s can
be and excludes the matrix forms such as X, and @Q and N shown below. The matrix u
effectively uses the z quaternion (shown below in Eqn.(32)) times theta times electron spin
(1, and we can assume h = ¢ = 1 as chosen units). Then that fe3/2 gets exponentiated
for the element of the SU(2) Lie group.
Calculating the product of three matrices © X u! by hand indeed yields the correct ex-
pression for the rotation from # to #/ and shows the consistency of using half-angles.
In texts [4], they are often introduced by the relation between rotations and reflections
through planes. “A rotation through an angle 6 about a given axis may be visualized as
the consequence of successive reflections in two planes that meet along the axis at the angle
6/2.” [4]. The general form with a,b terms above follows from the unitary requirement that
Ut = U~'. If we were to use the negative of the unitary transformation, we would also get
the same degree of rotation: (—u)v(—u!) = wvul. So two elements of SU(2) map to the
same rotation element of SO(3) — double covering.

The example above for the 2x2 complex matrix v € SU(2) is also equal to exp[—io.0/2] =
¥(—i0/2)"0,"/n! from n = 0 to co. To perform this series expansion, we make use of the
fact that the Pauli matrix 0,2 = I and €/ = cos(0/2) + isin(f/2). The functions sine
and cosine also possess odd and even infinite series expansions. Again, since the base z
quaternion k = —io,, the u = exp[—io.0/2] = exp[kf/2] is really a quaternion rotation
(the “natural” language for SU(2) ).

A standard full example of the general complex SU(2) matrix Q with elements “a” and
“b” above, equation (4), incorporates the usual convention of “Euler” angles, ¢, 6, ¢ into
something resembling “Cayley-Klein” parameters:

(5) a = cos(0/2)exp|(v + ¢)i/2], b= sin(0/2)exp[(y) — ¢)i/2].

where , 0< ¢ <27, 0<O <7, 0<e¢ <drw ().
And allowing angle 1 to go around twice is an indication of the double cover. Spinors
are objects that transform under SU(2) elements like u or U (a lowest dimension spinor
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representation). The Euler angle rotation scheme is separate from the quaternion (i, j, k)
rotations.

There is an isomorphism between SO(3) and SU(2) rotations:
R = exp(iJ - f) < exp(ioc - nd/2) where the “n” unit direction in SU(2) has a

form like the X-matrix [eqn.(3)], N = & -7 = < "3 e

g + ing g In place of

nf, some texts just use # (which is often confusing). An effective SU(2) rotation is
R, (0) = Icos(0/2) —id - fisin(0/2).

Topology of SU(2) and SO(3) :

If all closed loop paths on the surface of a sphere can be contracted to a point (path
deformation retract), the sphere is said to be “simply connected” and has a “fundamental
group” m1(S?) = 0 [ m(S®) = 0 too]. Most arbitrary curves or paths around a circle
S1 cannot be contracted and may end up going around it an integer number of times, so
71(SY) = Z (the group of integers). Are the groups SU(2) and SO(3) simply connected?
Yes for SU(2) but no for SO(3).

A 3-sphere can be expressed by a:% =+ x% + x% + a:i = 1; or, in complex space, it can be
written as {21, 20 € C : |21]? + |22|2 = 1}. Tt is a 3d object (for example like angles, ¢, 0,)
embedded in 4d space— but we can only perceive 3d space. Equation (4) above showed a
general form for the elements of SU(2). In that form, we can substitute a = 2z, and—b* = 2,
for an equivalent element v € SU(2):

® (G a)=(5 )= (5)e
- a Z9 Z1 z9
That is, simply map the matrix u to just its first column. Since S is simply connected,
so is SU(2) and m1(SU(2)) = 0.

The group of 3-space rotations SO(3) C O(3) which is a larger group having det R = +1
(versus “special” with det = +1). [det R = —1 is called improper and includes “space
inversion,” Iy = —I where I,@ = —Z (obviously no proper SO(3) rotation could do that) |.

A visual example: Let any rotation of a vector & about an axial direction 7 correspond
to a point, P, inside a 3d ball (3-ball or 3-“disk”) such that the length represents an angle
OP =0, 0 <60 < 7 stands for the angle of rotation. That means that the radius of the
ball is now r = 7 and has a surface sphere of radius 7, [S? = 9B, B = “ball”]. A 180°
rotation has 7’ = R¥ where R’ = OP’ at § = —7, where P’ is opposite to P on the sphere
(antipodal). These points are identified P = P’ because they yield the same rotation. This
is called “real projective 2-space” with projection P’ — P. In particular, north and south
poles of the sphere are identified, S = N.
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Now, like the usual sphere, most closed curves originating at P = N can be retracted to
a point (so simply connected). But, an open curve between N and S (which is then closed
since N = S) cannot be deformed to a point because it’s length is mostly constrained on
the surface S2. Therefore, SO(3) is not simply connected.

SU(2) Spinors:

Two component spinors & = £ = > transform by & = uf meaning &' = ;&

51
62
with w € SU(2). These are called “contravariant spinors of rank 1.” To define a scalar
product, form a “covariant” rank 1 spinor 7; transforming like: 7/ = nu~! = nul [14].
Then n¢ = n'¢ = n:&'. And n = uljm; = n*;;nj- This is also the way that £* transforms:
& = u;‘]{*j ( u* is called the conjugate representation). So, £* = §. u* = SuS~! -

a similarity transformation where S = < 01 (1) ) Then & = S~1¢* = < 52 > (single
- 1

application of S for spinors). One can form an “outer product” Cij = fj & that can be
made to be “traceless” by forming f{ =/ — 0!, €8¢/2 [14]. Tt is claimed that éj is a
4-component tensor that can be identified with X =& - Z.

—&"
&1
€8 ={at =" e=(-&,4) ( ?2 ) = =6 + 66 =0.

Note that a spinor £ = ( > is orthogonal to £&. That is,

Linear algebra [see Appendix]| says that we can form a “transformation matrix” for a
change of basis by columns of eigenvectors: P = (£, £,) so that a new matrix A’ = PAPT
(called a similarity transformation). We put this back into the usual a,b labels form
(modified to agree with a standard source, “Steane” [12]), and normalize it to a unitary
transformation [so in eqn.(4), we let that Uyy — U*, P = Uyy?® and the Caley convention
[eqn.(5)] gets conjugated]. This is ok; it is all still in SU(2) form.

Determinant det(P) = |a|?> + |b|? and let d = y/det(P). Then, transformation matrix
V =P/d:

(7)

(e _ ;e cos(0)e~/? _ t L[ a*—b? 2ab*
§= < b > = de ( sin(@)eivz ) S=VoVI=5 N T

This is in the context of “spinors as flagpole with flag rotating about the flagpole” where
the length of the flagpole is d? and the flag angle is the last Euler rotation angle, ¥. The
radial flagpole vector is 7 = (ry, 7y, 7.) with |7] = d2. Algebraic inversion of the terms in
spinor § give r, = ab* + ba*, ry, = i(ab* — ba*), r, = |a|?> — |b|?> which are now recognized
as terms in the matrix S above. After normalization, ¥ = 7 as a unit cosine directional
vector for rotation. That means that matrix S is a spin matrix that has a direction 7
(when written out in the form for matrix X in eqn.(3)). This may also be expressed as



[ed]

DAVID L. PETERSON
i = (s|&|s) /d? = sTFs/d>.

S§ = +15and S§= —13§ (or, in previous notation, S§ = +1£ and S§; = —1&,). There-
fore, it has been shown that “Every spinor is the eigenvector with eigenvalue +1, of a 2 x 2
traceless Hermitian matrix” {S} = 7-4 [12]. And “the direction associated with the matrix
will agree with the flagpole direction of the spinor!”

4. Lorentz Group and SL(2,C)

The special linear group SL(2,C) is the set of all 2 x 2 complex matrices with unit deter-
minant, SL(2,C) = {g € M2(C)|det(g) = 1}. Unlike the Lie group SU(2), it is not required
to be unitary [i.e., where U~! = Ut = UT]. The mapping of SL(2,C) — SO*(1,3) is called
its “spinor map.” Typical sl(2,C) generators for the Ms(C) matrices are the matrices E,
F, H in eqn.(10) below.

“The Lorentz group is a 6-dimensional Lie group of linear isometries of the Minkowski
space” and can map to the condensed matrix group SL(2,C). In mathematical physics,
the Lorentz group is the set of all relativistic Lorentz transformations with any Lorentz
transformation being the product of a pure rotation and a pure boost, A = RB. A matrix
representation A — D(A) is also a representation of the rotation group O(3) — not SO(3)
because boosts are not unitary.

A 4-space vector T = (x,, x1,x2,x3) can be associated with a 2 x 2 complex Hermitian

matrix, Q, as follows:
a2 = ([ mot w3 T — T2

(8) Q=17 0—33000+5E101+1U20’2+$30’3—(w1+m2 o — 23 ),

This is like the previous 3-space rotation of vector X of eqn.(3), but now including time
or z° by adding an x,/ to the diagonal of the matrix [this is called the (+1, ) basis; and in
relativity, 20 = ct]. For SL(2,C), matrix Q has determinant det(Q) = (z%)? — 22 — y? — 22
recognized as a relativistic invariant length which is preserved under the action of elements
of SL(2,C) [with the pre-selected convention of metric signature (+, — — —)]
For matrix Q, we transform as Q' = gQg' where g € SL(2,C) and g = guot.

A general condensed form for the g elements is g(p,0) = exp[(p/2 — inf/2) - &].
The symbol p is boost “rapidity” and is given by p = +tanh™!'3 where 3 = v/c. Since
sinh?(p) — cosh?(p) = 1, we have cosh(p) = v = +/1/[1 — B2 = E/m.

o e—P/2
9) g(p,0) = ( 0 6+(3)/2 ) = cosh(p/2)I — sinh(p/2)0.
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This boost in the z-direction doesn’t make use of the imaginary i .
Technically, one should say that the group of Lorentz transformations L = L =T (A) =
SL(2,C)/Zy [5] (1-1, onto, double cover removed) as its complex representation.

A basis of infinitesimal generators for its Lie algebra si(2,C) is:

o (3 0) (2 8) e (5 8) (3 )

The Lie Group elements are formed by exponentiating the matrix representing the Lie
algebra: M = oF + SF +~vH, {a,8,v} € C.

Since 0, = E+F and o, = i(F — E), this also contains the Pauli matrices (or quaternions)
needed for SU(2). So, SU(2) C SL(2,C) [e.g., sl(2,C) = su(2) + i su(2)]. The form of
M contains the general “a,b” form for su(2) rotation matrices “U” [eqn. (4)] by setting
v =1iIm(a), « =b, 8 = —b*. Alternatively, a 6-dimensional basis with 2 X 2 matrices is
Jt=0¢"/2 and K* = i0/2 to include boosts.

The special relativistic Lorentz group, L, consists of transformations, 2’ = A¥,a¥ with
A*, = A = RB which are 4 x 4 matrices whose six infinitesimal base generators have ele-
ments of —i x {—1,0, +1} that perform two functions: rotating spatial 3-vectors and boost-
ing 4-vectors by a new speed: There are three anti-symmetric rotation matrices J!, J2, J>
and three symmetric boosts K', K2, K3. Once these are known, exponentiation give the
general transformation: e.g., U(Ry) = €*/'?. Note that Weinberg’s notation for generators
[5] is J = {J®B,J3L, J2} and K = {J'0,J?° J30}. These 4 x 4 matrices are commonly
presented in texts on General Relativity or Quantum Field Theory.

Homomorphism of SL(2,C) on the Group L:
Carmeli’s [15] mapping from g’s to Lorentz transformations are: A% = (1/2)Tr(c%ga’gh).
For example, A°, = |go|?>+3|gx|?. Define a normalized eigenvector, v;, : (v,)¥ = A¥,/1/S(A%,)?
and v3 = A% + 1. Then element g = £[function of v's] indicating a 2:1 mapping.

For a complexified Lie algebra with new component bases, form two new matrices:
A= (J+iK)/2 and B = (J — iK)/2 — these satisfy the commutation relations of su(2)
and so(1,3). Using these, an SO(1,3) representation can be classified as a SU(2) @ SU(2)
representation.

In the previous discussion, a rank 1 spinor transforms as s = A under a change in
inertial frame. The outer product ss' is a 2x2 matrix 2nd rank spinor transforming as
ss' — AssTAT. The previous matrix Q (eqn.(8)) is a 2nd rank spinor, @' = AQAT. Q
and ss' can be equated to create an associated 4-vector [12]. Part of this procedure is the
same as the previous association of the spin-matrix S (eqn.(7)) with the components of the
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radial flagpole vector, 7.

t o (a N, e (o b\ o otz z—iy
(11) SS—<b>(a’b)_<ba* ’6’2 _Q_:E'u ot = x—i-Zy t—Z )

where o# = (I,0"). Solving this equation for t,x,y,z as a 4-vector gives:

t (af? +[6P)/2
(12) A S R o I Y
: (laf? — [o}2)/2

Now the determinant det(ss") = 0 suggesting that the 4-vector z* is null. And this suggests
that one can obtain a null 4-vector V from a right-handed contra-spinor v as V* = vfotv.

5. REPRESENTATIONS

There are many different conventions for Lie Group representations.
First consider simple spin one-half and spin zero:

For spin ! /5, the “left” Weyl spinor (e.g., for neutrinos) is said to be in the Lorentz repre-
sentation £ = (3, 0) while the “right” Weyl spinor is in the Lorentz representation r = (0, 1)
(e.g., for anti-neutrinos). A general 4d Dirac fermion representation is (3,0)® (0,3 ) = (@ r

— also called a bispinor representation.

The “Lorentz representation” for scalars (e.g., Higgs boson) with spin 0 is (0, 0).
Photons with circular polarizations pointed backwards or forwards may be in the Lorentz
transformation representation (1,0) @ (0,1) of SL(2,C). Specifically, that description “can
provide a 6-component spinor equivalent to the EM field tensor”, F.

One could add total spin 1 for “vector gauge fields” (v, Z, W+, gluons) with Lorentz
representation (3, 1) [with respect to the group SO(4) ! ].

There are fairly standard short notations in particle physics for discussing combinations
of particle “flavors.” The common Lie groups are SU(2) with 2 x 2 matrices and SU(3) with
3 x 3 matrices. For example, we know that the number of elements in a square matrix or
tensor, T, n? can be decomposed into symmetric and anti-symmetric (or skew) elements
according to [16]:

(13) SY = J(T9 4191, AY = (T —-19%), n? = _(n*+n+n?—n) = sn(n+1)+in(n—1).

So, forn =2, 2®2=3®1 for symmetric plus skew parts (as mentioned in the
introduction above). ® refers to tensor products and @ refers to direct sums. A particular
example [10] is the addition of two spin % particles with spin states T & | where the
symmetric total spin one states have spin projections My = 1,0, & — 1 (a triplet) while
total spin zero is a single anti-symmetric state:
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1 = 0,M, = 0) = \/F (1] — 41).

And for n = 3, 3 ® 3 = 6 @ 3 or sometimes written as 6 @ 3, where the bar emphasizes
anti-symmetry under the exchange of two given particles. Some use the over-bar for anti-
particles so that a 3 representation for u,d, and s quark flavors would have 3 = {4, d, 5}.
If we are instead working with QCD colors, then 3 = {r, g, b} and 3 = {7, g, b} anti-colors.

The group SU(3) has 3 x 3 unitary, unimodular matrices whose 8 independent generators
are usually chosen to be the 8 Gell-Mann matrices, A;. This is similar to the use of the
Pauli matrices {0, oy, 0.} for SU(2).

One often wishes to treat the trace of a tensor separately so that a tensor product of
two vectors is decomposed as the addition of a traceless-symmetric part + the trace of the
anti-symmetric part. Then the above example for n = 2 becomes 2®2=2®1¢1
And forn =3, 3®3=5®1&3 More complicated tensor products are often treated
using something called the “Young Tableaux.”

We can also combine three quark flavors together; e.g.,  The total number of states
formed from {u, d,s } is 3 x 3 x 3 = 27. These can be decomposed in a number of ways.
Overall, the matter baryons are symbolized by !:

(14) 30323=(303)R3=27=(603)23=(603)0(323)=1068a801
(including Gell-Mann octets — the “Eightfold Way.”)

“Block Diagonal Matrices” (BDM) are incorporated in another mathematical scheme
showing representations using square matrices for which non-diagonal elements are all zero.
The objects along the diagonal can be other square matrices of various sizes. A nice prop-
erty of these BDMs is preservation of the general form of the BDMs under operations:

If the objects on the diagonal [diag( )] of matrix M are square matrices A, B, C, we say
M = diag(A, B,C) or M = diag(Ai1, Asga, As3).
Squaring matrix M preserves its shape: M? = diag(A?, B?,C?) [17]. This works for expo-
nentiation e and for inverses too: M~ = diag(A~', B~1,C71).

It is also conveniently true that determinant detA = detA11 X detAss X ... X detAnn;
and trace is the sum: trA = trAy; +trds + ...

If the representation of a given operator is a block diagonal matrix, then it is called a
reducible representation. Otherwise it is called an irreducible one. A reducible represen-
tation decomposes the vector space V it is acting on a direct sum V=V, & Vo V3B ...

1Yes, 6 ®3 =10 @ 8 can be shown using the Young Tableaux (e.g., Palash Pal, An Introductory Course
of Particle Physics, CRC, 2015, HW p 267).
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Each block acting on a subspace V;. For all Lie groups, a representation which can be
transformed to block diagonal form by means of a similarity transformation, i.e. SUS™! =
diag(U(A),U(B)), will be called reducible. “The algebra of the block matrix is frequently
reduced to the algebra of the individual blocks.” The fundamental representations for SU(n)
are all irreducible, i.e. they can not be transformed to block diagonal form. For SU(2) the
representations corresponding to spin s = 1/2,1,3/2,2,... are irreducible. These are also
labeled as 2,3,4,5,... for the number of basis vectors or kets, 25 + 1 in each subspace
labeled by “j”.

6. Dirac Theory

The most common key matrices representing Dirac Theory use the “Dirac-Pauli Stan-
dard” convention (DP-std) expressed as:

. OO’ 0 _ I 0 i 0.i__ O o;
(15) a_<o,O)aﬁ_’y_<0_[>7’7_’7a—<_az 0>

This “Dirac representation” for 4 matrices [e.g., [11][21]] applies to high-energy massive
particles physics (the usual HEP). Like other Clifford algebras, the four gamma matrices
v# generating the algebra must obey an anticommutation requirement {v*,7"} = 2n* 1,
where eta is the space-time metric and I4 is a 4x4 unit matrix.

The Dirac equation is given by the Hamiltonian Hvy = (& - p'+ Bm)y = Ev
where a and 8 are 4 x 4 complex matrices invented by Paul Dirac in 1928.
Standard quantum physics operators include B = ihd/0t, p = —ihV, 0, = 0/0x! =
{0, +0;}. Now, multiply the Dirac equation by g to give  (iy*d, —m)y = 0.
Paul Dirac’s memorial stone in Westminster Abbey is inscribed with this momentous equa-
tion: iy"0,¢ = map.
In addition there is a matrix called gamma- 5: 7° = i7%y!y2y3 = ? é — an “ex-
change” matrix. This is important for discussing “chirality;” and the Dirac spinor in the
Dirac representation has mixed chirality. There are “chiral projection operators” of the
form Pp = (1 — v5)/2 and Pr = (1 4 75)/2 to project out the chiral handedness of a
standard Dirac-Pauli spinor: u; = Pru and ugp = Pru. A simpler operator is used for
Weyl spinors shown below. [For electroweak theory, the heavy boson W’s only couple to L
particles and R-handed antiparticles]. Old particle physics texts had an x4 = ict and used
7y for 4% — before the days of “FAREWELL ict ” [4].

The above condensed form 2 x 2 matrices represent 4 x 4 matrices of complex numbers.
The Dirac spinor (or “bi-spinor”) v is a 4 component column matrix with the upper two
entries representing the electron spin-up and spin-down and the bottom two entries rep-
resent the spin of the anti-electron or positron — sometimes stated as negative energy states.
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As a first look at the 4-spinor of the Dirac equation, consider the case of a rest frame
with no momentum [v = 0, p = 0, and then later we will modify this by applying a Lorentz
boost, A(p)]. The equation having « - p = 0 becomes simply [11]:

(16)
1 0 0 0
ml 0 U 0 1 0 0
H¢—E¢—5m¢—< O _mI><,U)7SOw_ 0 ) O ’ 1 ) O )
0 0 0 1

with eigenvalues E = m,m, —m, —m and eigenvectors u'(0), u2(0), u? = v?(0), u* = v*(0).
Free fermion wavefunctions are a product of a boosted fermion spinor times a plane wave:
U(zH) = u(p*)e~® . An example of this for the rest frame is: ! = u! e=™ for the u!
shown above. And spinors, of course, are not 4-vectors (they do not represent t,x,y,z).

The F = —m < 0 solutions are interpreted to represent antimatter. The common
teaching about the positions in the standard Dirac spinor are: left-handed and spin-up,
left-handed with spin down, right-handed and spin up, and right-handed with spin-down.

There is also a “charge conjugation” operator which flips signs of particle charges and
changes a particle into an anti-particle: C = iv%y°. When operating on electron spin up
uq et@p—Et)/h (a 1 in the upmost position), it produces vy e~ iap—Et)/h (with a 1 in the
bottom position). That is why ug = v; and ug = v as labels. Particle eigenspinors become
anti-particle spinors.

The usual condensed 2x2 form of the general Dirac equation ¢y#9,,1) = m) can be writ-
ten as:

o0 =[5 (5 ) om (57 ) - (S 5o () =0

And, after expanding and negating some signs, this becomes

(18) Hu=( " TP (U )_pg(ua
o-p —m Up ug /)’

With m > 0, this Dirac equation represents two coupled equations:

(19) g-pup=(F—m)us, and 7 -puyg=(F+m)up.

Consider the special case of a highly relativistic limit [27], E > m, E ~ p, and choose
to have momentum in the z direction accompanied with the diagonal sigma z. Then
1

0 _01 )uB and ugp = o,uys. For spinor

the equations become just uqg = o,up = (
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. . 1 0 1 0
solutions, successively set uyg = g | ua = 1) uB = 0 ) uB = 1 for

spinors u', u?, u?, u*. Then the resulting spinors are:

1 0 1 0

1_| O 2 _ 1 3_92_10 41| -1

(20) w=| [ = 0 , w=vt=1 |, == 0
0 —1 0 1

The additional 1’s beyond the rest frame singles in the spinors shown in eqn.(16) mate-
rialize with the mathematically full Lorentz boosts from v = 0 — to v — ¢ where p/E — 1.
In-between these extreme cases of p = 0 and p, = F are spinor forms containing algebraic
entries of p’s and E’s such as the Feynman spinor shown in equation(31) below. An in-
terpretation of the multiple 1’s in each spinor, in part, is that the energy F > m is so
high that the probability of antimatter becomes the same as that of matter [subject to
conservation laws for net charge, energy/momentum, and angular momentum in possible
interactions per Feynman diagrams].

Another examination of this m = 0 or m < E of highly relativistic spinor/particle is
to view a first order equation that is symmetric in space and time: the “Weyl” equation:
o0, = 0. For this special case of zero mass m = 0, Weyl noticed that the coupled
Dirac equations [eqn.(19),m = 0] become decoupled. For decoupling, add and subtract
these equations to get Weyl spinors:

(21) X =up—ua, and ¢ =ua +up; soup —3 (pr+ XL), ua =3 (dr — XL)
Dirac standard spinors are mixtures of Weyl chiral spinors.

Mixing of x 1, and ¢z Weyl spinors into parts of the Dirac representation bispinor eqn.(21)
requires an interpretation and be seen as a rapid back-and-forth “Zig-Zag” oscillation at
light speed between an L rotation (left-hand thumb down) and an R rotation (right-hand
thumb up) with a net rotation of fingers that is the same and preserved for both hands
[28]. This picture is similar to the same L and R zig-zags of particles in a Higgs field that
also preserve a net direction of electron spin for each spin type. In that case, the rapidity
of vibration correlates with particle mass as the degree of coupling to the Higgs field. For
the Dirac case, the vibration may be called “Zitterbewegung” (“jitter motion”— suggested
by Schrodinger).

Or, for a simpler intuitive approach: The “square-root” of the massless Klein-Gordon
equation results in both positive and negative energy cases, so there can be two solutions:
spinors x and ¢. 9¢ /0t = +5 - V).
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We now have two equations for the two-component spinors x and ¢:

(22) Ex=—d-px, and E¢p =+G-pp.  (Weyl,1929).

And, for massless particles, E' = |p| (where we use ¢ = 1 units).

Then & - (/lp)) x = —x and &+ (7/|p|) & = +9.

The —x case goes with negative “helicity,” and the +¢ goes with positive helicitiy —
spin projected either against or along with the direction of momentum.

The negative helicity solution corresponds to the left-handed electron neutrino. The
word “chirality” corresponds to “helicity” for massless particles moving with light speed.
But, for particles with mass, helicity is not Lorentz invariant because a reference frame
can be found exceeding the speed of the particle— and then helicity is effectively reversed.
Chirality is a Lorentz invariant (with an unfortunate name that suggests helicity).

Some sources begin Dirac theory by defining the Dirac bi-spinor to be the stack of two
Weyl spinors: Up = x1, @ ¢r which transforms under a diagonal A chiral basis. The Dirac
bi-spinor has 4 components, and the 4d representation of A can refer either to the standard
representation or to the stacked Weyl representation. So, to specify a spinor, one must also
state the representation: standard Dirac-Pauli or Weyl chiral. There is a transformation
matrix A between the two:

1 1 1 ORr 1 ¢R+XL)
23 Upirackep = A YWeyirep = —= 2 ’
(23) DiracRep WeylRep ﬂ(l —1)<XL> \/§<¢R_XL

Weyl’s equations were initially rejected by Wolfgang Pauli for violating parity before the
awareness in 1956-1957 {Lee, Yang, Wu, Lederman,..} that nature really can violate parity
in weak interactions, and particles can acceptably be left-handed or right-handed. With
that awareness, the chiral gamma basis found increasing use against the standard Dirac
gamma basis.

While the coupled Dirac equations (eqn.(18), m > 0 ) uses the standard Dirac-Pauli
gamma basis (15), the uncoupled equations (22) prefer the use of a different set of gamma
matrices called the “Weyl basis” or “chirality basis” (with some variation in conventions
from text to text such as negating the ¢ matrix). In this representation, chirality gamma-5
is now block diagonal —, 4.

0 __ 0 I i 0 o; 5 —TI 0
(24) 7‘([0’7_ —oi 0 )T =0 41

Unfortunately, there are a variety of conventions for expressing the chiral gamma ma-
trices (not standard), and we might state them by a “top row sign” label order of {0, i,
5}. For reference, the “Standard Dirac-Pauli” convention for gammas [eqn.(15)] has all
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positive terms on their top rows for a label of {+,+,+}. A preferred set of chiral gamma
matrices can be defined by 7. = +vp® and 7" = p’, 7> = —yp" with top row signs
{+,+, -1}, e.g., [10][21][23]. Obviously, a sign change in either 4° or v* will produce a sign
change in v5 = v° = i7%y14243. So, for an alternate choice of v.* = —yp® and v.> = +yp°
we get {0,4,5} = {+,—,+} e.g., [12]. There is another source with {—,+,+} [11] [and

more 2. [The occasional (=) convention (e.g., [12]) would reverse the signs on the & - p
terms].

The Dirac equation with Weyl basis still has the form iv.#0,1(x) = mi(x) which in
2x2 matrix form looks like this [2] [12]:

B -m O-p oA\ _ Pa
(25) quWeUl_(—&’ﬁ _m><¢B)_E<¢B>7

The bispinor for Dirac and the Weyl or chiral spinors may also be variously labeled as:

¥
o o= (1) = (0) = (2) = 3 o= (52) = (50)

Py

N =

The Dirac equation for massless particles may also be written in the Weyl basis with
Chiral gamma [21] as:

(27) <E+06-]3 E_oaﬁ>(gfé):0:m'

The result ¢, = x and pr = ¢ is the same as above and are considered in a stacked
spinor. We also note the shortened “Feynman slash” notation where p = v p,.

Still in the Weyl basis, the gamma-5 operator gives:

_[ 0 _
vw:( 0 I) (:j; ) = < g;fj ) And then P = (3)(1—5)¢ = ( s )
That is, 5L = —¢r and 150r = +1pR.

In contrast, the Dirac basis 75 (an anti-diagonal exchange matrix) operating on the Dirac
bispinor acts to exchange the positions of ¥g and 11, and then P;, = (3)(1 — 75)1 mixes
them with subtraction.

The standard Dirac equation is appropriate for massive fermions m > 0, and the Dirac
spinor ¢ = (g, 1) is reducible as the direct sum of two irreducible representations of the
Lorentz group. The Dirac spinor is a 4-component spinor that preserves parity while its

2'VVith respect to the chiral basis shown in equation (24),Weinberg [5] uses a basis of 4° — —iy?, 4" —
—in', B =17, but 4° = —°
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stacked individual Weyl spinors do not. For Lorentz group representations, ug is in (%, 0),
uy, has (0, 3) and the full Dirac spinor lies in the mixed representation (3, 0) @ (0, 1) [20].

The Dirac 4-spinor can be a stack of 2-spinors of opposite chirality. ¥ = (¢¥)g; ). In the
chiral representation, its Lorentz transformation is a block diagonal matrix. We consider
only Lorentz boosts of velocity, v, or rapidity, p,of the form eqn.(9) and factor out the
leading cosh(p/2) term to get [12]:

A(v) B I —1ii-&tanh(p/2) 0
< ) = coship/2) ( 0 I+ii- & tanh(p/2)
But cosh(p) = v = /m in special relativity. Then we can use: cosh(p) = 2cosh?(p/2) —
1 = 2sinh?(p/2) + 1 so that cosh(p/2) = \/(E +m)/2m,
tanh(p/2) = \/(E —m)/(E +m) =p/(E + m) So now in block diagonal form:
E 1

(29) Ac = o B Oﬁ-&

2m 0 I-ga

If instead, we had processed the Dirac equation using the standard set of gammas then
we would get a Lorentz boost that is not block-diagonal [11]:

(30)  Ap(p) = ( cosh(p/2) & - it sinh(p/2) ) _ [E+m ( 1 g ) |

G -7 sinh(p/2) cosh(p/2) 2m ol

Applying this momentum ' boost to a spin up electron in the rest frame, u(0, s1) yields
the “Feynman spinor” u(p1, s1) shown below, equation (31).

The chiral representation spinor may be converted into a Dirac representation spinor
for a standard view. Remember that a massless case decoupling of the Dirac equa-
tion in standard representation required adding and subtracting the coupled equations
(eqns.(19)). We called the difference y; and the sum ¢r. So, the chiral A, trans-
forms the spinor (¢g;xz) which can be put back into the ¥p = (ua;up) form using
ua = (pr — xz) and up = (¢r + x1). It’s a little convoluted, but it works. So, the Dirac
equation may use either representation.

“Feynman rules” for fermions using spinor formalism enable calculations of scattering
cross-sections, decay rates, and radiative corrections. “Parity conserving theories such as
QED and QCD are well suited to the four-component fermion methods” [24]. Feynman
diagrams with Feynman rules work with a momentum representation (Fourier transform
of space-time in ¥(x)).

Assembling the above concepts, suppose we have a simple case of an electron (path 1,
spinor labeled u(p, s) for momentum and spin) coming into a scattering vertex and going
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out on say path 3 (adjoint spinor @(p,s) ). [There are many different conventions for
labeling path legs in Feynman diagrams]. This gets assembled into a vertex vector form:
Vertery = u(ps, s3)igey*u(p1, s1) [21] with appropriate coupling g. o charge e. For a
positron, the ingoing particle has an adjoint label (p, s) moving backwards in time; and
its outgoing state is v(p, s).

From the 2 x 2 form of the Dirac equation in Dirac basis (18), we obtain two coupled
equations for massive leptons. As example, the second of these is o - p¢p = (E + m)x so
that x = (o - p/[E 4+ m])¢; and suppose matter-electron E > 0 so [22]. Then,

1

0

(31) e.g., Feynman spinor u(p1,si) = ( 2 > = < U_f; ) = .
X1 E+m E+m
P +ipy
E+m

o - P has the same form as the previous X = o - Z in eqn. (3). So we are now expressing
a Dirac electron wavefunction in terms of spin-up, energy and momentum. And similar
examples are easily found for the other lepton paths. For high boosting (p, becoming
relativistic), the spinor acquires a degree of anti-matter-ness.

Two incoming particles “1 and 2” can scatter off of each other due to an inner virtual
photon exchange between their scattering vertices (e.g., Mgller scattering). That entails
a product of the two vertex forms [Vertex 1 times Vertex 2] times a photon “propagator”
subject to conservation of momenta expressed via delta functions (a forced constraint).
Scattering results in momentum transfer (e.g., ¢ = pj — p3) from electrostatic 1/r poten-

tials. We are in momentum space, so we must evaluate the propagator as a radial Fourier
d3 iq-T 1

Zﬁr T

This integration can be done just using simple calculus. The resulting scattering cross
sections from this process can be seen in many textbooks [10][21][22].

Transform: [

Dirac algebra introduces a new term called the “Dirac adjoint” U = Wf4°. This is re-
quired to have Lorentz covariant objects that can be formed from a Dirac spinor and its
adjoint. v is a Lorentz scalar and ty*4) is a Dirac vector. That means that these joint bi-
linears remain as scalars or vectors under Lorentz transformations. There are five types of
irreducible Lorentz objects: the scalar and vector along with three others — pseudo-scalar,
pseudo-vector, and antisymmetric tensor. In the Dirac representation, the Lie algebra
s0(1,3) acts on o = i(y"y” — 4Yy*)/2 where the bilinear 1)o#¥1) transforms as a tensor.
The term “pseudo-” corresponds to bilinears containing 5 = 7° = iv%y!y?~y3 where 5
changes sign under a parity transformation (like mirror reflection). Parity on the Dirac
spinor is defined by P : ¥ (&,t) — v°¢(—Z,t) [20]. It exchanges right-handed and left-
handed spinors u4 — u-.
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7. MATHEMATICAL APPENDIX

Useful concepts from Linear Algebra

An “algebra” consists of a vector space V over a field K together with a law of composi-
tion or product of vectors such that scalars a,b,c € K and vectors A,B,C € V, A(aB+bC)=
aAB + bAC and (aA + bB)C = aAC+bBC.

A ~ B: Matrices are “similar” if there is a Hermitian similarity transformation between
them: B = P~ AP. Then det(B) = det(A) and tr(B) = tr(A). Matrices are diagonalized
via similarity transformations.

Hermitian conjugate A7 = (4)T = (AT)* = Af
A unitary transformation, U, obeys Ut = U~

From a matrix, A, to its diagonalized matrix, D, a “transformation matrix” (change of
basis matrix), P, is formed from columns of eigenvectors v; so that P = [v1,va,...vy). For
the diagonalize matrix: D = P~'AP = diag(\1, A2, ... \,) where the )\;'s are eigenvalues.
Also det(D) = II)\; and A = PDP~!. Quantum mechanics requires that eigenvectors be
normalized so that vy = I.

Diagonalizing the 2 x 2 Pauli matrix o, [eqn (2) ] results in the diagonal matrix o, whose
columns are the spinors for electron spin “up” and “down”.

For matrices possessing eigenfunctions and eigenvalues: “two eigenvectors of a Hermitian
operator corresponding to two different eigenvalues are orthogonal — linearly independent.

Dirac Bar ¥ = Ufqe,
R(0)v: A column vector v can be rotated into another vector u using a square rotation
matrix. R is a rotation matrix if and only if RT = R™! and det(R) = 1. For 2 or 3-space,
R € SO(2) or SO(3) — special orthogonal groups.

Hamilton’s Quaternions, H, from 1843

Quaternions use three complex numbers {base: 1, i, j, k} and have a long history of
use prior to Pauli’s electron spin matrices; so they had conventions separate from Pauli
and didn’t know about electron spin. The 2x2 matrices for quaternions are much less
standardized, and there are many representations. One that is common is expressed with
respect to Pauli by e, = io,, where n can differ from m. Wolfram [1], for example, starts
with ey = io3, ea = i09, e3 = i07 (not in cyclic permutation order) with the property
e1es = ez along with Hamilton’s desire that i? = j2 = k? = ijk = —1 = ejeges. Some use
a convention of e,, = io,, but this is non-standard and has ejes = —e3 and ejeges. = +1!
Instead of the confusing i, j, k, some use h, j, k to differentiate the types of i and/or use 7’
for the complex imaginary.
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The best current convention is that of Misner-Thorne-Wheeler [4] [6] defining the Pauli
matrices as o = ieg. After all, quaternions came first and Pauli matrices were complex-
ified above them. So e, = —io} is the convention we will use here: shown below. Note
that an SU(2) rotation u() = exp[—i(d-n6/2] really means e*7/2 where q is a quaternion.

The matrix representation for quaternions is:

10 0 —i 0 —1 i 0
(32) eo_l_(o 1)’61_<—¢ 0)’62_<+1 o)’e?’_( 0 +i)'

A quaternion vector ¢ is expressed using half-angles 6/2 and becomes negative after a full
27 turn.

Quaternions are the natural basis of the Lie algebra su(2) [e.g., u1 = —ej,us = eg, ug =
—es]. The Lie algebra sl(2,C) = su(2) + i su(2). This complexified Lie algebra is spanned
by the H, E, F matrices of eqn.(10) above as: H = u3/i, E = (u1—iug)/2i, F = (u1+iug)/2i
which are similar to J,, Jy, J_ operators for angular momentum.

Vectors versus Versors

A “quaternion” is a 4d quantity of the form ¢ = ag + ia1 + jas + kasg € H = a scalar
plus an imaginary triplet vector. Hamilton H = span(1l) @ span(i,j, k). It is a com-
mon practice to treat pure quaternions (using just triplet basis i j k without scalar a,)
as vectors. But quaternions have different symmetry properties from vectors. Quaternion
multiplications by i j k are CCW rotations of 7/2, e.g., r = a + ib — ir = ia — b, and
iir = ita — ib = —a — ib = —r). These 90° rotations are called “versors” — or quaternions
with |¢| = 1.

Gibbs/Heavyside vector analysis used the same labels i j k rotational versors of quater-
nions but re-defined them unit polar vectors. [A polar (or “true”) vector reverses sign
when the coordinate axes are reversed (v = a‘e; — —a’(—e;)) ’s | — they stay the same
under mirror reflection (up is still up). An axial vector or pseudo-vector flips sign under
reflection (e.g., left — right). A pure quaternion is only a vector if i j k are treated as unit
vectors. Multiplication of pure quaternions is still a quaternion, but vector multiplication
C = A x B is an axial vector (not in the family of true vectors).

Clifford Algebra

a Clifford algebra, C¢(V,Q), is an algebra generated by a vector space (e.g., V = R, ()
with a quadratic form (e.g., a metric, Q, or 2nd degree polynomial ). It can be extended to
include the hypercomplex number systems (such as H). If V has n dimensions, the Clifford
algebra can also be symbolized by C/, (V).



SPINORS 21

A Clifford product (“geometric product” [1878]) is defined as a scalar symmetric product
plus an anti-symmetric product (a bi-vector):

(33) ab=a-b+aNb=(ab+ba)/2+ (ab—ba)/2.

The wedge product (“A "or “exterior product” or “outer product”) is a generalization of
the usual vector cross product (which itself is only defined in 3d space). From the defini-
tion, it follows that aAb = —bAa (and in 3d, @x b = —bx@). The Clifford product is similar
to pure quaternion multiplication ab = a - b+ a x b, or angular momentum rp = r - p + iL
[all on quaternion ijk vector basis]. Pauli algebra has a similar product:

—,

(G-A)G-B)=A-B+i3-(Ax B)

One might also begin by expressing the anti-commutator for Clifford generators {e;, e;} =
20;; = ejej +eje; . Forep L eg, e1-e2 =0, and ejeg = —ezeq; = e1 Aeg = —ez Aeg. So, for
sigma matrices, {0, 0} = 20; j I2, and for gamma matrices {v*,~"} = 2n"" 14 where eta is
the space-time metric and I is a 4x4 unit matrix.

Spinor:

Roger Penrose [1] intuitively defines a spinor as an object which turns into its negative
after a complete 2r = 360° rotation ; and the action of rotation on a spinor is always
double-valued. General spinors were discovered by Elie Cartan in 1913. A spinor is more
than just a complex column matrix or vector, and the mathematics of spinors is very diffi-
cult. Spinors are the irreducible representations of the ‘Clifford group’ [11]. The 4-D Dirac
Spinor is the bispinor in the plane-wave solution of the free Dirac equation, and a bispinor
is the stacking of two Weyl spinors on top of each other in a column matrix. A famous
mathematician (Atiyah) said, “No one fully understands spinors. Their algebra is formally
understood, but their general significance is mysterious. In some sense they describe the
‘square root’ of geometry and, just as understanding the square root of -1 took centuries,
the same might be true of spinors.” A complex 2-D spinor («, 3) represents the fractions
of spin up and spin down, a| 1) + 8| 1), with |a|> + |B]? = 1.

The Mathematical Definition of Spinors

Spinor representations are the irreducible representations ( “irreps”) of the Clifford group
obtained from the irreducible representations of the Clifford algebra and its even subalge-
bra.

“The mapping into the endomorphism algebra of any minimal left ideal induced by the
regular representation is called the spinor representation of the simple Clifford algebra and
the minimal left ideal is called the space of spinors [13].” “In physics, elements of the
vector space carrying an irreducible representation of the complexified Clifford algebra are
termed “Dirac Spinors.” For rotations: Spinors are objects which carry an irreducible rep-
resentation of the spin group which is the double cover of SO(3) (e.g) and is the spin 1/2
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representation of the group of rotations in a quadratic space.

Names for the types of spinors include: [25]
“Classical spinors” based on irreps of Spin,(p,q) [e.g., Spin,(1,3) ~ SL(2,C). Note that
this “severely restricts the analysis to the usual Dirac, Weyl, and Majorana spinors.”|
These are sections of the vector bundle ngmm x C2.
“Algebraic spinors” have Clifford algebra irreps (minimal left ideal). And “Operational
spinors” have Clifford algebra using the representation space associated to the even subal-
gebra.

Dotted versus UnDotted spinor notation:

We need to distinguish components with Weyl “left” handed representation from those
with right or Dirac mixed representations: ¢ = (3,0) while the “right” Weyl spinor is
in the Lorentz representation r = (0, 1), and general 4d Dirac fermion representation is
(3,0)®0(}) = £ @ r — also called a bispinor representation. This separation is done using
“Van der Waerden dotted” notation where Weyl ¢ spinors have undotted chiral indices (like
a, B,... where @« = 1,2,...) and r spinors have dotted indices &, ﬂ where & =1,2,.. ..

In the “¢” representation, we have Lorentz transformation group elements g = e where
the exponent matrix M, = [(p/2 —inf/2) - &]. If we have a two-component ¢-spinor vy, it
transforms as 1, — My s [24].

For the r-representation, we use the complex conjugate matrix M*. ¢ and r are Hermitian
conjugates, so the transformation would be wTd — M*a6¢TB .

“For typographical reasons, Penrose replaced the dotted indices with primed indices, a

notation still employed by most general relativists today” [24].

For physicists, another convention is given by the favored text Gravitation [4] under the
chapter on spinors.

Spinors with raised dotted indices plus an overbar on the symbol are RH and called
anti-chiral. Indices with hats are Dirac indices like A = 1,2 or dotted A= 1,2.

A Lorentz transformation of a spinor & = L¢ is more carefully labeled (using capital let-
ters) as &’ A = [AR¢B, and this uses half of the transformation formula Q' = LQL*. Then
one introduces another spinor 7 transforming by “the conjugate complex of the Lorentz

transformation” : 7’ U_ L‘[{_nV.

Irreducible and Spinor Representations

This is an important, and very difficult topic. An outline of it is the first three chapters
of the book, Group Theory and General Relativity, by Moshe Carmeli [15]. It is too lengthy
to present here.
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Irreducible representations for spaces of quantum angular momentum is discussed in
the text by Messiah [18]. A “standard representation” is called {.J2J,} in which the z’th
component of angular momentum is diagonal and J? is also diagonalized. If the ket-state
|im) is an eigenvector of these, then J2|jm) = j(j + 1)|jm) and J.|jm) = m|jm). For a
selected value of total angular momentum, j, there are 2j+1 values of m, the z’th projection,
with integer spacings: m = —j,—j+1,—j+2,...,+j — 1,+j. A raising operator can be
found taking the projection m up to its next highest value m + 1.

(34) Jilim) = V(G + 1) — m(m + 1)|jm) = \/(j — m)(j + m + 1)|jm)

Starting with m = —j there can be 2j applications of a “raising operation” or “ladder”

increasing m up to +j. The series of 25 + 1 |jm) ket-vectors correspond to a subspace EW)

of a total Hilbert space. This subspace is invariant under rotation or “irreducible” with

respect to rotations.

Finding irreducible representations of groups is important “because the basic fields of

physics transform as irreducible representations of the Lorentz and Poincare groups [11].”
Rank of a Spinor:

In physics, rank n usually means how many Weyl chiral spinors in a tensor product.
“Equivalently, it is the total number of dotted and undotted indices on the spinor.” For
a 3 + 1 irreducible representation with left and right spins (jr,jr), n = 2j1, + 2jr. So a
single Weyl spinor is called rank 1. Spinors of rank 1 may also be labeled as rank (1,0) or
(0,1) for one undotted or one dotted index.

In the previous discussion, a spinor is rank one transforming as s = A% under a change
in inertial frame. The outer product ssf is a 2x2 matrix 2nd rank spinor transforming as
ss' — AssTAT. The previous matrix Q (eqn.(8)) is a 2nd rank spinor, Q" = AQAT.

Algebra, Rings, Groups:

A ring (A, +,-) is a set and binary operations that are an abelian group under “+”,
associative for -, - is left and right distributive with respect to “+”.
A subgroup K C A is a “left ideal” when: K # 0, z,y e K —=x—y € K,Vr € K,a €
A ax € K [26].
A homomorphism of (A, o) into itself is an endomorphism. An isomorphism of (A, o) into
itself is an automorphism.
A map A+ A’ is an isomorphism if it is bijective.
For a subgroup H C G, left coset is an equivalence class a ~ b of an element a € G if
b = ah for some h € H [13].
(E.g., see “The mathematical definition of spinors” in the section on spinors).
Symplectic matrix is real 2n x 2n such that M7TQM = Q (follows that M~! = Q=1 M7 Q).
A frequent choice is Q = [0, I,,; —I,, 0] or upper-triagonal, lower-triagonal, and I with
entries 0 and 1. det(Q) = +1, Q71 = QT = —Q.
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The Center of an algebra A is Z(A) = {a € Alab = ba¥Vb € A}.
Lie Groups and Lie Algebras:

The Lie algebra of a Lie group is the first linear approximation of the group (the tan-

gent space about the group identity, I).It is a vector space g over a field (like R or C)
along with a bilinear map that keeps the outcome in the vector space: g x g — g.
The map is called the commutator or “Lie bracket” [a,b] = ab — ba, [a,a] = 0 (anti-
commutativity). These brackets are incorporated into a requirement called the Jacobi
identity: [z, [y, z]] + [y, [z, x]] + [#, [z, y]] = 0. Roughly, this is an analog of associativity for
infinitesimal symmetries. The dimension of a Lie algebra is its dimension as a vector space
over the field.
Lie (continuous) Groups use capital letters, and their Lie Algebras us small letters (ideally
“Fraktur” letter font like g). For a Lie Group, G, the Lie algebra g is the tangent space
of G at the identity, I (infinitesimals around 1). There is a surjective exponentiation map
exp: g — G, M — exp(M)

“The general linear group of degree n is the set of n x n invertible matrices, together with
the operation of ordinary matrix multiplication. This forms a group, because the product
of two invertible matrices is again invertible, and the inverse of an invertible matrix is
invertible. The group is so named because the columns of an invertible matrix are linearly
independent” [8]. GL(2,C) is the group of linear transformations on C? which are invert-
ible. Another way of looking at it is all complex 2x2 matrices with non-zero determinant.
For SL(2,C), the determinant is one.

One definition for a Lie algebra is:
Lie(G) = {m € M(n,C) |Vt € R,exp(tm) € G C GL(n,C)}.

Relevant Groups:
SU(2) ={M € GL(2,C)| MM =1 = MM, det(M) = 1} [i.e., Unitary].
su(2) ={M € gl(2,C)|M + M* =0, tr(M) = 0}.
SL(2,C) = {M € GL(2,C)| det(M) = 1}.
sl(2,C) ={M € gl(2,C)| tr(M) = 0} = su(2) ® i su(2).
sl(2,C) =span{E, F, H} = 21 E + z2oF + z3H,
su(2) = span{i,j, k}, [or in matrix form eqn.(4), set a = (I + arp).
H = span(I) @ span{i,j, k}.

A “spin group” is a double cover of the corresponding SO(p, q).
So, spin(2) = U(1) =2 SO(2).
spin(3) = SU(2) = SO(3), spin(1,3) 2 SL(2,C) = SO*(1,3)

The group SU(2) has the same Lie algebra as SO(3), i.e., [X;, X;] = i€, Xy,
e.g., 0109 — 0901 = 2i03 with X; = o0; /2.
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Spin And Statistics:

“Quantum mechanics says that if you turn a particle around 360°, its wavefunction
changes by a phase of either +1 (that is, not at all) or -1. It also says that if you inter-
change two particles of the same type, their joint wavefunction changes by a phase of +1
or -1.

The Spin-Statistics Theorem says that these are not independent choices: you get the
same phase in both cases! The phase you get by rotating a particle is related to its spin,
while the phase you get by switching two” is called statistics [29]. This means that
i. Physical systems that obey Bose/Einstein statistics possess integer spin; and
ii. Physical systems that obey Fermi/Dirac statistics possess half-integer spin.

In non-relativistic quantum mechanics, a two-particle wavefunction has the addition of
the original and exchanged wave function,
e.g., U= (1/v2)[1(1,2) +(2,1)], a permutation. The exchanged 1(2,1) = (—1)%%(1,2)
saying that a fermion spin s = 1/2 exchanged function acquires a minus sign in its “spin
factor” giving an anti-symmetric W; but for bosons the factor is +1.

Another way to say this is the vanishing of commutator or anti-commutator relation-
ships (subtracting versus adding):
[1(z), a2(2)] = 0 or {¢1(2),¢2(2")} = 0. And {¢1(z),¥2(2")} = 0 = [¢h1(z), ¢2(2')] # O
applying to vector or spinor fields. And fermion particles with half-integer spin identify
with the spinor representation of the rotation group.

The term “exchange” is defined mathematically as just a permutation — but there must
be some physics taking place also.

Perhaps the best example is the scattering of two particles in the center of mass CM
system discussed in the Feynman lectures[32]. A particle comes in from the left and an-
other from the right meeting at the center. The left particle interacts and scatters through
an angle § meaning that the other particle must scatter at the angle m — 6. There are two
detectors: an upper one D and an opposite one below Dy — we only need to consider the
probability P of some particle detected in D;.

For distinguishable particles (alpha on oxygen nucleus or for two electrons with opposite
spins), P is just the sum of squares: P = |f()|>+|f (7w —0)|?. For boson identical particles,
we can’t tell which particle went where and P = |f(0) + f (7 — 0)|?. For identical fermions,
we subtract amplitudes P = |f() — f(7 — 0)]>.

For the special state § = 7/2 = 90°, f(0) = f(m —60) = f(7w/2) = f. The probability P
for the different cases is then very interesting: P(distinguishable) = 2f? versus P(identical
bosons) = 4f2 versus P(identical fermions) = 0 ! The fermion case gets nullified! And, “it
is twice as likely to find two identical Bose particles scattered into the same state as you
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would calculate assuming the particles were different.” This enhancement ultimately led

to the laser.

Expressed as two particle states, left and right to detectors 1 and 2, Py = |[{173 — 1142
Quantum mechanics is a theory of measurements with respect to preparation and de-

tection at a distance. And exchange expresses possibilities viewed from a distance. The

interaction region doesn’t know which two-particle state gets the minus sign, and it doesn’t

matter because use of the Born rule “squares” amplitudes to get probabilities.

2.

In Quantum Field Theory, QFT, particle number need not be conserved; and we switch
focus to particle creation and annihilation operators. We say that the symmetric state for
bosons and the anti-symmetric state for fermions with momentum p obey:

[a(p), o’ (p")] = 6(F — 5") , and {a(p), a¥(p")} = 6(5'~ ") .

Now, in quantizing the Dirac field, we have to address both matter and antimatter
together (a 4-spinor). Essentially, the Dirac Hamiltonian has terms that look like the first
part of the equation below with b operators for matter and d operators for antimatter
(the subscript s is the spin state) [11]. The problem with these terms in the equation is
that the second term with the minus sign implies that energy is unbounded from below
(the system energy could be negative! — deemed “not sensible” ). This is solved in
two steps. The first is called “Normal ordering” which says that particles must always be
created (dagger) before being destroyed (the dagger term must come first). “The vacuum
expectation value of a normal ordered product of creation and annihilation operators is
zero” where |0) represents the vacuum, and operator a|0) = |0). This avoids zero-point
energy. The second is that anticommutation rules must be enforced for fermions and for
antifermions so that {ds,d's} = 0. We then get:

(35) (bsT(p)bs(p) — ds(p)ds’) — (bs' (p)bs(p) + ds (p)ds(p) )

So, energy positivity is one motivation for requiring fermi statistics and its subsequent
exclusion principle. Spin-Statistics also requires relativistic Lorentz invariance, three spa-
tial dimensions, and relativistic causality [“microcausality is the requirement that two
physical measurements made in different points x and y be mutually independent, if these
two measurements were made with spatial distance”]. “Quantum field theory enforces the
connection between spin and statistics” [22].

The spin-statistics theorem for non-relativistic quantum mechanics is empirical and pos-
tulated. The resulting “Pauli Exclusion Principle” (PEP) for antisymmetric wave func-
tions is extremely important and helps give matter its rigidity (holds up mountains, white
dwarfs, and neutron stars). But formal proofs of the SS theorem require quantum field
theory [Relativistic QFT] and are deemed to be difficult, unclear and not quite valid. There
are hundreds of papers on proofs that fall into two general approaches [31]: A formal rig-
orous purist “Wightman or Algebraic” approach has a problem of not producing “realistic
interacting models of the relevant axioms.” The pragmatist “Lagrangian or Weinberg”
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approach is intuitively clearer but not rigorous: it uses power series expansions of the S-
matrix, contains divergent terms at high energies and has problems with convergence. The
Lagrangian approach was first due to Fierz and Pauli in 1940 [30]. But it is “backhanded”:
bosons cannot have Fermi-Dirac statics, and fermions cannot have Bose-Einstein statistics.
Straightforward clarity remains elusive. The encompassing problem is that “There is no
unique set of first principles from which SS can be derived in RQFTs” [31]. Although the
Pauli exclusion principle dates back to 1925, its lack of clear or firm understanding should
place it on the frontier of physics as an important and outstanding problem still needing
to be solved.

A comprehensive reference agrees [33]: “What is proved . ..is that the existing theory is
consistent with the spin-statistics relation. What is not demonstrated is a reason for the
spin-statistics relation” ... “The spin-statistics theorem could conceivably be an essential
ingredient of a more fundamental view of the world.”
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PROPERTIES OF RIQUATERNIONS

A bviquaternion is a guaternion having complex components:
T = 2,4 2,071 + %0 + ZaT3 = Xp+ X + 1y + iF where z.= x,. + iy..
i real biduaternion is given by X = x, + X, TheWk's are isomorphic
to the Pauli matrices and have the properties that 6x2 = 1 and that
0 = -gg = ig (i,j,k are cyclic permutations of 1.2.3). We define
the guaternions by g, =-ify so that q,2 = =1.and 40205 = -1{or egquiva-

lently, 9,9, = q,, SOmE authors use 4y9s = =da1). Thus, in terms of
matrix representations we have: -
—
; -7 / _
R R B e B e

. . . are vsed as bases.
- Q- — o —f = [ e
g" - [.‘i :3) Zl T {+ < X3 s +‘2)

- In ordinary physics, real numbers have priority and complex
numbers are used less frequently. Similarly, the real biquaternions
have the better physical utility and the guaternions can be added
when desirable. It is our contentiz-n that Hamilton's greatest

error was his preference for his quaternions (the hypercomplex
analog of 1 = ./~1") over the real biquaternions (which he also

i

discoggred). . -
Def: |Hyperconjugate 7' = %, - 3 + iy, - iy =z - % .
Complex Conjugate Z¥ = x, + X - iy. - i¥ .
Quaternion conjugate Z = x_ 2 - X - iy. + iy = (2*) = (Z*)*.
Biquaternion Norm N(Z) =272 =2 2" = 2,2 - 2,2 - 2,2 - 532]

_ A real biguaternion has X* = X. Regular guaternions have

@ = Q. Therefore, the operation of quaternion conjugate means *negate
that part of a biquaternion which is not a regular guaternion.”
Regular guaternions obey gy;q;= g = - gjq; and ¢,2 = -1, so we would
expect their multiplication‘%o be different from that of real

bigquaternions. In particular:

T

QQ' = X x; + %¥' + X7 - T:¥' + §x¥’, and

QTe = [Q}® = N(Q) = %2 + y,*+y2? +¥5* with Q' = Jd QY .

XX*® = x,,,zo‘ + X X' + XAX + XX 4+ i%E', and

X = [X2 = N(X) = x,% < x,%-%,% ~x,2 with XX = ¥ |x° .
If N(X) > 0 then Z is said to bs tigelike and |X] is real. Ayper-
conjugation ebeys thes rules (2 + 2°) = 242" and (22°) = z2'727.
The trace of Z is defined to be Tr{Z) =2 + Z' = 22,. We can also
gef}ng_gn inner product and a metrie tensor for biguaternion space
cy leiting: '

(zi8) = #[a"8 + §72] = g.@F'= a’8° o8- a2B2- ap°

! 7
0 = -E:(%Z'ey-i- efue.,"-{- e3§u+ eve/;’) =( -t _; , whieh ig timelike.

The nerm is then N{c) = (ala). Physical four-vectors. like x*= (ct,%)
and p*= (£/¢c,P ) can be represented by real biquaternions and have
invariant inmner products: (X|X) = e2x2 , (P|P) = m2c?. Sometimes a
tasis of 1,0;,08;,9. is used and gives a spacelike inner product so that
{¥{¥) = -¢2r®, This basis is called the ¥inkovskian quaternions or
mirTguats.
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Biquaternions are a non-commutative ring with unity. Unfortunatel;
the division axiom is not satisfied; ie., 2Z* = 0 does not require
Z or Z' to be zero. Also, multiplicative inverses may not exist.
For example, when N{Z) # 0, inverses are defined by Z~i= Z7/N(Z);
but, if x,=ct, then N(X) will be zero on the light cone. Since
N(Q) is always »0, quaternions will have inverses, Q°t = Q' /N(Q).
Q 1s therefore a division ring and is not a field because it is
non-commutative. This means that polynomials such as a2 + 1 = 0
could have an infinite number of roots.

Biquaternions are a vector space and an algebra. A linear
transformation of a vector space into itself which has nullity zero
(dim Ker L = 0) is an automorphism. Automorphisms are the only
linear transformations which have inverses and are therefore non
singular. We are going to consider elements of Minkowski space
to be represented by X. A lorentz transformation is a linear trans-
formation mapfing X onto X which preserves the value of the inner
product. The lLorentz group, I = 0(1,3), is the group of orthogonal
automorphisms of Minkowski space, R1¢/2. Every automorphism of the
quaternions is required by theorem to be of the form Q' = AQAL where
[Al = 1 and hence A" = §' . Suppose, for example, that A = q,. Then
A' = -q; and A(X.+ ¥,q, + VaQs + ¥a3s)A = (X4 ¥1Q; - Y202 ~¥aQs).
Thus A = q, produces an inversion of the g, and o, axes. We need to
multiply twice on Q because it takes a product of two quaternions tc
get back to the real numbers. Since q,2? = -1 anddz?® = 41, it turns

out that the best formula to transform X is X' = BYB*, -~conjugate
instead of hyperconjugate. Thus if B =q3, B¥ = ¢, and we see that
gy (X, + X6 + Xa03 + X203 07 = (X 4 X0y - X203 - X303), an

inversion of the ¢, and ¢3 aXes. Notice that B = -ior;, B* = iy,
would accomplish the same thing, a rotation by » radians. The
following formula gives a rotation by an arbitrary angle 8 about the

Ux axist .
Re(8) = cos?8 - iosind® = exp( -=ig d9).

Tf we performed an unusual rotation through an imaginary angle -ja,

we would get:
L{e) = coshic - I sinhde = expl-g3a).

This turns out to be a pure boost, a Lorentz transformation. For
an arbitrary orientation, let n (orﬁB) = C0S a0] + cosBUy + COSY(,
be a unit vector along the axis of rotation (or along the axis of
motion). The general Lorentz transformation is then: 1

[ L{a,8) = exp[ -2(& + i8A)], where 8 = B tanh'B,B = v/c.j

If v is in the x direction and we calculate L, (a)XL,{a)* we get. Ly
{(et)' = y({et -xv/c) and (x)? = y(x -vt) as we should. Fer a ret2lron of X by
Pfu_s‘ £ coceT Flve. o3 QAIS wie o bhFame
{ Rg(&)Xﬁsf&)’= Te + 07 (X, COSE T 5inG) + 05 (X, c058 4{,:5185) + 032 ;-
The op ensTios Ra{&)*,\’&[é) cormespendds Fo Yhe yvecto X i"of‘ﬁ?‘fﬂa fhw-ouah
minus &. Tn ma?rix form, (f e calcolfate ;’(d{i;::A.,‘BZEU‘; and compas
with LalK)xi0)F we obrarn o
- 7 3 — 57
}{olz AoeZs #/ici @i+ Aoa 7 “f'/)r.gfg =§(% 2/38)1 Zic. COoshd O 0 -

; O I AT E —-S'f:“-' o
Therefore ; the operaltion [ s cory espondr To o C«Jé ”L
Asﬁﬁ'%f{'a = o 5/'/]& cectE O

A

[ chw =, Sinhat =8%) -
(ceshax =1 |_sinhx © & &k

i

-




Def: 1. G = (1 + g=j + a3k .
2, T4 = K107 + RaGs 4+ Aaoz = A = a real vector biguaternion.

3. Cross Product A x B = vector part of AB = i(AxB). &.
The vector (AxB) is understood to be in a Pauli matrix base.

4. Dot Product A.B = scalar part of AB = 1.8 .

5. The following formula is used in the quantum mechanics of
angular momentum. We now recognize it ag simple quaternion
multiplication. (G5A)(TSB) = A«B + 1T (AxB) or

—

AB = %8 + iAxB = A-B + AxB.

] .
+ irxp = r-p + il

ldb

for example, rp = ¥.

6. An axial vector (or pseudovector) reverses sign upon
inversion. Any crosg product of two vectors is a pseudo-
vector, ie., AXB = -BxA. T = ¥xP and B = VXA are pseudo-
vectors. The following operation is ealled the angular
momentum axial 4-vector:

x@p = $(xTp - p'x) = ctp - xB/c -ixzxp.

7. A pseudoscalar is a scalar which changes sign under an
improper rotation (inversion). The product of a vector
and an axial vector is a pseudoscalar. eg., the triple
product A.BxC.

8. 3= (18 .v), & =(la -9). Using A3 = a b, + a,b +
=2 = o o—
cat s - cat,

ab, + a:-b + izExb, we have 3'3 = 3,%~ V2 =0 = the

D'Alembertian. We reserve the symbol 02 for the usual
spacelike operator V- 1 32 .

c23%*®

9. Minkovskian quaternions gmiHTQuaﬁ§}= Moo= moid4my gy, +Hnaqa+mads,.

i =.=3. fTheir muitiplication ohevs
MN = -mgn, +imn +in m -m-n +hxf, and (m{n) = -myn, +men,
spacelike. Since this system alsc has a pseudo-Eueclidean
metric and invariant inmer producis, it is as adequate as
the razl biguztsrnicns.

10. A veetor @ = 2,Q,+820.+8405 with real coefficients will be
called a q-vector. L vector X = by0y+booot+baygy with real
coefficients will be ecalled a p-vector (p for Pauli). A4
regular quaternion will sometimes be called a guat: and a
real biquaternion will sometimes be called =z squat (s for
sigma).
22 + BT = B4 5+ a7B = 2(4/B) = 2(Bfa) is a Lorentz
ipvariant. ie., a b, = 2*b is a scalar and L7z g L =
2,0+ ,Scalars and Space-like numbers are special cases of
axial ¥-vectors, eg. #= (U3 ,0=,03) These objects do not
satisfy the usuval Iorent:z iransformations for proper, 4-vectors.
Instead they must transform as a—>a' = T aL = a5 +I aL.

3
cl

Commen<s:
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ELECTROMAGNETISM:

Let the electromagnetic 4-potential be A = (B/c,4) and let
J = the &4-current, (ep,gj. The derivative of potential is:

éﬁ = 134 + VA 4+ 1BA & ;Vﬁ + i¥xA. Using the Lorentz gauge we
c®at cdt €
have V.4 + pcag/at = 0 where ne = 1/c2. Also E = -v4 « 34/5t
and B = vxA (MKS units). So: d4 = -E/c +iB = ~(E/c- iB) = p
a p-vector + a g-vector. We can justify B being a g-vector by

noting that evx(-iB) = -iei(¥xB) = evxB,which is real as it should
be. If we take the D'Alembertian of A we get:

0A

3724 = 13 (-E/c +iB) - v+ (-E/c + iB) -ivx(-E/c + iB).
cat

|

~iV'B + U:E/c 4 VXB -13E + iVXE + i3B ;now, V-E/ec =
e 8t © cet

0

Plee =u,cp/uge? =Hep. Also VXE = -3B/3t and VxH-3D/at = J or
VXB - ue3E/at = pJ. Therefore, DA = 37aa = g
If we had used minquats for our basis &e would have obtained:
A = B -iE/c = -1(B/c + iB) and D% = -nJ.
We also note thaty*py = (-E/ec -iB)(-E/e + iB) = E2/c24B2 4 2E/c x B =

_2‘1!'{1\'0__,

v = 2u, (energy density + Poynting vector/c).

If we perform a Lorentsz transforma+tion on Y we must use L‘lpL =yt
because  is an axial #-vector(it can be considered as the hyper:
eurl of A}. We then have: Tyl = (for a boost in the = direction)

(coshia +0;sinhda) (-E + i8)(coshia - G3einhda) =
cosh g [(~£,: i8I + (-2, +ibs)T; +(-£, +18)0; | +cashBeish S [F£ 488 76) 447, 38, ) (=157
FEg il 5337_ coch Fanh —é’-‘[{-}fu’,&)f—iﬁ VH(E, 1B X0 (-3 ff#—.?)fi)J o
SRS AT 418 (o) ~ CE3 1 B0E] | s
(-£'+18')= (~ By ti8G + corhat [~E, +38)057 + cosh ok [En H1BIT 515 oL 07 3 (- +782)
t ol ot 03 1(<E, +78,) . Companiny, et see:

- ‘ £_
! B. = A, El= L; or = £, jj%-'ﬁq
5: = ¥(8 +BF.) E = 3’[&}—,9&)
grf - 34’57_—'85) E.l = ¥ 5 +88) )
L’ = - I
~ ¥XE = (L ATXE
B, = ¥ —3 Ey L | / _

Notice that the explicit use of the electromagnetic field tensor
was not required.



LIE GROUP REPRESENTATIONS

DAVE PETERSON

ABSTRACT. The popular continuous Lie Groups used for particle physics have their own
representation conventions that differ from those used by mathematicians. The following
note focuses on mathematical physics in preference over pure mathematics. The discussion
here elaborates beyond a previous note on the Lie group SU(2) [4]. A goal has been to
understand the decuplet and octet structure of baryon groupings in SU(3)r as indicated
in equation (4) shown below. Actually, the decuplet 10 can be constructed intuitively
since all quark spins are aligned and the states are completely favor symmetric. But the
other multiplet require fairly advanced mathematics. Part of the new thinking is building
on what we know about angular momentum |J, m) and applying it to isotopic spin |I, I3).
[Preliminary].

1. INTRODUCTION

Prior to Heisenberg’s quantum mechanics of 1927, few physicists knew anything about
matrices. And few physicists knew much about group theory until the power of of Gell-
Mann’s approximate Lie group SU(3) was revealed in 1964 for the baryons. The math-
ematicians knew, and Gell-Mann could have saved much effort if he had simply gone to
a library and looked up their group classification schemes [2]. Lie groups go back to the
studies of Sophus Lie who published them near the year 1890. Largely because of particle
physics, Lie groups are now very popular. But it is still a difficult study.

In texts on particle physics, the irreducible representations of useful Lie Groups are often
labeled in a simple form such as: 2®2=3® 1
where the numbers refer to the sizes or dimensions of multiplets. This example can pertain
to the special unitary group SU(2), and we wish to extend this symbolism to higher groups
such as SU(3). What does this labeling mean? and How can it help understand the particle
multiplets of high energy physics?

There is a desire to be able to consider difficult concepts from perhaps a second year
of graduate school and try to explain them at a sophomore level of college physics. This
is not always possible, but here we see that the concept of the baryon decuplet can be
explained simply. I am not aware that this simplicity is presented in any popular book, so
I do so here.

The known baryons of the 1960’s only consisted of three basic quarks, {u, d, s} (now
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FiGURE 1. Plot of Baryon Decuplet, S versus I3, showing the name of the
particles and their triplet quark contents.

called “flavors”). Laying out all the particles in terms of how many of each quark might
require 3-dimensions (s, u, and d-axes). Indeed, a convention is to show s’ness on a vertical
y-axis. But a Heisenberg-Gell-Mann convention introduced an x-axis of “u-ness minus d-
ness” thus enabling a 2-D plot of known particles (and this x-axis was given the name
“projection of isotopic spin” or I3 ). A layout then includes particles like ddd, uuu, and
sss (which are “corner” states of a triangular decuplet of particles- see Figure 1). Having
something like uuu as a fermion required knowledge of “color” (red, green, blue from
SU(3)color )- So uuu was allowed because it was really a red-u, green-u, and blue-u (a
particle called the A*"). And uuu is also three spins up | 1), so any group including
uuu would be a net 3/2’s spin state. The uuu state has the simplest possible symmetric
wave functions, so it is easy to write out the states of the decuplet. At the time that
Gell-Mann presented his plot, the sss state had not yet been detected (now called the
Omega-minus particle). This and the more difficult multiplets are elaborated below. A fuller
understanding requires knowing Lie groups for physics and might require going through
courses with hundreds of pages of text and problems, e.g., [7].
First, some preliminaries:

2. DEFINITIONS

Group: A group, G, is a set of elements and an operation that composes any two elements
into a third element belonging to the group. It has to obey this closure, be associa-
tive, have an identity element (e), and each element has to be invertible so that for all
g€ G, g 'g=gg' = e, the identity. Examples of groups include the integers (Z), the
rationals (Q), and symmetric groups. But here, we care about Lie groups which are smooth
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continuous groups that are locally Euclidean (differential manifolds) such as the rotation
groups like O(2) and O(3).

General Linear Group: A convenient reference group representation is the set of square
invertible n x n matrices such as GL(n,R) over the reals (determinant # 0) or GL(n,C)
over complex numbers. The group concept applies because the product of two invertible
matrices is also invertible, and the inverse of an invertible matrix is invertible [3]. The
word linear applies because the columns of an invertible matrix are linearly independent.

These are Lie groups of dimension = n?.

Group Representation: Representing a group, G, by a square matrices, D(g), is conve-
nient because the group operation can be represented by standard matrix multiplications
from well-understood linear algebra. In physics, group symmetry can then be exploited
for calculations. A representation is then a map over some vector space, V, preserving the
group operation:

D: G — GL(V) such that D(g192) = D(g1)D(92), for all 1,92 € G.

A simple example is rotation in the plane by 120° or u = e2™/3. Then the discrete cyclic
group of successive transformations

(1) ©3={l,uu?} D(l):[(l) ﬂ D(u):[(l) 2} D(ﬁ):[(l) 1?2}

A representation T': G — GL(V) is called reducible if there are subspaces W and Y
such that V = W &Y where both W and Y are invariant under all the T's. If no such
subspaces exist, then V is irreducible.

Tensors: Instead of matrices, we can consider tensors as furnishing representations of a
group. Tensors are objects that transform as if they are the products of vectors. In older
notation, “dyadics” are second order tensors formed by juxtaposing pairs of vectors like
the tensor product of vectors, @ ® b.

A tensor of rank r is the direct product of r copies of a fundamental representation space
(e.g., 3-vectors for SO(3) and 2-spinors for SU(2) )[2]. Tensor products are often reducible
and need to be decomposed into irreducible components (irreps) for similar physical prop-
erties (for example sets of symmetric versus anti-symmetric states). Considering tensors
as representations also requires being careful with subscripts (in the basis of the defining
representation) and superscripts (contravariant or conjugate representation). For example,
if {e1, ea, e3} = {u, d, s} quark flavors, then anti-quarks may be {1, d, 5} = {e!, €2, €3}.
These may be labeled by bold numbers: 3 or 3. Tensor products form new bases such as
e11 = e1 ®e1, €;; = e; ®ej;. Vectors over bases can be defined: e.g., v = viejorv = Uijeiej.

Unitary: A complex square matrix U is said to be unitary if UTU = UUT = I where T
is the identity matrix and U is the conjugate transpose of U. A “special unitary group,”
SU(n) of degree n is the group of n X n unitary matrices with determinant 1 so that
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SU(n) ¢ U(n) € GL(n,C). These groups are key to the standard model of particle
physics:  Ggm = SU(3)c ® SU(2), ® U(1)y  where the subscripts C means color, L
means left, and Y means weak-hypercharge. The product of Lie groups is also a Lie group.
Unlike SU(3)r, SU(3)¢ has exact color symmetry.

Orthogonal Group: O(n) is the group of distance-preserving transformations of a Eu-
clidean space E™ while preserving a fixed point in that space. The group operation is com-
position of transformations. As n X n matrices, the determinant has to be 1. The term or-
thogonal means that the inverse is equal to the transpose of the matrix: Q7Q = QQT = I.
The “special orthogonal group,” SO(n) has det = +1 and is also called a rotation group
about a fixed point (such as SO(2) or SO(3) ). For physics, the angular momentum oper-
ators {J;, Jy, J.} can be generators of SO(3).

Lie Algebra: Physicists refer to the Lie algebra as the space of infinitesimal Lie group
elements. For SU(n), the Lie algebra is denoted by lower case su(n) as the set of traceless
hermitian n x n complex matrices (and having a Lie Bracket given by —i times the com-
mutator). For example, let g.(¢1) be the first Euler rotation about the z axis in the space
E3 by an angle ¢; in the continuous 3-D rotation group O(3) [4]. Then,

cos¢p sing; 0 010
(2) g3 = [dg;(%)] = di —sing; cos¢g; 0 = -1 0 0
o1 1, don 0 0 1 00 0

p1=0

where the derivative applies on each element of the matrix. Finding these ‘tangent matri-
ces’ takes the Lie Group to the Lie Algebra.

One can also go backwards from the basic generator g3 to the general group element
rotation R in terms of cosines and sines by evaluating the ‘exponential map’:

R3 =exp(gs @) = I + g3¢ + (930)%/2! + ... where a matrix squared means the matrix
times the matrix. Notice that the upper-left 2 x 2 sub-rotation of g3 (last term of equation
(2)) happens to be the quaternion ¢, = io, for SU(2).

The number of elements in a square matrix or tensor, T, is n?. This can be decomposed
into symmetric and anti-symmetric (or skew) elements according to:
(3) 8Y = L(TY4+T9), AT = J(T-T9%), n? = L(n®+n+n?—n) = gn(n+1)+n(n—1).
So,forn=2, 2®2=3®1 for symmetric plus skew parts (as mentioned in the in-
troduction above). A particular example [1] is the addition of two spin % particles with spin
states T & | where the symmetric total spin one states have spin projections My = 1,0, &—1

(a triplet) while total spin zero is a single anti-symmetric state:

15 =0,M, = 0) = /3 (1 — 41).
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And forn = 3, 3® 3 = 6 & 3 or sometimes written as 6 @ 3, where the bar emphasizes
anti-symmetry under the exchange of two given particles. Some use the over-bar for anti-

particles so that a 3 representation for u,d, and s quark flavors would have 3 = {a, d, s}.
If we are instead working with QCD colors, then 3 = {r, g, b} and 3 = {7, g, b} anti-colors.

The group SU(3) has 3 x 3 unitary, unimodular matrices whose 8 independent generators
are usually chosen to be the 8 Gell-Mann matrices, A;. This is similar to the use of the
Pauli matrices {0, oy, 0.} for SU(2).

One often wishes to treat the trace of a tensor separately so that a tensor product of
two vectors is decomposed as the addition of a traceless-symmetric part + the trace + the
anti-symmetric part. Then the above example for n = 2 becomes 2®2=2®1¢1
And forn =3, 3®3=5®1®&3 More complicated tensor products are often treated
using something called the “Young Tableaux.”

3. FLAVOR MULTIPLETS:

“The history of nuclear and particle physics is very much a quest to find symmetry
groups” [2]. As a generalization of Heisenberg’s original isospin SU(2) group for {p, n},
Gell-Mann came up with an SU(3) group for baryons. We would now call this a quark
“flavor” group. SU(3)r is only approximate, and its utility was an accident of history due
to the lightest quarks having a mass much below the mass of baryons.

One of the best known patterns built up from u, d, s quark constituents is the “baryon
decuplet” [5] with each baryon containing three “valence” quarks. Strangeness (or hyper
charge Y = B + 5) is plotted versus Isotopic spin (S vs. I3) leading to the prediction of
a previously unknown “Omega minus” Q™ (sss) particle of strangeness S = —3 (see Fig.
1). The 10 plotted baryon states of lowest mass have spin-parity J© = 8+ and include the
A particles, the ¥’s, the E’s (“Cascade” particles) and the Q7. The wave functions of all
these states is symmetric under interchange of any pair of quarks [5]. That means that all
possible superpositions have only positive additions (+). Unlike the other multiplets, this
makes the decuplet fairly easy to understand intuitively with a minimum of math.

The total number of states formed from {u, d,s} is 3 x 3 x 3 = 27. Of these, one state
is antisymmetric, dsu + uds + sud — usd — sdu — dus, leaving 16 states in two octets having
mixed symmetry. The one containing the proton and neutron has spin-parity J© = 7.
This octet also contains ¥’s and Z’s of lower mass-energy than those in the decuplet. And
in the middle is the famous Lambda A(sud) particle. Some of these wave functions are
very complex with many carefully placed minus signs. The proton, for example, now has
12 terms still preserving an overall positive symmetry. Overall, the matter baryons are
symbolized by !:

(1) 3®323=(303)®3=27=(603)®3=(603)0(3®3)=100808d1

lYes, 6 ®3 =10 ® 8 can be shown using the Young Tableaux (e.g., Palash Pal, An Introductory Course
of Particle Physics, CRC, 2015, HW p 267).
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The mesons are characterized by a quark and an anti-quark, and these can have aligned
spins (J = 1) or opposite spins (J = 0) forming two different nonet meson groupings. For
mesons, baryon number B = 0 and spin-parity J© = 0~ are called pseudoscalars mesons
and form an nonet of particles while J” = 1~ form a nonet of vector mesons [5] with the
same quark assignments for both nonets. Fermions (like quarks) and antifermions have
opposite intrinsic parity. Note that 32 =9, or 3® 3 = 8 & 1. The neutral pion is in an
isospin triplet with the 7% ’s and has wave function 7° : %(dcj — uw). The combination

2= (dd + wii) is an isospin singlet state called the eta n (550 MeV) meson.

4. SIMPLE APPROACH TO BARYON MULTIPLETS:

For the strong interactions, in 1932 Werner Heisenberg proposed that the proton and
neutron be considered as nearly the same particle (a nucleon) but with a kind of spin-up
and a spin-down difference. In 1937, Eugene Wigner gave this concept the name Isospin,
I, a value that is preserved under strong interactions. The number of particles in a similar
mass multiplet is n = 2141 = 2(4)+1 = 2 for this doublet, and spin projection I3 , = +1/2
and I3, = —1/2. When pi-mesons were discovered in 1947, they were considered as an
isosopin-triplet: I = 1, Iz3(nt) = +1, I3(7°) = 0, I3(7~) = —1. It was then discovered
that the baryons were composed of three quarks, so the baryon number of the quarks had
to be B = 1/3. Since a proton is p = {uud} and a neutron is n = {udd}, the original
isospin projection, I3, became a measure of “u-ness:” I3(u) = +1/2 and I3(d) = —1/2.
Then with the charge formula: Q/e = $(B + S) + I3 , we see that the charge of the
u-quark must be @ = +2/3 and the charge of the d-quark is @ = —1/3. The strange quark
has strangeness S = —1 (an unfortunate historical convention like Ben Franklin calling the
electron charge negative). It has no isotopic spin, so its charge is Q = —1/3.

With this basic (or fundamental) understanding, we can begin to plot out quark-triplet
combinations on a chart with net isotopic spin on an x-axis and strangeness on a y-axis
and consider only the selections of quarks: u, d, and s. A top row of 4 particles with
no strangeness (S = 0), will end with a ddd triplet on the left corner and a uuu triplet
on the right corner. It turns out that these corners correspond to particles called the
A= (I =3/2,I3 = —3/2) and AT (I3 = +3/2) ? . Quarks are fermions, so these triplets
can only happen if each quark is different somehow. The somehow is having different col-
ors: 1, g, and b. Progressing down on the chart, we have another triangular corner at sss
with strangeness S = —3 (I =0, I3 = 0). This is called the Q™ particle (see Fig. 1).

The total number of particles in this overall triangle is n = 10. Now the total num-
ber of combinations for triplets is 3 x 3 x 3 = 27, so these 10 must have some property
that makes them fit into a special multiplet. Since the corner states are symmetric un-
der interchange of the quark order in the triplet [5], that property must be symmetry of
the wave-function of the particle states (flavor symmetry). So, if we include the corner

2ATT is called a maximum weight state, and other states can be formed from it by applying lowering

operators.
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states, we must have a symmetric decuplet, n = 10 particles. We can label this group as
JP = 3% with all spins aligned (e.g., {111}). An example of states is ¥(A~) = |ddd), and

Y(AY) = |uud + udu + dun)/+/3. All of these states are simply composed of all combina-
tions of the quarks for a given state. This makes the decuplet simple and intuitive. But all
other multiplets are more complex and require some sophisticated mathematics. All these
triplet particles are fermions, so the net anti-symmetry comes from antisymmetry of the
color terms.

If we don’t include these corner states (delete them from the chart), then the size of
the multiplet is reduced (into octets). We no longer have all spins aligned, so we have to
consider terms like | 1) and J = 1/2. One of the baryon octets includes the proton and
neutron and is also symmetric J© = §+. But it has mixed spin and flavor and the overall
spin-flavor symmetry is achieved by cyclic permutations (which is lengthy and complex,
the proton wave function now has 9 terms in it to achieve this symmetry).

The mesons form two groupings called J* = 0~ for pseudo-scalar mesons > and J¥ =1~
for vector-mesons. For example, both the 7° and the p° have |u@ — dd)/+/2, but the 7° has
anti-aligned spins while the p° has aligned spins for the quark and anti-quark pairs. The
plotting of the mesons by S versus I3 is straightforward. One interesting different way to do
it is by Martinus Veltman [6] where he starts with an inverted triangle for the fundamental
{sud} representation and then adds three conjugate triangles {3, %, d} pointed up and cen-
tered at each vertex of the initial triangle. The vertices of each triangle represent a type
of antiquark and antiquark combination (kaons and pion totaling 6 on the outside). The
center has three particles (pi-zero and eta mesons). But, the details of the wave functions
can be tricky (require Clebsch-Gordon coefficients or some other advanced method).
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Geometry in Modern Physics

Dave Peterson, 4/2/16 - 7/16/16, (Preliminary Revision_0)

The following is a sketch of topology and geometry needed to better understand
the increasingly popular but advanced works of Shiing-Shen Chern (1911-2004). This
summary background includes: differential forms, fibre-bundles, homotopy, homology,
and topological invariants -- and books mentioning Chern usually discuss all this
background first. A short introduction to Chern classes and Chern-Simons theory is then
included. The motivation for this study is a desire to understand common applications of
topology for modern physics and a possible mechanism for the production of cosmic
matter asymmetry from SU(2) “sphalerons” at energies above the electro-weak
symmetry breaking scale. In addition, modern topology has become a major player in
the new exotic materials experiments of condensed matter physics (solid state theory
and Bose-Einstein condensates.

The overall subject material is quite difficult. My approach to it has been to select
the key defining statements from a variety of textbooks along with summary clarifications
from a great many google references. This initial study is not yet “polished,” and it may
take a long time to do so.

Simplistically, a goal of topology is to present enough topological invariants
(usually integers) to enable characterization of “spaces.” Initially, this often involves
specifying n-dimensional “holes” in spaces. But in what sense does a physical field
represented by complex groups such as SU(2) have holes?

One facet of the answer is that “holes” aren’t restricted to our visual Euclidean
concept of threading string about or through holes in familiar Euclidean space.
Homology extends beyond these “1-holes” to “2-holes” (geometrical objects that can be
filled with water — such as a 2-sphere or a torus). And there are “n-holes” in higher
dimensions that we can’t picture. Topology also includes complex and quaternionic
spaces so that quantum mechanics can also be discussed. And there are also fields on
manifolds and their associated connections and curvatures and forms and topological
indices. And these fields may be discontinuous.

It may be that physics initially bumped into topology through “Dirac’s monopole”
in the 1930’s, but “there is no doubt that a principal factor in the rise of topology in
physics is due to the rise to supremacy of gauge theories in physics” in the 1970’s [3].
The best known of these is the famous SU(3). x SU(2),, x U(1)y. ‘t Hooft discussed a
“non-Abelian” gauge theory monopole in 1972 and also made a major impact then by
showing that such theories were renormalisable. This was followed by the importance of
“‘instantons” in 1975.

Physics applications of Chern's differential geometry:

Shiing-Shen Chern (1911-2004) was a Chinese-born American mathematician
and a major contributor to 20" century differential geometry. In his early years, he
advanced mathematics in China and then later also worked in Berkeley from 1960 to
1979. In the 1940’s, he co-authored studies with Weil on “Chern-Weil theory” for
topological invariants of vector bundles. The concept of “Chern classes” was introduced



in 1946 as topological characteristic classes largely using the language of forms. Chern-
Simons theory (“CS”) was produced in 1974 and inspired Edward Witten in some of his
later contributions. The earlier Chern-Weil homomorphism was an important step in the
theory of characteristic classes and is built into the construction of Chern-Simons forms.

Although intended mainly as pure mathematics, Chern-Simons forms were
applied in physics for chiral anomalies, fractional statistics of anyons, electro-weak
sphalerons, and instantons. Some of Chern’s discoveries have earlier precedents that
didn’t catch on well at the time: Fiber space (then called sphere-space) was defined in
1935 by Hassler Whitney. Connections on fiber bundles were introduced in 1950 by C.
Ehreshman — a student of Cartan. And Chern classes were inspired by Dirac’s work
several decades earlier. The algebra of differential forms goes back at least to 1899 with
the publications of Elie Cartan. Physicists gained interest in topology from Yang-Mills
theory [SU(2) for isospin]. Finite action of Yang-Mills theory is characterized by
topological instanton number, Pontryagin index or second Chern Class. Some of this
application is due to boundary conditions (BC’s) on gauge potentials such as
compactification of R* [20].

In mathematics and physics, a goal is to find and utilize invariants—properties
that do not change under various transformations. Fundamental physics equations, for
example, should be written in a form that has Lorentz invariance. General covariance
gives forms that do not depend on any choice of coordinate system. Differential forms
are also independent of coordinate choices.

For square matrices, A, eigenvectors and eigenvalues, determinant, and trace
are invariant under changes of basis (e.g., beginning with the i, j, k, or e;, e;, e basis of
Euclidean E3). In quantum mechanics and linear algebra, students find eigenvalues and
eigenvectors by using a “characteristic polynomial” given by: det(A —AI) =0 [and
then solve the polynomial for its roots and A values]. For fibre-bundles, connection
independent information is given by constructing invariant polynomials in terms of
“‘curvature forms, F ” (e.g., the F,, of 4D electromagnetism).

The Chern modification of this looks something like this:

det(it F/2mm +1) = Ze(V)t &, Eqgn 1.
where F is a curvature form of a vector bundle V, c, are Chern forms, t is a variable, and
I is the identity matrix (1’s down the diagonal). Notice that if we select A = -1 and replace
the previous matrix A by a matrix of curvature 2-forms iF/21 , we can motivate the form
of the Chern polynomial from the characteristic polynomial.

The “action” S of Chern-Simons theory is proportional to the integral of the CS 3-form,
cs: S= (ki) tr(AANdA + (%) AANAAA).  Egn 2.

{exterior product A discussed further later. And most of Physics can be described using
it}.  Ed Witten used this CS action to obtain the Jones polynomial of knot theory.

Background:

DIFFERENTIAL FORMS:

Differential forms are covered under the topic of “exterior calculus” which enables
abstraction without reference to any specific coordinate system [23]. Flanders [16] says
that this “exterior calculus is here to stay and will gradually replace tensor methods in
numerous situations where it is the more natural tool.”




In a loose sense, differential forms are integrands (what’s under the integral sign)
over one-dimensional curves, 2-d surface areas, 3-d volumes, or higher n-d manifolds.
They intend to be independent of particular coordinates and possess orientations. Their
utility in modern topology and geometry was pioneered by Cartan around 1900. For
example, an integral of a function § . f(x)dx motivates the idea of a one-dimensional
“1-form,” f(x)dx, with an orientation given by the limits from a to b. But forms go deeper
than that. It is wrong to think of dx as a “tiny A” in this arena but something that rather
acts more like a “basis” vector. A form is like a “functional” machine acting on a
coordinate vector in tangent vector space. Then, dx as a form acts on a tangent vector
v, to give a coordinate value of v at point p. In linear algebra, 1-forms are naturally “dual”
to vector fields on a manifold. Integration of differential forms is only well-defined on
oriented manifolds (spaces that are locally like flat Euclidean space).

Forms are often expressed using “wedge products” (or “exterior or alternating
products”) such as bivector a= uA v, and the wedge product of two 1-forms is a 2-form.
In Euclidean 3-space, u/\v = u x v (the familiar vector cross-product), and both have
an orientation and represent the area of a parallelogram formed by the u,v vector sides.
Just as uxv = -vxu, u/Av =-v/Au, and u/Au = -u/A\u =0 (a parallelogram with no area).
But, 3-d cross-products cease to apply to 4-d space, and there u/\u may not be zero—
especially if u is a 2-form.

“Wedge” is defined as: uAv = Zi(uyv;- uyv)) e'Ae', where e’s are basis.

This is also called: uAv = uQv-v®u (skew symmetric,tensor product).

For R%, the index values i< j only allow (i,j) = (1,2),(1,3),(2,3), and e' Ae? ~ &®
(cyclic). Expanding the definition gives the same result as ux v, cross-product.
Wedge products distribute: u/\ (v+w) = u/Av + u/Aw. And they are associative: u/\ (v/\w)
= (uAv)/Aw. We often write a wedge product of dx/\dy as just dxdy.
One may also wedge product two matrix-valued forms such as A = (a,b; c,d) , a 2x 2
matrix, and can then calculate AAA.
“If x' are coordinates, then dx'are a local basis for 1-forms” [17]. Exterior products
generate local bases for higher order forms, e.g., dx' A dx?.

A symbol for the set of all p-forms is I\

When he was 32, Cartan also created the concept of an “exterior derivative” d
which takes a 1-form into a 2-form or an n-form to an n+1 form. An example of a 2-form
in E* is the magnetic field, B. Although we often call B a vector, it really flips under
mirror image as a pseudo-vector.

Using the shortened notation, 0« =0/0d x, the operator d = [ 9 «dx + 0 ,dy+ 9 ,dz] A\
B=VxA=3(0;A)dxAdxX = dA.
We usually write the vector potential using unit vectors as A = iA, + jA, + kA,, but we can
also write it as a 1-form: A = A;dx"+A,dx*+A;dx® (superscripts here are not “powers”
but simply index numbers). It should be a 1-form like momentum or wavenumber
because A is a kind of electromagnetic momentum. Calculating the vector sum or the
form sum gives the same answers (with the understanding that unit vector k is now dx' A\
dx?>— showing it more clearly as a 2-form.

In Euclidean space E?, vector differential operators have a simple form:



If fis a O-form (a function), A a 1-form, and B a 2-form, then grad f = Vf > df. Curl A =
VxA-> dA, and divB = V- B > dB. “Poincare’s lemma” [23] says that if a form V
obeys dV = 0, then V is closed; and if V = dU, then V is “exact.” Then ddU = 0.

The operations curl grad f =0 = ddf = 0; and div curl A=0 = ddA = 0. These null
operations are the ones enabling the existence of electromagnetic potentials ¢ or f and
vector A. A few basic rules for application of the exterior derivative are:

d(df) =0, d(a/AB) = da/AB+ (aAdB)(-1)°, d(fAa) = df Aa + fAda.

If A is a 1-form electromagnetic 4-vector potential (say A', A2 A3, A*— or A?),
then we can take F = dA as an anti-symmetric 2-form (where F [standing for “Faraday”]
is now related to the electromagnetic tensor F,,,, and d might be called a “generalized
curl” operator). {Considering F,, = 9 /A, - 9 A, requires accounting for the metric n ,,, sign
(note: 8, = 9 / d x» and A, is covariant — more later.)}. The Faraday 2-form is sometimes
labeled as w = F, dx" A dx" =2F (index duplication doubling). So F = w/2, or sum X
restrictions y < v to avoid this duplication.

One may also write the 2-form F in terms of electromagnetic fields as:
F = (E1dx+E,dy+E3dz) A dt + Bidy Adz + B,dz A dx + Bsdx A dy.
(note that the signs of Edt A dx depend on metric sign: - +++ gives —E).
Cutting back from 4-space to 3-space, F pulls back to the magnetic field 2-form B as:
Frs = B as a curvature on R®.

Saying that ddA = dF = 0 only helps to characterize the “homogeneous” Maxwell
equations. For the rest we have to say d*F = J using a new concept called the “Hodge-
star, *, and a 3-form current source J. “Star” is a mapping to complementary
dimensions: *:A P> A "P [Burke]. For example, a 2-form in E* such as a = pdydz +
gdzdx + rdxdy has *a = pdx + qdy + rdz. That is, calculus can be extended to n-d metric
spaces using the Hodge star.

For the 3-space discussion about the magnetic field above, saying that dx/\dy is like k is
stated more appropriately using star: *dz = dx/\dy or *dx/A\dy = dz. More careful
presentations on electromagnetism use 1-forms for E and H but 2-forms for D and B and
current J and charge density pxdydz is a 3-form.

In 4-dimensional relativity, momentum is a 4-vector p" (~tangent vector); or with
sub-scripts, p, is a differential 1-form [ref. MTW]. Mathematics books often don’t pay
much attention to whether a superscript or subscript is used. But physicists care and
strive to note the difference between using superscripts for “contravariant” vectors and
subscripts for “covariant” vectors.

Momentum and wavenumber, k, are more properly covariant (k,) or 1-forms that can be
thought of as similar to a picture of flat equally spaced surfaces. A dot product u-v is also
uy V" =u- v =n, u" v’ (where repeated indices mean sum through all their values—the
“Einstein convention,” and eta refers to the special relativity Lorentz metric—diagonal +
1’s). Momentum in 4-d as a 1-form is p = -Edt + p,dx + p,dy + p.dz.

Dual Space:
Given any vector space V with any basis, its “dual space” V* is a set of “linear

functionals” of form ¢(x,y) = ax + by. For example, suppose we have v'=(1,0) & v2 =




(1,1) in R* Then the dual basis is ¢1(x,y) = x-y, ¢ = y] such that ¢;(v') = 5. {This is like
the usual basis statement that the dual basis is defined as ej(ei) = 6/ }.

{Verify: ¢1(v") = ay = do(v?) = a+by = 1; and ¢4(v?) = as+by = 0 = ¢(v') = a,, check.}.
Picking any vector or point p = (x,y) in R? gives number values to the ¢i(x,y)’s as
weighing coefficients of the vector. Then vector v = (x,y? = 01 (X,y) Vb2 (x,y) V2

Again using the example above, if v = (x,y) = (3,2) = cqv' + cov2, thenc; = 1 and ¢, = 2.
And indeed, ¢¢(v) =x-y=1and ¢, =y =2 =c,.

One may also think of dual bases as represented by row vectors consisting of the
coefficients of dual ¢’s) and column vectors for coordinates. Then the inner product of
(¢4 V') is the row (1 -1) times the column(1 0) = 1.

Physicists are often taught vector analysis first with dot products as a special
case of inner products and are later told that Dirac’s “bra-ket” (u|v) is an inner product
and that the “bra” is a dual vector. Examples include row vectors times column vectors to
produce a number. It is almost like a scalar product between covariant and contravariant
vectors. If v or the Dirac “ket” |v) is from a vector space, V, it is better to think of inner
product bra-ket as a “machine” -- a bra vector is a functional that acts on a ket and spits
out a number. And in linear algebra, a functional (also called a linear form or 1-form or
“covector”) is a linear map from a vector space to its field of scalars. In the previous
paragraph, we have ¢;(v) as the action of a function of the vector to give a number (in
this case a coefficient of the point in space). Or in bra-ket notation, & —(u|, and ¢ ,(v) —

(ulv).

Tangent Space:

For Euclidean space E>, a tangent vector v, consists of two points, “its vector part
and a point of application” [O’Neill]l. They can go off in any direction and have any
length. Tp(E3) is the tangent space of E* at p. For any manifold M, its tangent space is
the set of all tangent vectors at a point p& M over all points in manifold M and is labeled
T,M. A spherical surface like the 2-sphere S? has dimension two (e.g., over all 8 and ¢
angles), and each point p(8 ,¢)E S? has a set of tangents to the surface over all
directions and magnitudes. For any selected point on S?, the tangent space is a plane
tangent to the point p and also has dimension d=2. A tangent “bundle” TM over all points
p then has “base” space as the sphere B = S? and fibers F = T,M and has total
dimension dim[TM] = dim[B]+dim[F] = 2+2=4. Unlike ordinary vectors which can be
positioned anywhere, a tangent vector is a vector attached to a particular point (only one
allowed origin at a time). If we only consider unit tangents, their direction can be
characterized simply by another angle a € [0,21 ). Then TM effectively has 3
dimensions 8,¢,a corresponding topologically to the rotation group SO(3). {Ref.[2],
Frankel}.

All tangent vectors are called “contravariant” vectors. A vector field selects a
particular v, at each p. For a scalar function f and a vector v,, there is a derivative of f
with respect to v, defined by:  v,[f] = (d/dt)(f(p+tv))|i-=0, and this is called a
directional derivative.

| like to write the first approximation to the “Taylor” series in the “pretty” form:

f(x+A) = f(x) + A-Vf ( with A being a small vector displacement ).
The last term is called a “directional derivative,” the projection of the gradient in
the direction of the vector A. The “exterior derivative” takes the scalar field to a 1-form,




df, and the gradient is properly a 1-form. The component of VT in the direction A can
then be written as ( A, df) = 0 a (f) = Vaf.

The gradient Vf points towards the direction of the greatest rate of increase of the
smooth scalar functionf. Vf=df=d,f=(9f/dx)e; .

T,(M) has a dual written as T,*(M) consisting of one-forms and is called a “cotangent”
space. A simple example of a cotangent bundle is taking gradient phi for every point of
M.

Covariant and Contravariant and transformations:

“Vectors” are defined by the manner in which they transform from basis to basis.
Note that it is rare for the words covariant and contravariant themselves to ever be
defined. Wikipedia gives a one-dimensional (1D) example saying that if an axis is
changed from units of meters to a smaller unit of centimeters, then the components of
distance or velocity will be magnified by 100 (scales inversely or “contra”). In contrast, a
gradient axis has units of 1/distance (as do dual vectors also called covectors). So
coordinates of these “vectors” scale with the distance unit magnification — “co-“. [The
names came from James Joseph Sylvester in 1853]. By convention, contravariant
vectors (or tangent vectors) use upper indices, like v = V'e; (repeated indices are _
summed over). And covectors use lower indices for their component values, u = u;e'.

We say that contravariant components “transform as the coordinates do.” For a
coordinate transformation represented by a matrix, x’ = Mx, a contravariant vector will
also transform as v’ = Mv. And a covariant vector components change oppositely to
coordinates.

Another way to say this is that if we were to change bases in a vector space from
coordinates (say) x' to new coordinates y', then x' = £ (9x'/dy’) y'. Vectors that transform
this way go by the name “contravariant.” In contrast, a gradient of a scalar field, Vf,
transforms differently from this and is called a covariant vector with coordinates in a dual
space. This difference in transformation becomes very important in tensor calculus and
general relativity. One of the first sources to use the more abstract differential geometry
and topology in physics was Misner and Wheeler in 1957.This was then developed
further in their massive Gravitation book with author Kip Thorne (“MTW,” 1973). A
tensor is a multilinear map determined by its values on a basis and a dual basis
(contravariant and covariant bases).

If a vector curve is parameterized as radial vector r(t) over components X(t), then
a tangent vector field is T = T' = dx/dt. Change coordinates to y' = y'(x', X*,...x") ,1< i< n.
Then the tangent vector is T' = T" = dy'/dt = (dy'/dx))(dx//dt) = Ti(dy'/dx)).

Frankel [2, pg 23,42]. A tangent vector is contravariant. Vectors are equivalent to their
associated differential operator 0/0x'=9; = e;. v =0/dx' v)(x). Thatis, these basis
vectors “corresponding to a coordinate system are tangent to the coordinate lines”
motivate the notation e; =6/0x'. And “the coordinate basis one-forms are gradients of the
coordinate surfaces,” so ' = dx'. [It takes some time to get used to this way of thinking].
For intrinsic coordinate free concepts we consider a point p lying in a patch
overlap of two open sets, p& UNV, and transformations for each set are considered.



A 1-form is a covariant vector or convector and transforms as: a'=2a"( 9 x,// 3 x//). But
a contravariant vector X'y = = (9 x'v/ 8 Xly)X{'.

A tensor can be a mixture of covariant and contravariant vectors and may be
expressed as: T =T, dxcdxd 0,0 . Agoal of differential geometry and tensor forms
is to be free of any one basis. That was a goal of general relativity too where choice of
basis wasn’t needed.

Definitions: Topology

Topology is a broad study that includes the disciplines of “point-set” topology,
algebraic topology, and differential topology. General or point-set topology is the
abstract study of the ideas of nearness and continuity (Wallace) and is an abstract
foundation for “higher” studies in topology. Algebraic topology is the study of topological
spaces and continuous functions using objects such as groups, rings, and
homomorphisms. Differential topology is the study of those properties of a set which are
invariant under diffeomorphisms (Milnor). And physicists probably care much more
about differentiable manifolds than point-sets (with some interesting exceptions like
Cantor sets). Felix Klein said that topology is the study of all properties of a space that
are invariant under one-to-one bicontinuous mappings.

In topology and related areas of mathematics a topological property or
topological invariant is a property of a topological space which is invariant under
homeomorphisms [definition from Wikipedia]. Common examples include
connectedness, dimension, compactness, “Hausdorffness,” Euler characteristic,
orientability, and algebraic invariants like homology, homotopy groups, and K-theory.

Today, the applications of topology in physics are numerous [27]; and the
importance of topology emerged with the recognized importance of gauge theories. In
this paper, we care mainly about applying topology to the field theories of modern
physics. But the most obvious and productive applications have been in the realm of
condensed matter (solid-state physics). A large aspect of this is the recent revolution
called “topological matter” such as topological insulators, topological phases,
topological superconductors and topological semimetals [27]. These topological phases
are characterized by “topological invariants that have a global dependence on
characteristic parameters of the system.” Continuous deformation of one will not extend
to those of another. Quantum effects are usually low energy modes and the topology of
the bands of energy spectrum. The first big example of topological matter was the
integer quantum Hall effect (IQHE).

As an example: crystals are characterized by repetitive arrangements of atoms or
molecules and are easily pictured. Quantum mechanical wave functions there obey
periodic boundary conditions such that yw(x+na) = y(x) where n& Z and a is a spacing
between atoms. The electronic potential is also periodic this way, V(x+na) = V(x). For a
2-d surface with atomic spacings a in the x direction and b in a y-direction, we can
“identify” opposite sides of an axb square on the surface. But this is also a description of
a torus: fold up the longer opposite sides into a circle (joining the opposite edges) and
then fold up the shorter opposite sides: T2=S" x S'. The symmetry of a crystalline solid
defines what is called its “Brillouin torus.” And over this torus one can define a “Bloch
bundle” E(T?) [e.g., for the integer quantum hall effect (from 1981)].




More appropriately, a mathematical analysis of elastically coupled atoms in a
linear periodic lattice [29,30] results in a “dispersion relation” w =w(k) = A|sin(ka/2)| with
period 21 /a or a “first Brillouin zone”: -11/a < k < +11/a where k is called “crystal
momentum.” For 2d, there is a similar range for another k; in terms of +1/b. Then the
effective torus is defined over this momentum space k; and k; rather than spatial x at a
or b. Wavefunctions for these cases include Bragg reflections at these end points, both
forward and reverse traveling waves, and opposite phases at the location of the atoms.
The analysis automatically leads to the existence of forbidden gaps between allowed
energy bands.

Homotopy and the Fundamental Group, 14(X):

Homotopy may be considered as the most important concept in topology. Itis
concerned with 1-D “loops” (say loop A and loop B) that might be continuously deformed
into each other via a continuous map H. For 2-D spaces, we map from a square
[0,1]x[0,1] with parameters t and s such that H(t,0) is the loop A(t) and H(t,1) is the loop
B. The first and simplest homotopy group is called the fundamental group, 1(X, X,) [of a
topological space X and a particular point in the space. Poincare, 1895]. In a simply
connected space like R", all paths can be shrunk (contracted) to a point and 14 = 0. For
a circle, a path around the circle cannot be shrunk and it may loop around many times
so that 4(S") = Z (the group of integers, Z for “Zahlen”). Also, T(U(1)) = my(U(n)) = Z
(not simply connected). For an object that is a product of two topological spaces,
M1(XXY,(Xo,Y0)) =T1(X,Xo) % T1(Y,Yo).

So, as example, for a torus T? = S'x S', there are two classes of loops that
cannot be shrunk and 1(T?) = Z@ Z or ZxZ. A cylinder is just C = S'x I, and a solid
torus is S'x D% and T4 for both is just Z. Homotopy doesn’t relate spaces themselves
but rather an equivalent of homeomorphisms for functions between topological spaces.
Perelman proved the Poincare conjecture that any 3D topological space X with 111(X)=0
is topologically equivalent to the S® sphere [27].

The symbol 11, (S)=0 is used for the set of all path segments that can be
deformed into each other. This is a simpler concept with just a one-way piece of string
being able to connect any pair of points in space S. If a space is “simply connected,”
then the symbols 1,(S)=1¢(S)=0.

“Straight-line homotopy” is the simplest example. Like a volume control knob, it
progressively and linearly slides one curve into another with intermediate curve given by
“‘gamma-path”: y¢(x) = (1-t)yo(x) + t y¢(x) [as parameter t slides from value 0 to 1]. Any
two loops in R" are homotopic via this straight-line homotopy.

Many people already know that a coffee cup is topologically like a donut because
they each have one hole and each could be continuously deformed into the other. And
then a “deformation retract” of the donut reduces it to a circle (solid 2-disk D?x S'> S").
This idea of “shrinking” spaces is important because if a space Y C X is a deformation
retract of X, then 14(X)= 14(Y). Retraction can occur many ways: the space R? can be
retracted to an open disk or a line or even a point. The 2-disk boundary 4 D? is not a
retract of D? because the disk retains a point center. But once that center is removed,



we can even say that R"-{0} >S"" using a retraction function r(x) = x/|x| to a unit sphere.
Or, using the straight line progressive sliding idea from above, a point x on any inner
circle of a disk, D"- {0} can be expanded to its boundary using a mapping H(x,t) = (1-t)x +
t x/|x|, a unit sphere when t = 1 (also called a deformation retract).

If a space has the homotopy type of a point, it is called contractible.

Homology Groups:

Homology reveals “holes” in any number of dimensions. Its objects are classes of
k-dimensional “cycles” called k-cycles. Beginning with the question, Can loops be
continuously deformed into each other. Its original goal was to study and classify holes
in a manifold (like the 2-d plane E? or R?). We learned in high school that the simplest
concept of this was the Euler characteristic, chi= x =V — E + F (adding number of
vertices — edges + faces of a polyhedron). So, any spherical polyhedron has
characteristic x = 2 [e.g., four faced tetrahedron: x = 4-6+4 = 2]. A torus has x =0, and a
double torus (~thick figure “8”) has x = -2. So number of holes =g=-x/2 +1 (and this is
also called the “genus,” g). The homology group Hy(X) describes the number of k-
dimensional holes in space X. The word “hole” is slightly unclear; but if you can put a
string through it then it has a 1-d hole, and if you can put water in it then it has a 2-d
hole. The sphere S? has a 2-d hole but no 1-d holes; so Hx(S?) =Z [but H(S?) =
m(S?%)=01]. Atorus has two 1d holes (one for each S') and a 2-d hole that is the torus
itself.. So Hy(T?) =Z and Hy(T%) = ZxZ (or Z*=Z® Z).

This is also accounted for by something called the “Poincare polynomial” which
for a circle is just (1+1x) where the x coefficient stands for 1-hole. The torus is T? = S'xS'
for polynomial (1+x)* = 1 +2x + 1x?* with 2 1-holes and 1 2-hole as coefficients (also
called “Betti numbers). It would follow that a 3-torus T°=S"xS'xS" would possess one 3-
hole (even if we can’t picture it). A 3-sphere S® would also possess a 3-hole [and H3(S?))
= Z, but Hx(S?) = H4(S%)=0].

If two spaces X and Y are homeomorphic, H(X,Q) ~ H(Y,Q), and then x(X)= x(Y)
and genus(X) = genus(Y).

Homology is also capable of describing geometries well beyond picturing such as
complex projective space (CP").

There are three reasonable homology theories and go by the names: Singular,
Simplicial, and DeRamm Cohomology.

The most intuitive approach to homology is to reconstruct an object using
“simplices.” A k-simplex is a generalization of having a single point in R" be a 0-
simplex, an open line interval is a 1-simplex, a triangle is a 2-simplex, and a tetrahedron
is a 3-simplex. These are oriented building blocks put together to form complexes. The
standard idea of a simplex is simply to form a convex figure to connect all the orthogonal
unit vector tips with straight lines or flat planes. A 2-simplex is a triangle. For R tips of
i, j, k connected by lines and planes form a tetrahedron. Math can easily construct higher
n-simplex in spite of our inability to visualize it. We say that H,(X) is a simplicial
homology group of a simplicial complex X using a simplicial chain complex C(X).
Without this approach, computation can be quite difficult (but there are now software
packages to do the task).
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The space of a complex is a “polytope,” and the complex is a “triangulation” of
the complex. A “category” is a class of concepts and a class of morphisms. For every
ordered pair (X,Y) of objects there is a set of morphisms Hom(X,Y). If the objects
themselves are treated as categories, then the morphisms are called Functors.
Homotopy is a category (e.g., there is a mapping between two curves having common
endpoints). Topological invariants can utilize approximating geometric objects by
polytopes (e.g., triangulating a torus to get Euler charactistics). (Reference Keesee).

Hilbert question: “Is every topological n-manifold triangulable?” Answer: No!
(Kirby 1969), 3 a 5-manifold (torus) which cannot be triangulated. And there is a 10-
dim Manifold that does not admit a differentiable structure.

Homology versus Homotopy: It would appear that homology and homotopy
capture the idea of “hole” equally well (H~ 114). But, 114 is not Abelian while H, is Abelian,
so H{# 4.

In higher dimensions, homology is a superior concept and they do different things. Note
that Ho(T?) = Z but »(T?) = 0. 13(S?) = Z, but H3(S?) = 0.

An annulus (a washer is a disk with a hole in the middle) and a half-twisted
“Mobius” band are both homotopy equivalent to a circle, but they are not homeomorphic.
When comparing the Mobius band and the cylinder, each can be smoothly shrunk by a
homotopy to their equatorial circles. Yet one is an orientable surface and the other is not.
Similarly a solid Klein bottle is homotopy equivalent to a solid torus (D?xS"). Note that a
true Klein bottle cannot exist in 3-D so that our usual glass bottle picture is a Kludge.

S' and an annulus are not homeomorphic, so homotopy is not sufficient to classify up to
homeomorphism.

Why do the homology groups capture holes in a space better than the homotopy
groups? A good interpretation of having an n-dimensional hole is a space X is that some
image of the sphere S" in this space given by a mapping f:S"—X; cannot shrink down to
a point. The matter of "shrinking to a point" is best expressed by being ff homotopic to
some constant map. Next, the homotopy groups 1T, can be defined as the homotopy
classes of base-point preserving maps from S" to X. In this way it might be argued that
the homotopy groups 1, should best capture the holes in X.

But this is not so. One has the most satisfying result that for i1 the homology Hi(S") is

nontrivial iff n=i. But the higher homotopy groups of spheres are very complicated. And
a ball, D* [a 3-disk], is not homeomorphic to a point — but it is homotopically equivalent.
The contraction all the way from the ball to the point doesn’t violate anything about the

homotopical equivalence.
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Figure 1: Phase Fiber Bundle with base space B = R* and U(1) phase fibers. The fiber
segments have their endpoints identified so that they represent circles (standard figure).

Fibre-Bundles:

A “fiber-bundle” is a structure (E, B, m, F, G) consisting of a total topological
space, E, a base space, B (usually connected and sometimes called “M”), a projection
map from E to B (11: E-> B), a “fiber” F, and sometimes a structure group G guiding F
[and when that applies, we use the name “principle bundle,” P, for E, and structure
(P,B,mm, G)]. It is a generalization of the tangent bundle concept. In some modern
physical cases, the fiber represents an “internal space” while the base B may be a “real”
space. Figure 1 shows a quantum-mechanics example where an electron on a space-
time trajectory has a phase that changes along its motion, and the phase lies in the 1-d
unitary group U(1). A gauge group G can act on each fiber of the bundle separately.

The application of fiber-bundles is relatively recent. The first use of a fiber space
may go back to Hassler Whitney (1935 using the name ‘sphere-space’). More than
mathematicians, physicists care strongly about “connections on principle bundles” and
these may have first been applied by C. Ehresmann in 1950. Dennis Sciama may have
been the first to picture gauge fields as connections on a fiber bundle (1958). The vector
potential A is a U(1) connection for electromagnetism. A higher gauge theory was the
Yang-Mills theory of 1954 which became very popular in the later context of the
SU(3)xSU(3)xU(1) standard model.

An introduction to fibre-bundles commonly begins with the twisted Mébius band
(M&?) where a base space is simply a circle, B = S" (usually pictured separately below
the band, but it is also the centerline of the band about the loop). The band usually has
some thickness (perpendicular to the edges) that we could call interval 1=[0,1], and each
width-line of thickness is a fiber, F. Each small neighborhood of the band, UC E can be
mapped back onto the base circle, mapping m: E-> B. Each point of the base space,
say angle 6, points to a fiber, m ' B> F, 8 > ally € [0,1]. Locally, the Mdbius band is
a “product-space” BxF (like a cylinder), but the band has a twist that is only visible
globally. The cylinder has a global product C =~ S1x[a,b] and so is a trivial bundle with
fiber F = 1C R. But the Mdbius strip, M&?, is the simplest example of a nontrivial bundle
and requires two circles as a cover (continuous non-intersecting double loop). A
principal bundle is trivial if and only if it allows a global section.
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In physics applications, the base manifold B may be space-time itself, M* (as in
Figure 1). For quantum mechanics and the de Broglie phase of a “particle,” we picture a
little circle attached to points (x,y,z,t)€ B. The fiber is F=S" with structure group G=U(1).
For G=SU(2), we picture a little sphere attached to every point p& B (not quite
appropriate). These are also the pictures that Brian Green uses to represent some of the
extra compact dimensions associated with string-theory.

Wikipedia: “An elegant and intuitive way to formulate Maxwell's equations is to use
complex line bundles or principal bundles with fibre U(1). The connection V on the line
bundle has a curvature F = V2 which is a two-form that automatically satisfies dF = 0
and can be interpreted as a field-strength. If the line bundle is trivial with flat reference
connection d we can write V =d + A and F = dA with A the 1-form composed of the
electric potential and the magnetic vector potential.

For the Lie group SU(2), there is tangent space su(2) forming a tangent bundle.

“Section:” [from the concept of “cross-section” but not necessarily planar].

A “section” of a fiber bundle is a continuous map, s, from base manifold B to a
particular set of chosen points of the fibers. That is, for fiber bundle m: E > B, compose
1(s(x)) = x = identity for all x € B. As a simple function example, temperature over
space and time: T = s(x,t) where s “lifts” points on the base space+time manifold to
values of their temperature and is a section of the trivial line bundle BxR. We are
selecting just one point for each fiber F = R. If we think of each fiber as possessing a
zero value, then the zero section selects all zero points over all fibers. The phase line in
Figure 1 is a section.

A more interesting but still simple vector bundle example might be the values of
the vector potential, A(r) , versus radius, r, for the case of an ideal (infinite) solenoid.
The base manifold is just a plane normal to and cutting through the solenoid and
includes all points (r, )<= B. Inside the solenoid, the magnetic field is constant, and A =
Ay = Yonir/2 ramping up from zero to peak on the coil located at r = R. The magnetic
field outside the coil is zero but with a circular A field falling off as A = HoniR?/2r. The
joint plot of A = A, U At versus r is the section profile graph and depends on the
current flow i. For all circles in B about a center r=0, all A’s are tangent vectors to the
circles. This fiber bundle has a “sheaf” of sections each parameterized by current, i.

In wave mechanics, the base space M is configuration space (space of n distinct

points in M), fibers are Hilbert space, H, and the wave-function psi is a section [25]. A
gauge transformation is a change of section.

Connection and Curvature:

A “connection” defines parallel transport on a bundle and is equivalent to a
“covariant derivative” for vector bundles. It is not unique, there are different connections
for different purposes. The idea of two vectors being parallel depends on the specific
path joining their two points. In general relativity, “connection coefficients ™., serve as
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turning coefficients to tell how fast to turn the components of a vector in order to keep
that vector constant (against the turning influence of the vectors).” [MTW p 212]. This
use of Christoffel symbols applies to the “Levi-Civita” connection on Riemannian
manifolds. The difference between a partial derivative (or coordinate derivative) and a
covariant derivative is the connection correction. The notion of curvature says that if we
attempt a parallel transport about a parallelpiped, the beginning and end point won'’t
match up. These ideas can be abstracted beyond metric spaces to include even
electromagnetism. The electromagnetic Schrodinger equation, for example, uses a
momentum operator py ~ [-ih d ¢ —€Aq ] SO that V4 = 0 4 — (ie/h)A,, where the last term
is the connection correction for the covariant derivative for the wave-function bundle. It is
a 1-form wq [Frankel, p.442]. And then the curvature of the connection is the EM 2-form:
0 =dw+ w/Aw=dw = -(ie/h) dA = (-ie/h )F = -(ie/h)[E/ dt + B ].

(because U(1) is Abelian so that A/AA = 0). Another way to state this is: “Out of A we
can construct only two possible 2-forms: dA and AAA.” So in general F must be a linear
combination of the two.” [Zee]

We say a manifold M is curved if its “tangent spaces Ty(M), Ty(M) at two
neighboring points p and p’ change as one moves from p to p’ [Nash, p174]. A
connection is essentially a structure which endows one with the ability to compare two
such tangent spaces at a pair of infinitesimally separated points. The connection is given
by defining what is called parallel transport...” A connection may be expressed by
covariant differentiation. “Being unlike partial differentiation, this will not in general be
commutative.” And a measure of the non-commutativity of covariant differentiation is the
curvature. “Every connection can be shown to arise from a certain 1-form w belonging to
T*P.”

At any point g, the tangent space T4P to a principal bundle P may be
decomposed into two disjoint subspaces called the “vertical” subspace V4P parallel to a
fiber and a “horizontal” subspace HyP transverse to a fiber so that T,P = V4P & H,P
[24]. The horizontal space is also key to what is called the “Ehresmann connection.”
The group G acts to push points forward along fibers: ®(g,q)= P4(q) = q-g, where g€ G.
This action may also be used to push the horizontal subspace along the fiber away from
the base space: TP>TqqP. A connection defines flat horizontal subspaces near q with
the above properties and isomorphic to T4M (the base space). A connection defines a
“horizontalized” version of the exterior derivative [25].

When moving up in complexity from the usual U(1) electromagnetism gauge
group to an G=SU(2) Yang-Mills theory, the connection and curvature both become
more complex and require more indices: gauge potential A%;(x) and gauge field tensor
F°w . The characteristic class tells how far a bundle is from being trivial. And in this
case, curvature F over Pauli matrices, F = F® ¢°/2i has non-vanishing wedge product F°
/AF? This in turn gives non-vanishing 2" Chern class, c..

A cross section that is “constant” is also called horizontal. But with a connection, it may
be path dependent.

Integration: Stokes’ Theorem:
In standard Vector Analysis, Stokes’ Theorem (1850) says that if a surface S is
open, 2-sided, and bounded by a simple closed curve C, then if field A is differentiable:
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$A-dr= J¢(V x A) ndS. We also have the Gauss Divergence Theorem:

JvwW-EdV = | ¢ E-ndS, for a volume V bounded by a closed surface S (1762,1813).
These can be simplified and generalized to n-dimensions using the language of

forms: “Let VPC M" be a compact oriented submanifold with boundary 9V in M". Let

w " be a continuously differentiable (p-1)-form. Then

fvdw®'= [,y w" E.g., for the magnetic field 2-form B, f ydp={ ,uB=0.

Since this is true for arbitrarily small neighborhoods U, it must be that df3 =0 (translation,

V-B =0, nopoles). OrFaraday’s Law: § ,wvEl=-§ 9B /ot givesdE'=-9pB/0t,

Translates to: curlE=-0 B/ 0 t.

Other preliminary concepts:

Trace, the trace of a square matrix A is Tr(A) = Za; , the sum of all diagonal elements.
The trace of the product of two square matrices: Tr(AB) = Tr(BA). This bears some
similarity to the dot product of vectors. So, a generalization of vector operations to
matrices often involves a trace of matrix products.

And trace is invariant under similarity transformations; that is, similar matrices have the
same trace. This invariance under basis change is valued in Math and Physics. Trace is
a linear functional so that tr(cA + B) = c tr A + tr B. Also Tr(ABC) = Tr(CAB) = Tr(BCA)
under cyclic permutation. Tr(A/AB) = Tr(B/\A) only if degA x degB is even (else -).

Gauss Bonnet Theory:

“In 1944, fiber bundle theory became important in topology with Chern’s
generalization of the Gauss-Bonnet theorem to four dimensions.” The standard Gauss-
Bonnet theorem says that | y KdA = 2mx(M) where ¥ is the Euler-Poincare
characteristic and | KdA + Za;= 2 where a is an “exterior” angle or “turning angle.”
For example, a flat equilateral triangle has interior angle 6 = 1 /3. The angle from a flat
edge then turns 180° - 60° = 211/3. So, 21 x(M) = 21 — Za; = 2w — 3(21/3) = 0, i.e., X(A)
=0.

Also, x(A) =v—e + f=3-3+0 = 0 (check). On S2, great circle triangle from N-pole to
equator around 90° and back to north has equal 90° corner angles and surface area of
1/8" of 4TR?. Gaussian curvature is K = 1/R?, so:

§ KdA + = a; = (1/R*)(4TTR%8) + 3(Tr /2)= /2 + 311/2 = 2.

For a whole sphere, x(S?) = 2 and for a torus, x(T?) = 0. Also for a sphere, polyhedral
like a tetrahedron cube havev—e+f=4-6+4=2 or8-12+6 =2, i.e., x(82)=2. And K
Area(sphere) = 41 = 21 x(S?), X = 2.

The Euler-Poincare characteristic is a prototypical integer index for characterizing
spaces.

A simple example of the Gauss-Bonnet theorem is the Berry phase of the
precession of a Foucault pendulum in a lab at a given latitude as the earth spins a full
daily rotation. A full precession occurs at the north pole, but there is no precession at the
equator. The easiest calculation for this is via the Gauss-Bonnet theorem saying that
phase shift is the same as the enclosed solid angle of a spherical cap bounded by the
given latitude, 8. The easy integral of a ~ Q = | ,°21TRsinBdO gives an angle a = 21 (1-
cosB ) [e.g., at polar angle (from N pole to 8) By0ar = 90 — 40° for Boulder, Colorado, a =
128° or 2.24 radians/day]. The latitude circle path, C, is not a great circle geodesic, so
turning angles result from parallel transport of some initial vector direction from a
geodesic propensity. Another approach is look at the set of all north pointing
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tangent lines along a latitude path C. This is obviously a cone with an apex A lying
directly above the north pole and having side length a = Rtan6. The circumference C =
21R sinB = 21p where p is the circle radius from the spin axis. If a cone is cut along one
side and then stretched out flat, there will be a missing wedge with angle a . If an initial
vector V, points along the latitude, it will rotate in going about C on the tangent cone. On
the flat projection, V(¢ ) will always be parallel to V,. But after precessing along C, it will
end up with a twist of angle a. The wedge is the angular difference between a full flat
circle of radius a and the circumference C. This AC = 21 (a-p) = 21 a(1-p/a) = 2T a(1-
cosB ), or AC/a = 2m(1-cosB) — again.

CHERN Classes:

Shiing-Shen Chern was born in China in 1911. In the summer of 1934, Chern
graduated from Tsinghua with a master's degree, the first ever master's degree in
mathematics issued in China { pinyin: Chén Xingshén}. He moved to the University of
California, Berkeley, in 1960, where he worked and stayed until his retirement in 1979.
In 1961, Chern became a naturalized citizen of the United States; and, in the same year,
he was elected member of the United States National Academy of Sciences.

Names: There are Chern Classes [ci(V)], Chern numbers (e.g., ¢4 Cz), form [ck(V)],
Character ch(V), polynomial c(E), and roots. Chern classes were introduced by Chern in
1946.

Topological characteristic classes are often studied in the language of forms, and
there are four major classes: Chern, Pontrjagin, Euler, and Stiefel-Whitney [Kaku book
on String Theory]. Popular examples include the group SU(2), and Chern forms are
generally taken for a U(n) Bundle. Characteristic is related to eigenvalue polynomials,
det( A | —A)=0 which is invariant in the sense that “similar matrices have the same
characteristic polynomial”. For det(1+A) simply let A = -1 in det(Al — A) characteristic
polynomial, then replace A by a matrix of curvature 2-forms 0 i/21 to get Chern form
coefficients.

The differential forms are polynomials in F where F is a curvature 2-form for the
bundle P and connection A determines the curvature. The polynomials are invariants of
the Lie algebra g of G. The polynomials P;(F) is independent of the connection A used
to compute F.

Electromagnetism is a connection on a U(1) bundle. Without a monopole, U1 is trivial;
and with a monopole, U(1) is nontrivial. Dirac monopole quantization is a classification
of a U(1) bundle according to a first Chern class.

“a principle SU(2)-bundle over a 4-manifold X has a second Chern class ¢; € H*(X,Z).
[superscript means cohomogy group]. Every principle SU(2) bundle over M = R*orM =
R*-{0} is trivial. In general, for fiber bundle E, ¢ (E)E H*(M,Z). [double check?].

One example of Chern number application is the commonly applied “Berry
phase.” Berry phase (1984) or “geometrical phase” is a difference in phase that is
acquired over the course of an adiabatic cycle about a closed path, C. It can be found
by integrating the “Berry connection” around the loop C or by integrating the “Berry
curvature” over a surface enclosed by C:
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$ A, (x)dx" = [ Fu(x) dx* A dx’= 2 (integer Chern number) for the first Chern class.
For the special case of the important experimentally verified “Aharonov-Bohm” phase
shift result for electrons moving about a solenoid, the A really is the vector potential and
the F really is the electromagnetic tensor. The “nonintegrable” geometrical phase can be
described roughly as “global change without local change” and has become so popular
that it has been called "the phase that launched 1000 scripts." The origin of the Berry’s
phase is in nonflatness of a parallel transport which appears in the corresponding phase
factors and may be described by holonomy in fiber bundle theory.

CHERN-SIMMONS, CS, and “ada” :

The Chern—Simons theory, named after Shiing-Shen Chern and James Harris
Simons, is a 3-dimensional topological quantum field theory of “Schwarz” type further
developed by Edward Witten. It is so named because its action is proportional to the
integral of the Chern—Simons 3-form. “CS forms were originally introduced in physics in
the discussion of chiral anomalies. Chern-Simons theory is called a topological gauge
theory because it is a gauge theory that does not require a metric.

In the case of topological quantum field theory and integral or fractional Hall
effects, Chern-Simmons theory stresses a single famous term “ada.” (Zee).
With indices this is: AdA = ada = €""" a, 9 , a and applies to “2+1” spaces where the “1” is
time with an a, term. The ada term also appears in the CS 3-form. [e is the Levi-Civita
anti-symmetric tensor].

A recent note in “Quora” said, “Dirac's intuition predated Chern's formal definition of the
Chern class by roughly twenty years. In fact, one of my advisors told me that at a
conference in Stony Brook in the late 70s, Chern spoke of how Dirac's discoveries
inspired him to consider the objects that would later become known as Chern-Simons
form.” There are Chern-Simmons forms, actions and invariants and they can deal with
fractional statistics or anyons [8] .

In condensed matter physics, Chern—Simons theory describes the topological order in
fractional quantum Hall (FQH) effect states. In mathematics, it has been used to
calculate knot invariants and three-manifold invariants such as the Jones polynomial.

A recent paper [10] said, “Loosely speaking, three dimensional Chern-Simons theory is
the theory of an integral called Chern-Simons action, of some “characteristic” differential
form defined over the spaces of connections on 3-manifolds with values in a fixed Lie
algebra.”

The 2-form curvatureis = 0 =dw +[w,w)2=dw + o /\ » (older notationis 0
% = %2 R% dX A dx*). For EM, the connection o = -iqA/h .
“The topological significance of tr 8/A 8 , generalizing Poincare’s theorem for closed
surfaces was discovered by Chern, and these types of integrands are called Chern
forms and symbolized by c,.
co(E) (1/8 £2) tr(06 A 0 ) which is the 4-form appearing in the winding number of an
SU(2) instanton, and E or P is a principle bundle (over M with group G).
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4-form from d [CS 3 form]: tr(BA8) =d tr [w/\dw + (2/3)w/A\w/\w ) for any vector
bundle and is proportional to the Chern-Simons number Ncs. [Frankel, p 586]. Or,
depending on how A is defined, d tr(AdA+2A%3). [again with the ada term].

[Check: to show this, let 8 =dtAw + tdw + t2w A w with parameter t.

Then expand 6 /A8 into a collection of terms. Then take the exterior derivative d of the
claimed result and get same collection of terms. The denominator /3 gets removed by
three terms for d(w /A w /A w). We are using concepts like d(dw) = 0 and
TrlwAwAwAw)=0 — A 3times may be non-zero, but 4 times gives zero].

Baryon and lepton numbers are not exactly conserved quantities in the Standard
Model, because of the axial “anomaly” (violation of the classical conservation of the axial
current) that connects them to the Chern-Simons number of the weak gauge field. Vacua
in the electroweak theory are labeled by an integer-valued Chern-Simons number, N .
Particularly, Chern—Simons theory is specified by a choice of simple Lie group G known
as the gauge group of the theory and also a number referred to as the level of the
theory, which is a constant that multiplies the action. The action is gauge dependent,
however the partition function of the quantum theory is well-defined when the level is an
integer and the gauge field strength vanishes on all boundaries of the 3-dimensional
spacetime.
The Atiyah-Singer Index theorem is also expressed using this Chern character.

The general EM Lagrangianis L = ¥4 (F A*F + ©F A F) where the theta vacuum slight
modification is often deleted.

Monopoles, instantons, sphalerons, anomalies:

Monopoles: First, as simple example, consider the winding number of a function
map as a topological invariant or “charge.” For points on a circle, a smooth function full
rotation, ¢(21), could be the same as ¢(0) on another circle, as it might for the strict
definition of the word “function.” But it could also be 21Tn where n is a winding number
integer. This is covered by the homotopy T(S') = Z. And, for the number of distinct
ways that points of a sphere can be smoothly mapped onto points of another sphere
(19), we also know that the topologically distinct ways this mapping can be done is
labeled by T5(S?) = Z. And for a 3-sphere, it is also true that 15(S°) = Z.

For a sphere surrounding a magnetic monopole (Dirac proposal, 1931), a mapping of S?
onto S? from 2-d space to isotopic space also obeys 1,(S?) = Z. The Dirac monopole is
a topological defect in a compact but not simply connected U(1) gauge theory, and its
magnetic flux is the first Chern number of the principle bundle, c.

There are many derivations of Dirac quantization for magnetic monopoles (e.g.,
Kaku p. 541). Perhaps one of the clearest was given by Wu and Yang (see Zee [8] p.
220): We assume the existence of a magnetic monopole with magnetic pole charge g
(although no experimental discovery is yet claimed). This has a radial field pointing
away from the charge: B = g/41rr® and hence a magnetic flux through a surrounding
sphere § B-da = f B(r sin6d¢ rd®) = 41r’B = g.
This is similar to the Gauss and divergence theorem for electric field, E.
§ V-E d(vol) = § E-da = (q/4T1e,r*)(411r?) = g/e..
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The term under the integral sign, Br’sin8d6d¢ =Br’dcos6d¢ is also a magnetic 2-form
that could be labeled as F = (g/41)dcosBd¢ , and again § F =g [of course F already
includes the increment of area].

If this 2-form is the exterior derivative of a 1-form gauge potential, F = dA, then A =
(g/41m)cosBd¢$ [and remember that dd¢ = 0].

But, d¢ is not defined at the poles N and S. So we have to have two patches with each
avoiding the upper or lower z-axis on the space R*- {0}. Then we can create A potentials
An = (g/41T)(cosB -1)d¢ [still good for 8 = 0] and As = (g/41 )(cosb+1)d¢ [still good for 6
=1 ]. And each of these still satisfies F = dA.

Now apply some ideas from gauge invariance for U(1) and quantum mechanics:
Let A(x) [or sometimes qx(x)/h , but with A =1] for w(x) = W(x) exp(i/\(x)) with the
accompanying “compensating field” A,(x) = Au(x) + 0 , A(X)/q .
This added term 4, A(x)/q = (iq) 'exp(-iA) 3 , exp(iA) = (iq)'e™ de” using forms. So,
for a gauge transformation , we now need to equate 2(g/4m)d¢ = (1/iq)e™ de™ so that
e =exp(i2(qg/41))$ . The scalar function A(0) = A(2T) , so i2(qg/4TT )(21)=1 or 99=1,
For the electron, q = e, so g = 2whn/e or e = 21An/g for usual Sl units [Dirac
qguantization, and showing # put back into the equation]. [For Gauss-cgs units, it wold be
e = hcn/2g].
A lesion is “that F is locally but not globally exact — where F = dA being exact would
require g = 0. A small charge for e implies a very large charge for q.

Instanton: A Lagrangian for a quantum tunneling solution may plot as a very
short instantaneous blip versus time and is hence called an instanton (19). The
instanton solution of the Yang-Mills equations was discovered by Polyakov in 1975 and
later attributed to a tunneling event between degenerate classical vacua. The term
instanton was coined by ‘t Hooft [22]. Instantons can probe the nonperturbative realm of
gauge theories such as Yang-Mills (19). And QCD Instantons play a role in chiral
symmetry breaking [22]. They are localized (e.g., 1/3 fm) regions of space-time with very
strong gluonic fields.

Evaluating the integral of a 2" Chern type form may have fields vanishing slowly
enough at infinity to yield non-zero values and hence winding numbers for finite action.
Evaluated over a hypersphere boundary gives a degree of mapping from S*> S®. The
Yang-Mills instantons then give topologically distinct vacua each labeled by an integer n
(19). The winding number of the instanton is - § ¢2 over R* for SU(2) bundles (Frankel).
Instantons are topologically nontrivial solutions of Yang—Mills equations that absolutely
minimize the energy functional within their topological type.

Sphaleron: This word is taken from the Greek language and means “ready to
fall”, which resembles the fact that sitting on top of a rounded minimal energy curve is
“slippery.” The application is electroweak symmetry breaking and baryon non-
conservation using the gauge group SU(2). This group can lead to the existence of
topological effects some of which are classified by an integer topological winding number
(N ¢cs Chern-Simmons number).

Change in Chern-Simmons number, transition creates 9 left-handed quarks (3
colors x 3 generations) and 3 left handed leptons (one per generation). If the system is
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able to perform a transition from the vacuum G,¢(n) to the closest one G,(n£1), the
Chern-Simons number is changed by unity and A B = A L = nf. That is, changes in
Chern-Simons number result in changes in baryon number which are integral multiples
of the number of families nf (with nf = 3 in the real world). Tunneling and vacuum
transitions can yield baryon number non-conservation, q+q-> 7gbar + 3 { bar. ??
Gauge transformations U(x) which connects two degenerate vacua of the gauge theory
may change the Chern-Simons number by an integer n, the winding number. The
periodic sphaleron humps leading to B+L violations may resemble a sine wave with
peaks at an energy of 9 TeV! Probing these processes may be done using ultra-high
energy neutrino events as seen by cubic-kilometer neutrino telescopes. In particular, a
study of IceCube sensitivity is seen to be similar to that of the first 13 TeV LHC data.
Chern—Simons number Ngs, is an integer for vacuum configurations where topologically
different bosonic ground states are separated by an energy barrier. The sphaleron
configuration are on top, with half-integer Ncs and an energy of about 9 TeV.

“The baryon number is violated in the Standard Model by non-perturbative
sphaleron transitions. At temperatures above the electroweak scale, the rate of the
sphaleron transitions is unsuppressed and has been accurately measured using
effective theories on the lattice. At temperatures substantially below the electroweak
scale, the Higgs field expectation value is large and the sphaleron rate is strongly
suppressed. Here analytical estimates are sufficient. The sphaleron rate, however, has
not been calculated in the intermediate temperature range with physical Standard Model
parameters.” One work uses “an effective electroweak theory on the lattice with
multicanonical and real-time simulation methods to calculate the sphaleron rate through
the electroweak crossover at Higgs masses of 115 GeV and 160 GeV. (ref date?)

Transitions between vacua are possible by surmounting the potential barrier through
sphaleron transitions. The sphaleron rate is strongly suppressed at low temperatures,
where the potential barrier is high. At temperatures above the EWPT, though, transitions
among vacua are made possible because there is no longer any potential barrier [10,11].

[WIKipedia] “Baryogenesis within the Standard Model requires the electroweak
symmetry breaking be a first-order phase transition, since otherwise sphalerons wipe off
any baryon asymmetry that happened up to the phase transition, while later the amount
of baryon non-conserving interactions is negligible.

If a thermodynamic quantity changes discontinuously (for example as a function of
temperature) then we say that a first order phase transition has occurred. EWBG
requires first order or topological defects. The minimal standard model has neither
enough CP-violation nor a sufficiently strong phase transition to allow electroweak
baryogenesis to take place.” Thatis, EWB doesn’t work in the Standard Model, and
EWB in the MSSM is almost ruled out The 125 GeV Higgs boson will be too heavy to
give rise to a first order EWPT. A strongly first-order EWPT requires new Higgs
interactions with particles beyond the SM. If physics up to the TeV scale is completely
described by the SM, it is well known that the electroweak phase transition (EWPT) is
second-order (continuous). The baryon number violation due to sphaleron transitions, is
based on the non-Abelian SU(2) part alone. One can easily decouple the U(1) sector
by setting the Weinberg angle to zero, 6y = 0. This disentangles the SU(2) and the
U(1) parts completely.
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Anomaly: Wikipedia says, “In quantum physics an anomaly or quantum anomaly is the
failure of a symmetry of a theory's classical action to be a symmetry of any regularization
of the full quantum theory.” A standard example of an anomaly is the (anomalous)
decay time of the neutral pion, T°. Charged pi-mesons, T* have a lifetime of 26
nanoseconds and decay via the weak force. The pi-zero with mass 135 MeV decays
electromagnetically and only lives for 8.4x10™"" seconds (about a thousand times shorter
than predicted by older theory). The cause of this is a Feynman diagram with a closed
triangular massive quark fermion flow between an input ° vertex and 2 photon output
vertices. Roman Jackiw used an older Steinburger idea of a proton triangular current
but now using QCD. He found that his anomaly used the Atiyah-Singer index theorem of
1963 which in turn used a Chern character (proportional to trace(FF)).

The Chern class of a gauge field configuration is called a topological charge which for
the pion anomaly is the difference of the number of right handed n*+ and left-handed
zero modes of a Dirac operator.
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Appendix:

Additional Notes:

Nima Arkani-Hamed (Dr. “Space-time is doomed”) introduced a new physics
concept called the Amplituhedron [A, « ] as something similar to a “volume” enabling
direct computation of scattering amplitudes [26]. This is new abstract mathematics using
twistor space but is also a strong simplification of calculations more typically done using
Feynman diagrams. It uses an algebraic geometry “positive Grassmannian” similar to a
convex polytope in projective space. Examples of Grassmannian Gr(r,V ) for vector
space of dimension r include: Gr(1,V) as a space of lines through the origin and Gr(2,3)
as the space of all planes through the origin. He also introduced a new type of form:
dlog-forms as rational form Q =(das/a4)/\ ()... = dlog(a4) A ...dlog(aa.) for space of loop
momenta and having only “logarithmic singularities.” These apply to one-loop
amplitudes like scalar bubble, triangle, and box integrals free of any poles at infinity.

For EM identify A with a connection on U(1) bundle: the vertical automorphisms
of the bundle will reproduce the gauge transformation of electromagnetism. And F = dA
turns out to be the curvature of the connection.

Any non-gravitational theory can be formulated on a fiber bundle associated with the
principal bundle determined by the metric and connection: The ® (x) break up into two
subclasses: The fields of massive objects (such as charged bodies) are represented by
geometric quantities living on the vertical fibers; and the gauge fields transmitting the
forces between these objects (such as the electromagnetic field) are represented by
verical connections along the fibers; these connections are only fixed up to some group
of gauge transformations.

The structure group that defines the fibers of both bundles is U(1)-- the set of
rotations in the complex plane, parametrized by the angle of rotation. In any principal
bundle, the elements of the fiber are just the members of the structure group itself,
whereas the fiber of the associated vector bundle consists of a vector representation of
that group. In the case of electromagnetism, a vector in a fiber of the associated vector
bundle is just a complex number. This is the value of the particles' position-
representation wave-function at the space- time point lying “below” that fiber. A change
of phase of the wave-function at that point corresponds to a rotation in the fiber “above”
that point.

The connection on the principal fiber bundle representing electromagnetism is a
geometric object: specifically, it is given by a Lie-algebra-valued one-form field on the
bundle. It is defined independently of any choice of coordinate charts or section for the
bundle. The pull-back corresponding to each local section on this bundle uniquely
defines a one-form (or co- vector) field on a corresponding open set of the (space-time)
base manifold M. The usual quantity A, is just a coordinate representation of this one-
form field, but for a trivial constant factor. The usual quantity F, is similarly related to a
coordinate representation of the two-form field on M given by the pull-back of the bundle
curvature.

On the Reality of Gauge Potentials, Richard Healey Philosophy Department, University
of Arizona, http://philsci-archive.pitt.edu/328/1/RLGAUG%2Bfiguresfinal.pdf
Printed p 12-16.
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Quora: As far as physicists are concerned, non-euclidean geometry and topology are
not "advanced mathematics", they are ancient history, only slightly more recent than

euclidean geometry and calculus. They were advanced mathematics in 1916. In 2016
they are (together with slightly more advanced fields such as differential geometry) on
the list of bare essentials without which one can't even begin to do theoretical physics.

Notes: Sphaleron t'Hooft tunneling through 10 TeV barrier. EW symmetry is restored at
100 GeV.

[9, John Ellis, “Search for Sphalerons: IceCube vs. LHC, arXiv:1603.06573 [hep-ph] 21
March 2016]

The Chern-Simons number as an order parameter: classical sphaleron transitions for
SU(2)-Higgs field theories for my ~ 120 GeV.

FROM FEB: The ® Vacuum

The ground state of a quantized non-Abelian Yang-Mills gauge theory is usually
described by a real-valued parameter 6 a fundamental new constant of nature.

The structure of this vacuum state is often said to arise from a degeneracy of the
vacuum of the corresponding classical theory.

[7]1 Thesis details sphaleron EW. http://www-brs.ub.ruhr-uni-
bochum.de/netahtml/HSS/Diss/SchaldachJoerg/diss.pdf

Configurations which minimize the potential energy for half-integer NCS are called
sphalerons. The word is taken from the Greek language and means “ready to fall”, which
resembles the fact that it sits on top of the minimal energy curves (slippery). The energy
barrier between topologically distinct vacua with adjacent NCS is called “sphaleron
barrier”. [7]

In this work we considered various aspects of fermion number violation in the
electroweak theory. This effect is based on topological properties of the classical SU(2)
gauge field. So after formulating the model itself, we discussed the second Chern
character g and the Chern—Simons number NCS, which are topological winding
numbers of the SU(2) field on spacetime and 3-space, respectively. 260 pages.

Algebraic Topology Spanier: 90 Usually a structure group G is provided for the bundle
consisting of homeomorphisms of F.

P 92 A “lifting function” assigns to each point e € E and path w in B starting at 11(e) a
path A(e,w ) in E starting at e that is a lift of w. Then the map 1 is a fibration.

Web Reference:

https://ncatlab.org/nlab/show/electromagnetic+field

(printed out_) Includes Dirac Monopole:

Connections, gauge theory and characteristic classes, thesis:
https://esc.fnwi.uva.nl/thesis/centraal/files/f883485001.pdf

Chern-Simons theory is a gauge theory that does not need a metric; it is therefore called
a topological gauge theory. (captured)

We can think of the global wavefunctions as not really functions on M x R, but sections
of a possibly non-trivial U(1)-bundle P which we might call the phase bundle, and
imagine the fibre as keeping track of the “phase” of the quantum particle. This condition
is equivalent to the condition that the curvature Fa has integral periods, | F € 2w Z.

F = (1/2)F 4 dx® A dx°, F = dA; ddA = dF = 0 (for, MTW Ch 4 forms), zero exterior
derivative.
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The Yang-Mills YM curvature form is F = dA + A/AA. Also, Faraday F = E/\dt + B.
Monopoles don't really exist, but their math is very rich and of interest by itself .

The simplest generalization of the Dirac monopole is the ‘t Hooft-Polyakov monopole
The first Chern class of any U(1) bundle over the 2-sphere is an integer,

(il2m)f F=-me Z

Zee says. P230 YM L = (-1/292) tr Fa, F?°. Has a chapter on condensed matter and QFT.
p 295 components: L = Lo+ ad a + aJ and in forms ada, The CS term has the effect of
endowing the charged particles in the theory with flux

Frankel: Chap 22, Chern Forms and Homotopy Groups

For SU(N) instead of U(N) tr 8 =0 so ¢4(E) = 0 and C,(E) = (1/8T)tr(6 /A8 ) is the 4-form
appearing in the winding number of an SU(2) instanton

MTW p198 Cartan invented the exterior derivative in 1901 at the age of32.
Understanding differential geometry should be done at all three levels: pictorial
geometry, by components, and by abstract differential geometry, e.g., a tangent vector A
in its own right or by components A = A, +A'e + A%, + A’e;.

P 223 connection I %4 = - (V gw?ep) , Curvature tensor Riemann R(A,B)= [V ,, V] -
Viag

Curvature 2-forms R*, = dw "y, + w" ¢ Aw%, [ MTW p 351]

Ellis, ArXiv: Remarkably, the prospective IceCube constraints on sphaleron-induced
transitions are comparable to those from the LHC, as seen in Fig. 5, with IceCube
having an advantage for large sphaleron energies ESph and the LHC at small ESph.
The crossover is currently close to the nominal value ESph = 9 TeV.

Notes from March Physics Notes 2016:

Benn/Tucker p 177 Galilean bundle 4d fiber bundle projected to time, each fiber is EA3.
2-form F = B+ dt A\ E (p 180)

In nontrivial topology, one can have a U(1) bundle on S2 topologically classified by an
integer (the first Chern class). In physics the resulting field strength is called a Dirac
Monopole, and the first Chern class is called the charge of the monopole.

[Gauge Theory ref lost]

other NOTES:

In EWBG, the Universe undergoes a first order phase transition during which
electroweak symmetry is broken. The electroweak phase transition (EWPT) proceeds
via nucleation of bubbles of broken electroweak symmetry as the Universe cools through
a nucleation temperature TN that lies below the phase transition critical temperature, TC.
This transition, which satisfies the Sakharov out-of-equilibrium condition, is analogous to
the condensation of water droplets from vapor with decreasing temperature. Sakharov’s
second ingredient is provided by C- and CP-violating interactions of new particles at the
bubble walls. These interactions ultimately induce the sphalerons to create baryons that
diffuse inside the expanding bubbles where they are captured and protected from being
washed out by inverse sphaleron processes.



25

The LHC and prospective future colliders are well-suited to looking for the particle
physics ingredients needed for the first order EWPT. http://arxiv.org/pdf/1604.05324.pdf
“The Higgs Portal and Cosmology”

A true Klein bofttle cannot exist in 3-D so our usual glass boftle picture is a Kludge.

A Principal fiber bundle is a gauge type. A connection is a gauge potential, EM has
connection on a trivial U1 bundle and monopole means connection on a nontrivial U1
bundle. (Topology and Gauge Theory in Physics) “In 1944 fiber bundle theory became
important in topology with Chern’s generalization of the Gauss-Bonnet theorem to four
dimensions.

“Gauge Theory” EM and U1 “the vertical automorphisms of the bundle will reproduce
the gauge transformation of EM.”

Hurewicz in 1935 developed the concept and theory of higher dimensional homotopy
groups.” (more?)

[12] Def: A local section of E is a smooth map s from a neighborhood U in M to E such
that 11 o s(x) = id(x) over all x € U (ie the image of x lies in the fibre 1 (x).

Def: A lift of a smooth path yy:[0,T]>M in M is a smooth path ye:[0,T]=> E in E such that
Toye = yw. (this actually makes clear sense)

Locally trivial means diffeomorphic to R". The cylinder C ~ S1x[a,b] global product is a
trivial bundle with fiber F = [a,b] C R. But, the Mdbius strip, M&?, is not a trivial bundle
since it looks only locally like S'x [a,b] for open subsets UC M.

A bundle or fiber bundle is trivial if it is isomorphic to the cross product of the base space
and a fiber.

We say that a manifold is parallelizable if its tangent bundle is trivial.

Chern: Ask how many different bundles are there over M and how many are non-trivial.

Characteristic classes are the basic cohomological invariants of bundles and have a
wide variety of applications throughout topology and geometry. Characteristic classes
were introduced originally by E. Stiefel in Switzerland and H. Whitney in the United
States in the mid 1930’s. [13, Cohen].... In the early 1940’s, L. Pontrjagin, in Moscow,
introduced new characteristic classes by studying the Grassmannian manifolds, using
work of C. Ehresmann from Switzerland. In the mid 1940’s, after just arriving in
Princeton from China, S.S Chern defined characteristic classes for complex vector
bundles using differential forms and his calculations led a great clarification of the theory.

U(1): The Hopf fibration is an example of a non-trivial circle bundle.

Examples of non-trivial fiber bundles include the Mébius strip and Klein bottle, as well as
nontrivial covering spaces. WIK

The unitary group U(n) has universal cover SU(n) x R.

The n-sphere Sn is a double cover of real projective space RPn and is a universal cover
forn>1.

covering maps of topological spaces, using the classic example of the real line winding
onto to the circle.

the unit quaternions double cover SO3.

So it's a Moebius band, as you say. The Moebius band is a quotient of a cylinder, which
is a quotient of the real plane.

Perhaps the simplest example of a nontrivial bundle E is the Mdbius strip.

http://arxiv.org/pdf/hep-th/0611201.pdf lecture notes, Chern.
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Topology of Fibre bundles and Global Aspects of Gauge Theories, Andr es Collinucci
“the non-triviality of the Mobius strip had to do with the fact that one could not find a
global trivialization. We now understand that this is the case because one cannot define
a linearly independent (which in one dimension means everywhere nonzero) section on
Mo ... A principal bundle is trivial if and only if it allows a global section. (i.e., a Mobius
rectangle with opposite corners identified has a section curve that has to cross zero).
Figure 3: The principal bundle P (S1, Z2) associated to the Mo ‘bius strip is a double
cover of the circle. (two circular curves going around without intersecting)

NICE EXAMPLES:
“Instantons are traditionally defined as smooth finite action solutions of Yang-Mills theory
on 4-dimensional Euclidian space R4. We will only consider the case of SU(2). There
exist no non-trivial bundles over R4, but the finiteness of the action imposes boundary
conditions at infinity, which allow for the existence of topologically non-trivial solutions of
the field equations. PAGE 33 is interesting: “To gain more control over the situation and
allow for a bundle description of instantons, we consider a one-point compactification of
R4 to S4, by adding to it the point at infinity, R* U {~} = S*. This means that we want to
look at principal SU(2)-bundles over S*, P(SU(2),S*).
And it talks about “sufficiently large” 3-spheres: S..>.

the sphere S*2 is its own universal cover.
the real line covers the circle: (i.e., an infinite helix above a circle covers the circle).

Lecture XI- Homotopies of Maps. Deformation retracts:
http://nptel.ac.in/courses/111101002/downloads/lecture11.pdf

Georgi, Glashow SU(5) was one guide to baryon number violation (baryogenesis). And
SO(10) is a guide model to lepton number violation (lepto-genesis). However,
experimental proof of lepto-genesis requires establishing the Majorana nature of the
ordinary neutrino.

Dn is |x| £ 1 (closed). Homotopy is an equivalence relation. Homotopy of paths is
generalized to homotopy of a pair of continuous maps between topological spaces.
Homotopy has proved to be the most important notion in topology...” Think of spheres
as being UNIT spheres, then R"-{0} >S"™" is r(x) = x/||x]|.

It is often difficult in topology to prove things up to homeomorphism. Often, we only
prove stuff up to homotopy. In fact, much of algebraic topology classifies topological
spaces up to homotopy.

If a space has the homotopy type of a point, it is called contractible.

For a Yang—Mills theory these inequivalent sectors can be (in an appropriate gauge)
classified by the third homotopy group of SU(2) (whose group manifold is the 3-sphere
S®). A certain topological vacuum (a "sector" of the true vacuum) is labelled by an
unaltered transform, the Pontryagin index. As the third homotopy group of S* has been
found to be the set of integers, Z. WIK Instanton.

Wik: Trace of a product[edit]

The trace of a product can be rewritten as the sum of entry-wise products of elements:
\operatornamef{tr}(X*{\mathrm T}Y) = \operatorname{tr}(XY*{\mathrm T}) =
\sum_{i,j}X_{ij}Y_{ij}.

This means that the trace of a product of matrices functions similarly to a dot product of
vectors. For this reason, generalizations of vector operations to matrices (e.g. in matrix
calculus and statistics) often involve a trace of matrix products.
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Trace of matrices: Tr(AB) = Tr(BA).

In YM “we may consider the vacuum state in which field strength F or 8 vanishes.... In
the AB effect we have seen that a parallel translation about S1 does not return a vector
to itself, in spite of the fact that the connection is flat. (??) A has more information than
vanishing field strength, and flat connection has more information than O curvature
alone.

Frankel p 558: “In the 4-dimensional Yang-Mills case (with G = SU(2)) there will be an
infinity of inequivalent vacua, each one characterized by the degree or “Winding number”
of the map g: S3-> SU(2)...”

585 Chern suggested the possibility of expressing winding number in terms of an
integral of a 4-form involving curvature.—the differential of a 3-form, the Chern-Simons
3-form. The winding number of the instanton is - { ¢2 over R4 for SU(2) bundles. P 609.

http://www.scholarpedia.org/article/Axial anomaly

The axial anomaly is a quantum term that violates the classical conservation of the axial
current.... The physical interpretation of instantons is that they provide a semi-classical
signal for the occurrence of quantum tunneling; here it is the tunneling between
homotopy classes of gauge fields. CS also mentioned.

Instantons in QCD 9610451, 140 pages Schafer

QCD Instantons play a role in chiral symmetry breaking. They are localized (e.g., 1/3 fm)
regions of space-time with very strong gluonic fields. The instanton solution of the YM
equations was discovered by Polyakov, 1975 and later attributed to a tunneling event
between degenerate classical vacua. The term instanton was coined by ‘t Hooft.
Instantons are topologically nontrivial solutions of Yang—Mills equations that absolutely
minimize the energy functional within their topological type.

Instantons play a central role in the nonperturbative dynamics of gauge theories.

All global structure in field theory is controlled by fiber bundles. Soliton solutions such as
instantons and monopoles are classified according to characteristic classes of fiber
bundles.”

Washington: 1.1 The product formula in action and Chern classes as ob- structions to
"global generation”

(differential geometry) Given a smooth closed curve C on a surface M, and picking any
point P on that curve, the holonomy of C in M is the angle by which some vector turns
as it is parallel transported along the curve C from point P all the way around and back
to point P.

YM instanton and QCD instanton are nontrivial class of the principal bundle underlying
the YM gauge field.

Manifolds can describe translational degrees of freedom and Fiber bundles can describe
internal degrees of freedom (such as spin and isospin)

U(1) gauge potential A = Adx' is a connection on a complex line bundle R*x C. A section
of the line bundle gives a complex value function g, and the covariant derivative on the
line bundle is Dy = dy —iAy

Charles Ehresmann (1950) was a student of Cartan and thought of a connection in a
principal bundle as a specification of horizontal and vertical vector fields. A parallel
translation is a lifting of a curve from B to a curve in P which is horizontal.

A connection says how to transport data along a curve



28

The main problem in topology is classifying topological spaces up to homeomorphisms
(homotopy type).

In the mathematical field of topology, the Hopf fibration (also known as the Hopf
bundle or Hopf map) describes a 3-sphere (a hypersphere in four-dimensional space) in
terms of circles and an ordinary sphere. Discovered by Heinz Hopf in 1931, it is an
influential early example of a fiber bundle. Technically, Hopf found a many-to-one
continuous function (or "map") from the 3-sphere onto the 2-sphere such that each
distinct point of the 2-sphere comes from a distinct circle of the 3-sphere (Hopf 1931).
Thus the 3-sphere is composed of fibers, where each fiber is a circle — one for each
point of the 2-sphere.

S3 is not globally a product of S2 and S1 although locally it is indistinguishable from it.
It applies to S1, S3, S7, and S15, but usually S2-> S2 with fiber S1.

In geometry, Villarceau circles /vi:la:r'sou/ are a pair of circles produced by cutting a
torus obliquely through the center at a special angle. Given an arbitrary point on a torus,
four circles can be drawn through it. One is in the plane (containing the point) parallel to
the equatorial plane of the torus. Another is perpendicular to it. The other two are
Villarceau circles. They are named after the French astronomer and mathematician
Yvon Villarceau (1813-1883).

Burke 159. Exterior calculus can be extended to n-d metric spaces using the Hodge star
*AN P> A" . There is also a sharp operator mapping 1-form a = tangent vector #a .

#dx = 0J 4. *1 =dxdy. In Minkowski 2-space, #dt =-9 ..

Laplaces eqgn in E3 has a = pdydz + qdzdx + rdxdy, so *a = pdx + qdy + rdz

P 86 1: E> B, a particular field is a section given by a reverse function [:B-> E with 110
I(b) =b.
P 88 A simple example of a cotangent bundle is taking gradient phi for every point of M.

A section of a fiber bundle gives an element of the fiber over every point in B. Usually it
is described as a map s:B->E such that pi degrees is the identity on B. A real-valued
function on a manifold M is a section of the trivial line bundle MxR. Another common
example is a vector field, which is a section of the tangent bundle. Wolfram

This sheaf is called the sheaf of sections of f, and it is especially important when f is the
projection of a fiber bundle onto its base space. Notice that if the image of f does not
contain U, then I'(Y/X)(U) is empty. For a concrete example, take X = C\ {0}, Y = C, and
f(z) = exp(z). F(Y/X)(U) is the set of branches of the logarithm on U.

An index measures difference in the number of “zero modes” or differences in
dimensionality of two spaces. Fei Han said the Chern character is given by the map that
“crosses with the circle.” Using K-theory and de Rahm cohomology. (K for Klasse,
class).

http://arxiv.org/pdf/1605.08081.pdf

The Abelian anomaly is responsible for the decay =¢ — v v . Itis represented by the
triangle diagram with two vector current vertices that couple to the two photons and one
axial vertex linking to the =, . The anomaly is related to the Atiyah-Singer index theorem
in topology.... In 1949, Steinberger [53] had already calculated in his PhD a Feynman
diagram, a triangle diagram with two vector current vertices and one axial vertex.
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Tony Zee QFT: p219 Components of dF = ddA = 0 imply the Bianchi identity for EM.
Monopoles by two caps —N and —S, there is no d¢ there, and separate A’s give
difference at equator p 221 imply g = 21 n/e

p223 string theory has numerous p-forms.

295 Chern-Simons term is “ada” = €"*a,d,a . The CS action is gauge invariant.
The CS term has the effect of endowing the charged particles in the theory with flux.
S =y | wd’x ada is topological. The effective theory of the Hall fluid turns out to be a
Chern-Simons theory.”

One form A = A, dx" (subscript for form).

MORE MATH:

Burke 159. Exterior calculus can be extended to n-d metric spaces using the Hodge star
*A P> A" There is also a sharp operator mapping 1-form a = tangent vector #a .

#dx = J 4. *1 =dxdy. In Minkowski 2-space, #dt =-9 ..

Laplaces eqgn in E3 has a = pdydz + qdzdx + rdxdy, so *a = pdx + qdy + rdz

P 86 1: E> B, a particular field is a section given by a reverse function I:B-> E with 1o
I(b) =b.
P 88 A simple example of a cotangent bundle is taking gradient phi for every point of M.

A section of a fiber bundle gives an element of the fiber over every point in B. Usually it
is described as a map s:B—> E such that pi degrees is the identity on B. A real-valued
function on a manifold M is a section of the trivial line bundle MxR. Another common
example is a vector field, which is a section of the tangent bundle. Wolfram

The Atiyah—Singer theorem was announced by Atiyah & Singer (1963).

In differential geometry, the jet bundle is a certain construction that makes a new smooth
fiber bundle out of a given smooth fiber bundle. It makes it possible to write differential
equations on sections of a fiber bundle in an invariant form. Jets may also be seen as
the coordinate free versions of Taylor expansions.

Historically, jet bundles are attributed to Ehresmann, and were an advance on the
method (prolongation) of Elie Cartan, of dealing geometrically with higher derivatives, by
imposing differential form conditions on newly introduced formal variables.

Forp € M, let I' (=) denote the set of all local sections whose domain contains p.

the Chern character maps K-theory (vector bundles) to cohomology (differential forms).
The basic strategy of the local argument, as simplified by Getzler, is to invent a symbolic
calculus for the Dirac operator which reduces the theorem to a computation with a
specific example. This example is a version of the quantum-mechanical harmonic
oscillator
http://mathoverflow.net/questions/23409/intuitive-explanation-for-the-atiyah-singer-index-
theorem

the main idea is the Bott periodicity theorem.

http://isites.harvard.edu/fs/docs/icb.topic1146666.files/IV-6-Anomalies.pdf
Anomalies, Swartz, 2013. Looks interesting.
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Kaku QFT p 414 “An anomaly is the failure of a classical symmetry to survive the
process of quantization and regularization.” (such as expecting axial currents to be
conserved in a chiral gauge theory)

The decay of the pi zero was not occurring at the expected rate and needed to include
an anomaly. An internal triangular fermion loop of u quarks or d quarks (or antiquarks),
the triangle anomaly spoils the renormalisability of the SM.

Weinberg Il p 361 Standard theory would predict a pi zero decay rate near 1.9E+13 /sec
but actual rate 4.4E+16/sec.

the currently accepted value of 7(11°) is 0.8 107-16 s. (2013)

the charged pions 1+ and - decaying with a mean lifetime of 26 nanoseconds
(2.6x10-8 seconds), and the neutral pion 110 decaying with a much shorter lifetime of
8.4x10—-17 seconds. Charged pions most often decay into muons and muon neutrinos,
while neutral pions generally decay into gamma rays.

The 0 meson has a mass of 135.0 MeV/c2 and a mean lifetime of 8.4x10-17 s. It
decays via the electromagnetic force, which explains why its mean lifetime is much
smaller than that of the charged pion (which can only decay via the weak force). WIK

A standard example of an anomaly is the (anomalous) decay time of the neutral pion.
Charged pi-mesons have a lifetime of 26 nanoseconds and decay via the weak force.
The pi-zero with mass 135 MeV decays electromagnetically and only lives for 8.4x10-17
seconds (about a thousand times faster than older theory predicted). The cause of this
is a Feynman diagram with a closed triangular quark flow between an input 1 o vertex
and 2 photon output vertices. Roman Jackiw used an older Steinburger idea of a proton
triangular current but now using QCD. He found that his anomaly used the Atiyah-Singer
index theorem which in turn used a Chern character (proportional to trace(FF)).

1. Chiral Anomaly

In classical physics there is said to be a symmetry when the action S( ¢ ) is invariant
under the transformation ¢ — ¢ + § ¢, while in quantum mechanics the path integral
J Dy eiS(w ) must be invariant for a symmetry to be present. The transformation from
classical to quantum mechanics does not always retain a given symmetry. Otherwise
said: Symmetries in terms of classical, commuting variables may not be retained when
expressed in terms on non-commuting quantum variables. Such a symmetry is said to
have a “quantum symmetry anomaly”. http://arxiv.org/pdf/1605.09214.pdf

WIK Homology was originally a rigorous mathematical method for defining and
categorizing holes in a manifold. Loosely speaking, a cycle is a closed submanifold, a
boundary is the boundary of a submanifold with boundary, and a homology class (which
represents a hole) is an equivalence class of cycles modulo boundaries..... A 0O-
dimensional hole is simply a gap between two components, consequently

HoX describes the path-connected components of X.

Notice that, algebraically, we define a hole to be a cycle that does not bound, i.e., we
say that the homology is non-trivial , or that there is an n-hole if the quotient Zn/Bn=+#id. If
you look, e.g., at the case of a 2-torus T?>=S"xS",

you will see that, e.g., a meridian is a cycle that does not bound, because its removal
will not disconnect the space. Similarly for any strictly latitudinal curve. These two cycles
(simple-closed curves in the space) generate the homology of the torus.

A torus has one connected component b,, two circular holes b1 (the one in the center
and the one in the middle of the donut), and one two dimensional void (b2 , the inside of
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the donut—the number of voids or cavities ) yielding Betti numbers of 1,2,1 or Poincare’
polynomial 1 + 2x + x2.

1605.09433 Hopf fibration. In mathematics, the Hopf fibration describes S3 in terms of
a disjoint union of circles S1 and an ordinary S2 with fiber structure S1=> S3 2 pi S2.
With pi for projection . S3 can be C2 with z0"2 + z1/2=1

http://arxiv.org/pdf/1605.08081.pdf

The Abelian anomaly is responsible for the decay =0 — v v . ltis represented by the
triangle diagram with two vector current vertices that couple to the two photons and one
axial vertex linking to the = 0 . The anomaly is related to the Atiyah-Singer index
theorem in topology.... In 1949, Steinberger [53] had already calculated in his PhD a
Feynman diagram, a triangle diagram with two vector current vertices and one axial
vertex.

WIK In mathematics, the Bott periodicity theorem describes a periodicity in the
homotopy groups of classical groups, discovered by Raoul Bott (1957, 1959), which
proved to be of foundational significance for much further research, in particular in K-
theory of stable complex vector bundles, as well as the stable homotopy groups of
spheres. K Theory: The subject can be said to begin with Alexander Grothendieck
(1957), who used it to formulate his Grothendieck—Riemann—Roch theorem. It takes its
name from the German Klasse, meaning "class". Grothendieck needed to work with
coherent sheaves on an algebraic variety X.

Kernel: In mathematics, and more specifically in linear algebra and functional analysis,
the kernel (also known as null space or nullspace) of a linear map L : V — W between
two vector spaces V and W, is the set of all elements v of V for which L(v) = 0, where 0
denotes the zero vector in W. That is, in set-builder notation, ker(L)={vE V|L(v)=0}.

There are large-Chern-number topological phases, Floquet topological phases, Dirac
cones, Band topology can be characterized by Chern numbers (e.g., £ 7?? Minus?)
1601.04437, There are also Chern Insulators??

“A Chern insulator is a zero magnetic field version of the quantum Hall effect (QHE).”
Topological properties emerge from the band structure, and at least one band is a non-
zero Chern number, ¢.” And c can be larger than one.

Rutgers “In order to have a robust non-zero Chern number, a system must have broken
time reversal symmetry and strong spin-orbit coupling.

Topological insulators have insulating bulk and conducting edge or surface states
immune to small perturbations.

Connectedness and dimension are invariants.

Planet math: A topological invariant of a space

If X is a property that depends only on the topology of the space, i.e. it is shared by any
topological space homeomorphic to X.

Properties of a space depending on an extra structure such as a metric (i.e. volume,
curvature, symplectic invariants) typically are not topological invariants, though
sometimes there are useful interpretations of topological invariants which seem to
depend on extra information like a metric (for example, the Gauss-Bonnet theorem).

For a field theory with Chern-Simons action, expectation values of Wilson line
operators are topological invariants.
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J. W. Alexander, Topological Invariants of Knots and Links, 1927 They are related to the
knot group of Dehn.

A topological invariant is any property of a topological space that is invariant under
homeomorphisms. E. g. Connectedness,

If two spaces are not homeomorphic, it is sufficilent to find a topological property which
is not shared by them

The existence of anyons comes from considering topological differences between paths
in 2 and 3 d space. “In 2-d space, we cannot deform any arbitrary path into our initial
exchange path.” Anyons have been detected.

Geometric topology revolves around manifolds and embeddings of them (and foliations
which are nice ways for slicing up manifolds, surgery theory..).

Topological space has a notion of nearness and the preservation of points being near
each other.

Topology is (very roughly) the study of shapes that can be stretched, squished and
otherwise tortured while keeping near points together.

One of the ways people found to deal with those difficulties is to create gadgets (officially
called functors) that map topological spaces into objects that are easier to handle -
algebraic objects like vector spaces and groups.

Today, the applications of topology in physics are numerous [27]. A large aspect of this
is the recent revolution called “topological matter” such as topological insulators,
topological phases, topological superconductors and topological semimetals. The
importance of topology emerged with the recognized importance of gauge theories.
These topological phases are characterized by “topological invariants that have a global
dependence on characteristic parameters of the system.” Continuous deformation of one
will not extend to those of another. Quantum effects are usually low energy modes and
the topology of the bands of energy spectrum.

[Italics means that the concept has already been used in the Paper].

There is a Bloch bundle E(T) over the Brillouin zone T where the fibres are the spaces of
states with the same Bloch momentum k [27]. For the integer quantum Hall effect, the
Bloch bundle E(T?) is over the 2D Brillouin torus.

Perelman proved the Poincare conjecture that any 3D topological space X with 1m;(X)=0
is topologically equivalent to the S° sphere [27].



Covariant Derivative Issues
Dave Peterson, 5/20/17 — 9/1/17

... [Einstein 1912] “I suddenly realized that Gauss’s theory of surfaces holds the key for
unlocking this mystery.” ... Then, | told Grossmann that | “needed a geometry which allowed for
the most general transformations that leave the metric invariant [dsz=gpv dx” dx” ]. Grossmann
replied that Einstein was looking for Riemannian geometry” [16, p213, Pais].

In curved spaces, the idea of covariant differentiation includes “connections” expressing
“parallel displacements” of vectors and vector bases. For tangibility and clarity, these are
calculated here in a variety of ways for the simple special case of translations along the latitude of
a 2-sphere. Connections expressed as Christoffel symbols versus 1-forms are related by “scale
factors” h;. The language of differential forms provides an economy of expression facilitating
understanding for 2d surfaces and higher dimensions. An ultimate goal is understanding
“Curvature.” But differential geometry uses a large variety of notations that make understanding
difficult.

“We shall not cease from exploration. And the end of all our exploring
Will be to arrive where we started And know the place for the first time.” T.S.Elliot.

After many years of studying general relativity [GR], | am finally taking a fresh
look at its basic differential geometry foundations. As “old students” from the ‘60’s and
‘70’s, we had gotten used to performing “index manipulation” of tensors; but more
recently general relativity has evolved towards greater use of abstract differential
geometry stressing the language of differential forms. Both the old and new ways are
shown in the big standard text by “Misner-Thorne-Wheeler” [6, or “MTW” ] . The next
challenge for us now is to try to make some sense of the “totally modern” GR text by
Wald [15] [and see Figure 1 below].

{Example: {de; =e,/\wo", Rap’ Wy =(VaVs=VsVaWe, R) = dw,’ +w,* \w," }. Eqn. 1.

The math itself is really not new, the explicit and abstract approaches both go
back a century. It is a hope that understanding the differential geometry currently being
used for general relativity space-time may be eased first by an adequate study of
“elementary” differential geometry for simpler Euclidean spaces like E> [1].

A key concept in both flat and curved spaces is the use of the “covariant
derivative”-- a way of specifying a derivative along tangent vectors” of a surface. This
concept is a generalization of the “directional derivative” of a scalar function f(x,y,z) from
vector calculus, V,f= (v- Vf)-- the projection of a gradient onto a tangent vector v to a
surface or curve. A primary virtue of covariant differentiation is that it converts tensors
into other tensors; it preserves their invariance under coordinate transformations. An
ordinary derivative usually lacks this property. For flat space-time and Cartesian
coordinates, the covariant derivative then reverts back to the ordinary derivative. The
concept of covariant derivative goes back to Ricci and Levi-Civita (~ 1901 and earlier) —
in time for application by Einstein and Grossman.

The concept of directional derivatives also applies to vector fields V W where
W = we +twoe+wses =wi(x,y,z)e; where the gradient of each function coefficient, w;, is
separately projected onto the same tangent vector v (and the “elementary” e;’s may be
unit vector bases). V W is the rate of change of W in the v(p) direction (“tangent”




vectors have individual points of origin, p). The covariant derivative of vectors must
allow for correction terms due to the possible “rotation” of basis vectors on curved
surfaces, and the added terms are called “connections.”

Several different notations for expressing directional derivatives of a scalar
function, f, include: . .
Vf=0,f ={dfv)y=v[fl= v(V)=(vV)f=(Vd/ox)f=Vv'of. Eqn.2.

Or, v[f] = (d/dt)(f(p+tv)) |, as a point, p, advances with time in the v direction. And
for vector fields, V,W = W(p+tv) '(0) measures the rate of change of W(p) as p moves in
the v direction evaluated att =0 [1].

Stumbling blocks or early learning problems arise in using covariant derivatives:

One is due to the variety and inconsistency [e.g., Eqn. 1 above] in labeling
notation and conventions from text to text. | think that a huge problem is the use of the
symbol “e” for both unit vectors (orthonormal bases) and non-unit coordinate vectors.
Then the coordinate values have to be magnified or reduced in magnitude to
compensate as the base vector is lowered or raised from unit length {For metric spaces,
see the use of h, scale factors below}. The popular text by Misner, Thorne and Wheeler
(MTW [6]) uses both but is careful to place little hats (*) on unit vectors, but generally
one has to know context to see if e is unit or not. The same applies to dual basis
vectors—they may be labeled as 6' or ¢' or w' or ¢' — but you may not immediately know
if they derive from unit vectors bases or not.

Introductory geometry in the usual Euclidean space E* might only use
orthonormal unit vector bases (e.g., O’'Neil [1] ) while tensor application would mainly
use covariant and contravariant bases which are not usually unit vectors. General
relativity most commonly uses “coordinate bases.” So, we have to be able to transform
between “coordinate bases” (like d ,’s) and “associated orthonormal non-coordinate
bases” (like unit vectors). There is a free choice between using coordinate bases and
orthonormal bases. Orthonormal bases are best for measurements and physical
interpretation. This problem with having orthonormal unit bases or not carries over to
Christoffel symbols (I ‘s) and Riemann tensors. There are two different types and they
have different values; and the convention being used may not be clear up front.

A later problem is translating index conventions from “only low” (e.g., turning
connection wj with “orthonormal” bases) to covariant/contravariant indices (e.g., w) ). For
unit frame bases, these are the same, but contravariant bases are not of unit length.
There are also w’s where the i is directly above the j rather than staggered sideways.

For the important “curvature 2-form” Q; also = Q) when orthonormal bases are used.
Understanding a field of study requires dovetailing together a variety of approaches over
many published papers and multiple texts, and this can be a challenge.

We are all familiar with the idea that “vectors" in Euclidean space only have a
direction and magnitude and can be freely transported anywhere we wish to move them
(e.g., the “parallelogram rule” for vector addition, A+B = B+A). But that is not true in
curved spaces or surfaces (e.g., the sphere or the saddle shaped surfaces). Vectors are
first replaced with “tangent vectors” on a surface depending on individual points of



application — a vector from a given point p to another point. The important concept of
parallel transport of these vectors on a curved surface often results in rotations of the
basis vectors. The degree of relative rotation often might initially appear to vary with
different methods of calculation. We must verify that all approaches are consistent.
Base rotation “connections” may be expressed as I' symbols (“Christoffel symbols”) or
alternatively by w’s as “1-forms.” Understanding these somewhat difficult terms may
require tangible calculations for simple intuitive cases beyond just metric index
manipulations.

Initially, we take directional derivatives with respect to given vectors at a point, v,.
But a little later on we also take them with respect to indices, like VA= Ai;k using a
semicolon for covariant derivative (using just a comma “,” means taking just ordinary
derivatives). Integer indices refer to the labeling of basis vectors. Note that affine
connections are defined in terms of the turning of basis vectors towards each other:
VaoXi=T jia X; [5]. With these corrections for covariant derivative, we get an invariant
tensor. The other more abstract approach uses differential “1-forms” w and unit “frame”
fields, E;, V.Ei=Z wj(v)E; [1]. “Each geometric surface has its own notion of covariant
derivative” [1, p 338], but every chosen metric g,, defines a unique I' connection.
“Covariant differentiation is completely determined by its action on a basis.” And then
after knowing that, we can apply it to 3-d vector fields, W, on the separate component
functions of W.

A vector A can be written in three basic ways depending on the choice of basis
vectors. A = a, e, = Aub“ = AM et Eqn. 3.

(the usual “Einstein convention” says that repeating indices means: Z “sum
over” index values p = 1,2,3...). Then we can dispense with any need to show the ;s.
The components in the first case, A = a, e, , are called “physical” with orthonormal
bases such as i,j, k (unit vectors). This is typical in standard Euclidean vector analysis,
and the component magnitudes are directly useful. Unit basis vectors are basis direction
vectors that are normalized to length one as e, = (dr/dx")/||dr/ o x*|| -- a carrot
over the e might be preferred for clarity.

The next term for A is called “contra-variant” with upper index A" and vector
bases that are tangent vectors: o r/dx" = J,r [ conventionally shortened to just
0/1ax"= 0, and without the location vector r; and we should perhaps try to avoid
using the symbol e, for these non-unit bases and restrict that to unit vectors]. The
danger of mistaking the contravariant base from the general act of taking partial
derivatives could be avoided by using a different symbol like a , (alpha) instead of J , as
a basis vector (but that is rarely done). An example of this “coordinate” base is
d ¢ = rsinB ey for spherical coordinates. We hold r and 6 constant and ask how much
real spatial distance results from a change in angle d¢.

Once you know the bases, the metric tensor is merely the product of bases,
gw =0, dv=e,- e, ifthe e’s are coordinate bases).

The last form for A = A, e" is “co-variant” using a lower index and bases that are
gradients of the coordinate curves, e =Vu, =" = dx" -- and again not unit vectors ( in



the “pretty” language of “forms,” the d here is called “exterior derivative” and is no longer
thought of as a “tiny” A — more discussion later on). The non-unit (non-physical)
contravariant and covariant bases are the ones used for “conventional index gymnastics
computations.” Using e’s here for co-vector bases is ok because they have superscripts
and avoid confusion.
The relationship between co- and contra- bases is dx"( 0 /0 x") = 8,y (i.e., 1 or 0).
Or,
ee;= Vu-(ar/au)=(au/ox)(dx/duj)+...= du’/du=23).As a particular example
for 2d polar coordinates, (r,0 ), position r = rcos8 i + rsin® j where 8 =Tan™ (y/x).
dTan™"x = 1dx/(1+x?), so V6 = -iy/r + jx/r, and 3 r/ 3 B= -rsinBi+rcos6j = -yi+x; .

So, VO- (91/08) = (Y?+x*)/(x*+y?) = 8% = 1.

For a Euclidean point, p, a position vector may be given as r = xi+yj+zk. For
curvilinear coordinates, we may rename r = r(u4,uz,uz) {for example: “Geographic”
coordinates, p,8,¢ with angles for longitude and latitude from the equator}. So

dr=(0r/duq)dus + (9 r/0uz)duz+ (0 r/0uz)dus=(0r/ouy,)du, Eqgn. 4.

The coefficients of du;'s in parentheses are called “scale factors,” h;, hy, h; (times
corresponding unit vector bases, e, ).

Then a diagonal metric line element is ds*= dr- dr = g, du, > = h,*du, . The tangent
bases are 0, = h, e, while covariant bases are e"=Vu, =e/h,.

The covariant base operating on the contravariant tangent base gives:

dx* (a/0x")=1=(Vu,=ey/h, ) 0,=h,e,)—the h’s cancel out.

The conversion from a (contravariant) coordinate vector field A= A" 9 , to a
covariant 1-form field (co-vector) A dx" is via the metric: g, ,A" = A, . So given any
vector field, we can find an equivalent 1-form using this equation. For 4-vectors and a
Minkowski metric (-+++) with index labels p = 0,1,2,3, the prefix signs of all the scalar
functions A" will be positive. But the co-vector will change its scalar function for time
from + to - .

For “spherical polar coordinates” (r,8, ¢), we have the polar angle theta opening
down from the north pole of a sphere. A scale factor example here could be hy =r sin8
=\gss , and contra-variant tangent basis is then 9 4, = hy €, . To compensate for the
bases scaling up or down with h, we also need to have A, =h, h, A" = g, A" (--usually
shown up front in GR texts as a definition for the lowering of an upper index to a lower
index using the metric tensor g, ). The change from non-unit base vectors to unit
vectors using scale factors is not often stressed or even given in texts.

Special Test Case: A Latitude on a Sphere, S

Some students (like me) desire concrete examples for clarity. An elementary
consideration here is the 2-sphere. One part of covariant derivatives is the gradient on
S? (with constant radius, r, i.e., a 2d-surface case for 8 and ¢ ). So, we should first know
that the gradient of a scalar function in elementary vector calculus, f, is

Vf=eq (0f/00)r+eydfldp)rsin® = eg(df/00)he +ey(df/dd)h,. Eqn.5



[but technically, the e’s here should be unit dual frame bases 8’s or ¢’s, and the V’f
should be the exterior derivative df ].

And for a vector field W on S?, V,W uses gradients multiple times— one for each
of the function coefficients of the three bases directions.

For Understanding of “parallel transport” of vectors and bases on a sphere:
consider movement along a latitude of a sphere or globe, S? (at polar 8 = some fixed 6,
< 1/2). We want to see the resulting rotation of basis vectors from transport in the
increasing ¢ direction. Avoid the case 6 = /2 here because it corresponds to the
equator and is a “geodesic” or “great circle” without any needed connection term for
basis rotations. The goal of the following exercises is to show consistency from a variety
of approaches:

Case 1, Visually : To begin, the easiest picture approach to vector rotation
from transport is to draw a circle (radius a) on a flat piece of paper and draw a set of
identical parallel arrow-vectors all pointing in the same direction around that
circumference [4]. It is apparent that the angle of these parallel arrows will rotate 21T
=360° with respect to the circle circumference curve after full motion about the circle.
Using scissors, cut to the center in two locations so that a wedge of the circle is now
missing (wedge angle a ). And then fold the paper into a cone positioned on the sphere
like a dunces cap on a ball. That cone is now tangent to the sphere at the relevant
latitude.

If you look from the side (the normals to the cone at the latitude circumference)
and rotate the cone-circle of vectors, you will see two things: With increasing angle phi,
the vectors seem to rotate clockwise about the circumference while their theta and phi
pointing base vectors seem to rotate counter-clockwise to the same compensating
degree. When you get to the place where the wedge was missing, the vectors take a
jump (a deficit angle) of a =21 (1-cosB8) where theta is the polar angle of a latitude. Let’s
show that:

Let the slant height of the cone be “a”, circumference of the original flat circle is
C, = 2ma, sphere radius is R, radius of latitude circle is r, and the circumference of the
cone is C, = 21r. The wedge angle is then C,-C, = aa = 21 (a-r). But r=Rsin@, tanb =
sinB/cosB = a/R, so cone circumference is 21r = 21 Rsin® =21 acosH .
Then a = 21mma(1-cosB)/a = 21(1-cos0 ).

A real example of this might be a pendulum bob initially swinging in a north/south
direction at noon in Boulder, Colorado at (exactly) latitude = 40° . Let the Earth rotate
about its north pole for a full day back to its initial position with respect to “fixed stars.”
The plane of the pendulum is seen to rotate through a net angle of 211 -a radians (or
21cos(40°) = 276°).

As an interesting aside, notice that this “deficit angle” a “happens” to be the same
as the solid angle of the spherical cap for the given latitude.

That is Q(lat cap) = [ d(area)= | (Rd6 )(2m Rsin6) from 0 (the north pole) to 6,
and setting R = 1 for a unit sphere. This result is




Q = 2 (1-cosB) which was the same as the deficit angle a. Or apply part of the
“Gauss-Bonnet theorem” from Stokes Theorem where Q = [ (KdA=dA/R?=dQ ) . The
“K” here is “Gaussian curvature” of the sphere, K = 1/radius?.

A basis vector eg on a northern latitude circle will always point south and be
perpendicular to the circle. For any given eg at some location on the circle, an adjoining
€g at angle +d¢ away will seem to precess counter-clockwise.

Then total vector rotation about the cone is 21 -a = 21 —(21 (1-cos6)) = 21rCc0S0
Or, rate of rotation is w =Arotation/Aradians = cos8 .

If we begin with a vector eg pointing southward, then

deg/dd = cosO or deg =cosBdd = wg . Eqn. 6

(This wey is called a connection 1-form and is also derived in Detail A below).

So, this tells how one base vector eq rotates, and there is a similar equation for
base vector e,. What it is missing is how much rotation occurs with distance along the
phi axis rather than with just angle phi (variable vs directed distance). This is the job of
the gradient term with its commensurate distance coordinates. So here, the
denominator d¢ = rsin8d¢ = hy d¢,and for S?, we could set r =1). Then we get the result
Ve €9 = €c0SO /rsin@ = cot O/r.

This agrees with the usual metric index procedure. A primary text on general
relativity (MTW [6] p. 213) with orthonormal [ON] unit vectors says,

V¢e9 = F¢9¢ €y = cotB e¢/r, and V¢e¢ = F°¢¢ € = -cotB €p Ir [on SZ] Egn 7.

These “Christoffel” connection I" coefficients for a sphere are calculated from the usual
tedious (general relativity type) derivatives of the metric tensor [ds®= r? d8? + (rsin®)? d¢?]
— additionally yielding the result : F9¢¢ = -sinB cosP (details not shown here).  But,
these standard cookbooking index-manipulating calculations aren’t intuitively clear, and
it would be nice to supplement them with a variety of other simpler approaches.

Once the connection I ‘s are calculated, then the “Riemann tensor” [Rancq] can be
formed by derivatives and products of [''s -- and “Ricci tensor” [R,p] from its “contraction”
and Ricci Scalar from one more contraction [R]. All of this is now easily calculated with
computer software packages (such as Maple). And all of these are all zero for “flat”
space and have simple forms for low dimensions: Riemann is simply combined scalar
curvature and metric in 2d and just Ricci and metric in 3d. The Ricci curvature tensor
of a 2-manifold surface is just Ra, = Kga, Where K is “Gaussian” curvature (which is 1/r?
for S?). These topics are rarely discussed in Euclidean E® spaces. But, they are the
foundation of 4-d GR geometries.

Once we know how the base vector rotate, we can find the covariant derivative of
vectors, A=A'9;=Ale;, so JA/Ix =edA/Ix"+Adel/dx"=e dATdx+ATe, .
[20]. The y (gamma) and i are dummy indexes to be summed over—their names can be
interchanged: Then . . . _

OA/OXE =(dATdX + AT, eior ViA=(0ATdx+ AT ) Eqn. 8

For vector field in R®, for “all low” indices (orthonormal and unit frame bases E): if A =
f1E4+ f.E, = i E; [1, p 338]
VA = (EKVﬁ + f2(1.)21(Ek))E1 + (EK'sz'l' f1w12(Ek))E2 =( of i/ 0 Xk +fj (.L)ji)Ei



Next (Case 2): We look at the Differential Geometry view [1] showing that the
“connection” for this is defined by rotation “forms” w — but the usual math (see Appendix)
is not quite trivial (and the above picture is easier). The rotation of a frame unit vector E;
turning towards another unit vector E; is given by the “covariant derivative” of the basis
vector:

V., E=Z wj(v) E; (v is any tangent vector at a point p on a surface).

So V ep =gy €y —With the “1-form” w = cos@d¢ (e.g., Eqn 11 below). Initially
this looks different from the cotB above. That is, a theta vector pointing down will tilt
towards a phi vector to the right (a counter-clockwise rotation). Thinking in “differential
forms” is an old but powerful concept that is generally unknown to most students. Now,
since the d$ above is a 1-form basis, it is also an example of "=V u, =e,/h, , so, e.g.,

Wy = c0sBdd — cosb ey /rsinb| = cotB /r = F¢9¢ ey .. (so we have consistency ).
{there are a variety of notations for w like w’; (see appendix at end) or w 'y -- as
in Veer=ewl, and ife=37;, then wi=T"x [11,p 243]. w"=w’;0" where g is
a 1-form like dx. We can exchange the jk in I (symmetry) }.

Case 3: Another approach to base rotation is to exploit a clever trick of beginning with
a constant basis vector [e.g., 3, p 355] to get a turning connection for contravariant
bases:

On S?, ey (unit) = 0 4/rsin@ , and V ;¢ 4 =0 (no change in unit phi with change in
latitude). So, V ;6 (94 /sinB )=0= V ;9 04 /siNB + 09 4 V ;¢ (1/sin6 ). But the last term is
0 (eg cOSO /sin®0 )04, SOV ;0(04)=cotbd4 -- notice this is a different from the r¢e¢
in Equation 7 because it is now done in a coordinate basis. Unit vectors are not needed
to find connections, the non-unit bases work (and are preferred).

Differential Forms:

A 1-form is simply “an expression obtained by adding and multiplying real-valued
functions and the differentials dx,, dx,...” [1]. So, 3xdx is a form and yzdx + 2dz is a
form. They are also considered as the integrand appearing under an integral sign, | .

An added (anti-symmetry) rule is that the order of the differentials counts: dxdy = -dydx --
- which also implies that dxdx = (dx)? =0 (1-form repeats of single objects give zero). As
a reminder of this “alternation rule,” a wedge symbol may be used: dxdy = dx/\ dy
(called a “Grassman product” or “exterior” product).

If we write a 3d 1-form as a = a,dxs+adx,+asdxs, it is initially curious that the
product of 1-forms for Cartesian coordinates naturally results in a familiar “cross
product” [11]. a/\ B ~ (a- dx)/\ (b-dx) = (a x b)-dS

[where, for example, dSq, = dx; /A dx, is a 2-form]. Unlike the “interior product”
(which reduces two vectors to a scalar), the exterior product elevates 1-forms to 2-forms.

This kind of multiplication is similar to that of the “3-vector” part of quaternions
[Hamilton’s hypercomplex number system] with new “imaginaries” i=j*=k?=ijk=-1; which
implies ij=k, jk = I, ki = -j ]. Like forms, i j = -j i (antisymmetry). A vector in this basis may
look like u = u4ituyj+usk. If we consistently ignore a usual scalar part addition (q = scalar
+ vector without the scalar), then the product uv = (u x v) .




One more addition to exterior algebra is the concept of “exterior derivative” d
such that if y = fdx + gdy, then we get a 2-form n =dy = df A dx + dg/\ dy — (and terms
like ddx=0). The dx’s and dx/\ dy’s are treated as a basis (like €'), so y is similar to a
“vector.”

d=[(0/0x)dx+ (/3 y)dy+ (/0 z)dz]A

Now things get interesting! It can be shown that df (of a scalar function) is like a
gradient f = ~Vf, dy is like a curl of vectory ~Vxy , and dn is like a divergence, V- n.
Also ddy = 0 (just like the divergence ofacurl V-V x y=0). And forms can also be
integrated. This single symbol d serves to include much of vector analysis in easier
symbolic form !

If we let vector A be the electromagnetic vector potential 1-form in 3-space, then
dA ~ curl A = VxA= B (the magnetic field).

{Actually a curl vector like B is a “pseudo-vector — it reverses direction under
mirror reflection. We should represent “B’=dA as a 2-form (Greek) = bi,-dxi/\dxj. But we
can then apply a complimentary “3-space Hodge star” operation to look like a 1-form
vector: *B =Bidx". Similarly *(dx/\ dy)=dz.

For the space of p-forms labeled as wedge A®, we have *AP=A"", so *A?>=A®?) or just 1-
forms }.

Carrying this over to relativity in 4-space can then give a “generalized curl” of a

4-vector, like F = dA, where A is now the vector potential 4-vector, A,, and F is like
the relativistic electro-magnetic tensor F,,. One might think that if we can write F=dA so
simply then the mechanism of Nature may operate with the same simplicity or something
isomorphic to it. The presence of E and B fields in the resulting F is said to represent
“curvature” for F. The simple expression dF = ddA = 0 contains the Faraday law and no-
magnetic-poles law of Maxwell equations. But this is also an example of a “Bianchi”
identity. That is a concept from general relativity that also applies to EM. With forms, a
lot of math and physics can be summarized more compactly than it used to be. One can
switch between conventional math and forms using the various powers of forms as
needed [e.g., 2-forms can be concretely represented by matrices like the F=> F, .]

Invariance is a major theme in differential geometry. Various choices of
coordinate systems don’t matter — none is intrinsically preferred. The laws of physics are
unchanged by a change in coordinate system, rotations and boosts in speed (called
“general covariance”). However, practical physicists initially define almost everything in
terms of coordinates and only later show independence. Vector components are not
coordinate independent, but the combination A" 9, is. Mathematicians prefer to define
forms without mentioning coordinates and sometimes even without metric. In Euclidean
space we have isometries or mappings that preserve the distance between two points
regardless of rotation and translation (like congruences between two triangles in plane-
geometry). In special relativity, we have the electromagnetic tensor F that can show a
preservation of Maxwell equations (for Lorentz invariance). F is anti-symmetric and is
also a “2-form” resulting from a generalized curl of a vector potential (F = dA). The
(Lorentz) “invariants” of F are : (F* F,,,) =E- B and the dot product E- B.



Tensors in general exist independently of any frame of reference or choice of
coordinates and are defined by their transformation laws. A vector is a first-rank tensor
and has only one invariant, its length. The symmetric metric tensor, g, , is of second
rank and expresses the geometry of space (or space-time). It is the inner product of two
tangent vector bases. For us, for the surface of S?, we have:

O =(0 xu,0x) =hyey-hye,=(h)26, ,s0
df 2= g,dxrdxv = R2d62 + (RsinB)2 d¢ 2. Eqn. 9.

Once we’ve acquired a feeling for the covariant derivative, it might be mentioned that it is
applied twice on a vector , w, to get Riemannian curvature. In the simple case where two
basis vectors are definedasu= d/dx andv = 9/9 X,

Riemann R(u,v) w = [V ,V, w =V ,V,w- V,V,w. This “commutator” measures the
“‘noncommutativity of the covariant derivative” [2].

Other Examples of Covariant Exterior derivative:
1-form, 2-forms, 3-forms.

The symbol “D” for covariant derivative is used to include both derivatives and
connections (I"'s or w’s).
For relativistic electricity and magnetism fields (4-vector EM), the covariant derivative is:
D" = 0" + igA"(x) for the group U(1) with “A” or “gA” being referred to as a connection.
One author calls this connection a “twist in Minkowski space” [24]. The vector potential A
field can alter the phase of a moving electron. [ I think that gA represents “the dragging
of electromagnetic ‘space’ by distant moving, circulating or spinning charges.”]
In terms of the U(1) group, this means that an action term like | ,A (integrated over the
path gamma) becomes exp(i § yA) € U(1) — a complex phase term.

With more detail, E and H are technically 1-forms, D, B, and J are 2-forms (e.g.,
J1dy Adx), and charge Q = p dxdydz is a 3-form. Then Maxwell's equations are:
dE=-0B/dt, dH= dD/ot+J, dD = Q, and dB = dd(vector A) = 0.

For the Weak interactions, this becomes something much more complex. This is
the sense in which A is a U(1) connection. The Faraday tensor F=dA says that the EM
field is the curvature of the A-connection. F is used in equations like m( 0 u/ o t) = qFu”
bringing together charge (q), mass (m), and velocity into a form of the “Lorentz force law”
(separate from the usual Maxwell equations). Physicists and mathematicians see
connections differently: “physicists don’t know why their notion of a field should play a
role in the description of parallel transport, and the mathematicians don’t know why the
object they use to describe parallel transport should have any physical significance as a
field [24].”

For weak interactions, we generalize the covariant derivative from electromagnetism to
D" =0 " + ig T W¥(x)/2 using the group SU(2) where tau is like Pauli matrices o°/2.
{Actually, in the standard model we go to a combined “Electro-Weak” with group
SU(2)xU(1) }. The forms idea here is that the F = dA gets generalized to F = dA + AAA
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with a more elaborate “A.” This is analogous to the general space curvature (2-form) Q =
Dw=dw +wAw [see Details Part C below].

This use of weak SU(2) portion goes by the name Yang-Mills (YM), and has
been a guiding principle of particle physics since 1954. The realization that the weak
field W¥ represents a connection didn’t occur to Yang until 1975 [24]. Generalizing even
this to the group unbroken group SU(3) gives the quantum chromodynamics (QCD)
theory for strong interactions. “The standard model [SM] using the combined compact
group ~ U(1)x SU(2)xSU(3) is one of the greatest achievements of science and is a
quantized Yang-Mills theory [24].”

For a pair of tangent vectors, X, and Y, R(X,Y) = Q(X,Y) = dw (X,Y) + [w(X), w(Y)])/2,
where R is a “curvature tensor” and Q is a curvature form. In MTW [6] this is written as
Q) = dw| + 2 wi/A\ w =&} (Script Rin MTW )! A connection is called “flat” if Q =0.

The Bianchi Identities of general relativity are a generalization of d(dw) =0, 0or 0 d w =
0 (the boundary of a boundary is zero). 3-forms may derive from the exterior derivative
of 2-forms. Of particular interest here is the “Torsion tensor” 2-form -- a measure of
twisting or screwing of a moving frame around a curve or the twisting of tangent spaces
around a curve [Egn 10]. The simplest example of torsion is the twisting of a helix or
helicoid such as the “Archimedes Screw.” For connections, torsion can be thought of as
the lack of symmetry of the Christoffel symbols: T; = ";- I 5. In General Relativity we
almost always assume symmetric connections — no torsion). Instead of the usual bases,
ei, we now consider the dual basis 6' such that 8'(ej) = 8= 1 or 0 [see Details B] . As a
2-form, torsion is

Ok=de*+wN\ =T 0'A6,0r®=D0. Eqgn. 10
The two types of Bianchi identities are then: 1. D@ =Q A 6,and2.DQ =0 -- as 3-
forms.

The first Bianchi identity in component form for the Riemann tensor is:
Rabcd + Racdb + Radbc =0.

A component form for the 2" Bianchi Identity of the Riemann tensor is {Ra ngy: 5} v.5)=
0 [keeping the first two subscripts constant and cycling through the () terms].
Or, Rangyvis *Ranys g+ Ransp y=0.

These express symmetries and redundancies of the Riemann tensor (not all of it is
useful, so the Einstein equations may use the contracted Ricci tensor.

Details:

A. Connection w 1-forms: for the selected case of S? spherical polar coordinates
with unit vectors forr, 8, and ¢ (Frame E4,E3E3 = E[,Eq,Ey). Obtain turning coefficient
w forms using the “natural” orthonormal Euclidean frame basis, i, j , k.
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E =e; (with “hat” * ) = sinB cosd i + sinB sing j + cosB k = a1 i+ az j+ ass k.
These coefficients of ijk (or U4,U,,U3) are part of what is called an “altitude matrix’
A=aij where Ei =2 aijUj.

E, =eg = cosB cosd i +cosh sind j —sinb k

Es= ey =-sing i + cosd j. Then differentiate all of these and consolidate terms to get:

de; = i(cosb cos¢pdO —sinB singdd) + j(cosB db sind +sinb cos dd ) —ksinBdO

=d6 (e ) + d¢ (sinB ey ) [Fwi2e2twqses]. {“all low” convention}.
deg = i(-sinB cos¢ dB —cosB sing d¢ )+j(-sinB sing dB +cosB cosd dd)-kcosbdO
= -, dO +cos6 €4 do [Fwa1e1twoses)
dey = -icosddd —sing j dd =-sinB e, dp —cosB eg d¢. {using sin’0 +cos®0 = 1}.
[Fwzie1twszes] . Eqn. 11.

With these coefficient assignments for omega’s, we can now read off the

connection forms for S% w12 = W = d6 , W13 = Wy = SINBAY , W23 = Wey = COSOd(.
And as anti-symmetric forms we have w;1=-w12, W 13 = -W31, and w3, = -Wy3 (order
counts! e.g., base 1 turning towards base 2 implies that base 2 turns away from base 1).
Here, we have used “orthonormal” frames. If instead e; = 3 (not unit lengths), then w'
= F‘,-k with different results inter-related by hy's . If spherical radius is a constant, then
deg = Way €.

{ Note: The process above is equivalent to finding an antisymmetric connection matrix
w =dA AT from the “altitude” matrix of unit frame coefficients [1].}

A key equation in differential geometry is: V. \Ei~v- V E; = Z w(v)E; for all tangent
vectors v. The implication from this is that our de;'s must be equivalent to the V,E;‘s.
(with the old confusion of thinking of d as “tiny” A’ s). Indeed, for the previous latitude
cone construction, it was true that deg = w23 (€y): i.e. deg/lddp = cosB. where wyz = Wey
= cosBd¢. In this view we indeed have tiny d expressing an increment of basis rotation.
df is often used for expressing Vf (e.g., 0 ,f=(df,v) =V v [MTW p60]).

Also, in terms of Christoffel symbols:

w % = I';0’ (where o can be just another symbol for our previous “0” 1-form bases).

For our sphere example,
w % = (cotB /r)(8° = rsinBd¢ ) = cosb dd (as before above).

B. Dual Forms:

From O’Neil [1], the dual 1-forms for sphere S are 6; = h; dx;: so 8,=dr, 8,=rd0 ,
83 = rsinB d¢ ( the hy's are the scale factors—and the 6’s are like our older “unit” vectors
e’s —and MTW would call them w' with little hats on them for unit lengths). O’Neil uses
orthonormal bases, so his duals are with-respect-to unit vectors and 6,=6'. The scale
factors serve to make the forms commensurate as distances. The metric tensor can be
expressed using duals. For the case of the unit sphere: g = d6%+sin?0d$? = (8%)%+(8%)? .
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Some books introduce base transformations called 2-index “veirbeins” ( for 4d
space) to transform from coordinate to “non-coordinate” (orthonormal) bases: e; = " 9 ,..
They may also transform dual bases: 6'= e'gdx“ (and e',ei' =3, &e' g =0} [23]).

For the simple case of the sphere S, 6° =e®dx'=e% dB+e®,dd = rd® or just d8 for r
= 1 unit sphere. Also 6° =e® dx'=e®, d6+e® ,d¢ = rsinBd¢. Then one can just read off two
non-zero “zwei-beins” as €% = 1 and e®, =sinB. These are related to what are called
“tetrads” in general relativity. Notice that these transformations accomplish the same
thing as our previous h;'s.

Names of terms can be tricky [21] — meaning “new” for students of vector
analysis: The understood standard “coordinate frame” for S?ise;= d/d u' (e.g., ey =
310 ¢ ), with “dual frame” [following MTW [6] ] w' = du' (e.g., w?® =d¢ — note that this
gradient like basis compensates for the tangent like basis ey = d / 0 ¢ — and neither has
unit length.) These obey the dual-rule du'(e') = w'(d;) = 8= 1’s or O’s.

Then there are the “associated orthonormal frames” like
ey (")=(0/0¢)hy =(0/0 ¢ )rsin@ (with index phi-hat = ¢ *). And the orthonormal
duals are 8 (*) = rsin d¢ =h; du'. Both of these pairs obey 6(e) = & ;, and with e having
unit length.

That is, dual 1-forms are defined so that 8;(v) = v- Ei(p) = v; [1 p 94 for
orthonormal Frame bases]. So, as in linear algebra, the 8’s are linear functionals, and
here they project a tangent vector onto its i'th component to yield a scalar length. If
vector v is chosen to be E;j, then 8;(Ej)=8;. This is also a general requirement for dual
frame bases, and the 8;'s above are the dual basis of E;. { example: 8;5(E3) =1 =
rsinBdd(e,) is a projection onto the ¢ unit tangent vector. BUT, that unit tangent should
be in terms of coordinate frame 3/ U/,

S0, 05(Es) = 0% (E3) = 0% (E, ) (rsinBd¢ )( 0/ 0 ¢/rsin ddp) =dd (0 /0 ¢) = 1.

The gradient [eqn. 5] should really be written using these dual bases:

Vi=df=3 (df/ou)w =Z(afaou)@h). [MTW p 206].
{instead of the older unit vectors e’\}.

Directional derivatives and covariant derivatives use gradients and therefore should be
using dual bases. When we say connection wgs = cos@d¢ , the d¢ = unit w?/rsin6 = 'h; .
Then, wes = cosBdg= cosO 6° /rsind = 6° cot@/r = I o4 6° for orthonormal bases. !!

The difference is the use of the dual basis for 1-forms.
{And a reminder that in coordinate basis I’ s = cotB (without the /r). So,
V99(8¢)=cot68¢ .

For the natural frame field, ijk, the operation dxi(v) = v; = v- Uj(p) implies that 6,
for that Euclidean basis is dx; (the simplest 1-forms). Then, any tangent vector can be
written as v= viE; = 26,(v)E; . 1-forms themselves may also be expressed using basis
forms: ¢ = Z §(E) 6. {or as linear functionals, (Z $(E;) 6i)(v) = d(v) }.

OK, so why is any of this important? It eventually enables us to calculate the
Gaussian curvature (K) of a surface in terms of local behavior of w; and 6/’s.

For Euclidean 3-space, we work with 2d surfaces. We prefer to use an “adaptive
frame” in which the first two bases (1 and 2) are on the surface and the third is normal
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to the surface, L . For the sphere, the order r,0,¢ is cyclically shifted to 1,2,3=06,¢ ,r
with only

0 1= 89 = rd6 and 6, =6, =rsin8d¢ forms being used.

The turning connections are then w1, = cosBd¢, we= wq3 =d0O , and

W o3 = -sinedd) = Wyr-

There is a major concept called “Riemann curvature” expressed with four indices:
Rabea (Or R'ie ). It is very important in 4d general relativity space-time. It can measure the
“extent to which the metric tensor is not locally isometric to that of Euclidean space” and
the “noncommutativity of the covariant derivative” and also “the non-holonomy of the”
Riemannian manifold.

But in a 3-d space, it can be expressed solely in terms of something smaller: the
2-index “Ricci” tensor R along with the metric tensor ga,. In 2-d space, it can be
expressed in terms of just the contracted Ricci scalar R = R%, (no index left, [16]). Actual
calculation for S? gives Riemann Ry 9 = r°sin®® =ggg R% 64 , 50 R% ¢y =sin’0 .

This form of the Riemann tensor has direct relationship to similar expressions
from abstract differential forms:

C. The “Curvature 2-form” Q is:

Q) = dw| + Wy A W™ = (1/2) Rio*Aa', or Qi(X,Y)e=(1/2) Rm(X,Y)e; . Eqn. 12.

Or in simpler abstract notation: Q =Dw = dw + WA\ w = dw +w?>.
[different sources may vary on whether a “* sign of + sign is used]. Wald’s
notation for curvature 2-form R,’ [eqn. 1] is the same as our Q.

For the simple 2d spherical surface, we either have w?=0/Aw orw A 0=0.
This is due to having only two variables 8 and ¢ to play with and w® =w?, = 0 [remember
that both w and Q are antisymmetric — no diagonal entries].

So, for 8% we are left with simply: Q' = dwj=sin6 d& A\ d¢ . Thatis, the
curvature form for S? only has two off diagonal entries: Qjand Q'; = - Q|j=-sin6d6 A\ d¢.

This form [egn. 12] may be derived by taking two consecutive exterior derivatives of a
vector: ddv =dd(e, V' ) > d*v=e, Q" , v’ whichis linearin v [6, MTW,
derivation not shown here].

A simpler approach is to just take d? (ej) for an orthonormal unit vector.
dzej=d(ekwkj) = dey/\ Uka + ekdw'j = ei(w'k/\w"j + dw',-) = eiQ'j.

Or, more abstractly: VVe=V (ew)= (Ve)w +tedw =e(w Aw + dw) =eQ [11].

Now, Q is stated in books to be = R 6*/\c’ and R'y= sin’6 for coordinate
bases. But w’s were defined for orthonormal bases (unit vectors).
[Many sources agree that Q' = dw',= sin6 d® A d¢ for S?, and we may also see this
from duals: dwq, = -K84 /A0, [1 p270] . That is:
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-sinBdB d¢ +cosb (ddp=0) = K[ rd® A rsin® dd = r* sind d6 A do ]
So — K=-1/r* or K= 1/r%. {the usual Gaussian curvature}.

Many sources say that R% 4, = sin®® without stating their convention. For orthonormal

bases the tensor R® 405 = 1/r,° = K — a quite different result. Then,

Q) = Riuc*Aa', or Q°,=(1/r,% )(8° =r,d8)(8° = r.sinBd¢ ) = sin6dd A\ dd =dw® . Eqn. 12.
It Works for the orthonormal convention.

For “Ricci” (coordinate bases) R; = Ry; is diagonal with S? values of:

Reo = 1 and Ry = sin®0, and the scalar R = g;R" = 2/r* =2K [17].
{Riemann over two tangent vectors X and Y together and for orthonormal bases ej}.
But our Euclidean space structural equation was dwj; = Z wi/\ wy which means that

Qij = 0. Why? — because we are studying an introductory low dimensional space which
lacks this type of interesting 2-form curvature.

Va:.ﬁ"}‘ R Va:'j-'S = Rpa."j’yvpa

corresponds to the following:

/ D x'constant

' x8 constant
Figure: Vector parallel transported two ways around the

same loop does not match up at the end if there is curvature

Vector V is first parallel transported A — C' — D, associated with V?.4,.
Then the same vector is taken A — B — D, associated with V°,,5. Curva-
ture causes the vectors at D to differ.

Figure 1. Riemann [Ref 19].

“The vanishing of the Riemann tensor is both a necessary and sufficient condition for
Euclidean flat space.”

The Three-Sphere, S® (HyperSphere) :

So, let’s increase the dimension to S® embedded in R*.
The 3-sphere in Cartesian coordinates is formed from x;2+x,>+x5> + x4° = R2.
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Or for angular coordinates, we have three angles on a unit sphere,
(say g ,8 ,¢ with R = 1) with metric:

df? = R? (dy? + sinpd6? + sin®y sin’6d¢? ) = diagonal g,,, dx"dx". The scale factor for
hy = siny sinB and hg = siny .

After grinding through all the I connection derivatives and contraction (not shown
here) , we get a Ricci Tensor R, which is also diagonal: Ry, =2, Ree = 23in2Lp , Roo
= 2siny sin’@ = 2 g,, {{R?%

The Ricci Tensor is proportional to the metric tensor.

The Ricci Scalar is R = 2+2+2 = 6.

The non-zero elements of the Riemann Tensor are also the coefficients of the metric
tensor. R‘“Gwe = sinzlp =Jee = (1/2)R99 , RLIJ¢L|J¢ = (1/2)R¢¢ =Re¢e¢ .

The 3-form volume is dV = R*(sin’y sinB )dy A d6 A d¢.

The Electromagnetic Vector Potential A:

Ais a “4-vector,” A = (,A). As a 1-form: A = Aq4(t,x) dx®. And Fog =Aga—Aap
[We assume here the MTW [6] g-metric signature (- +++) --(largely for more positive
terms — although my personal preference is generally for go, > 0]. Then the metric - +++
for g means that A,= gooA°=-A° =-¢ (!) As a 1-form, A = A dt+Adx+A,dy+Asdz.
The 4x4 antisymmetric electromagnetic tensor F  2-form can be produced simply by
one exterior derivative: “Faraday” = F = dA = -d¢ dt+ dA; dx + dA, dy + dA; dz because
terms like dxdx = 0. We may also write out terms as:

dA= (0, A,/ )dx" A dx'=(0,dx")\(Adx")

Now the coefficients A, are each scalar functions of t,x,y, and z so that dA, is a
4- term gradient, and the result is a lot of terms. Writing all that out and grouping similar
terms together yields terms like (0 Az/ 9 x- 0 A4/ 0 y) dx/\dy — a 2-form that can be
identified as a 3; part of B =V xA. In a 4x4 matrix this can be placed in row 1 (for dx) and
column 2 (for dy) The electric vector field comes from E = -V ¢ - 9 A/ 9 t, so terms like
(0 ¢/ 0 x+ 0 A4/ dt)dt/\dx stand for — E4 which can be placed in the 4x4 matrix at row 0
(for dt) and column 1 (for dx).

This agrees with the signs for Fqg in the preferred MTW text and Frankel texts
(top row has minus E field).

So, using the B or B 2-form, F =B + E/Adt and dF = dB + dE /\dt = ddA = 0.

{Wikipedia (for the Aharonov-Bohm Effect) says that curvature is iF = V AV
where the U(1) connection is V = d+iA . But the AB effect is seen exterior to a solenoid
where B=0 and F = 0 (there is no “curvature” there). The connection is similar to the
QED covariant derivative term (-ih™V - eA")¥. }

D. Cartan Structural Equations with subscripts and superscripts [Ref 18] :
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For curved space orthonormal frames {E i} with dual basis forms {6 % and
connections w', we again have the incremental frame rotations
dEx = wkE; (by definition of w -- notice how the sub and superscripts are now balanced
out). .
And, dx = d(x4, X, ...Xn) = &'E; with dual x; functions defined as x;(p)=p;.

Now Differentiate these equations: _ _ o
. d(dx) = d*x=0 = d(e’E,-) = Q(Eje‘) = E;d®’ +¢IE,-/\9J = _EJ-dGJ - 0N dE; =
do'E;-6' Aw’ Ej=(d&' - '\ wh)E;j=0,= d&/-6'A w=0.
So, d®’ = 8' A\ W'.  The First Structural Equation. Eqgn. 13a.

[in all these cases, the w upper and lower indices are supposed to be vertically aligned rather
than shifted sideways from each other - but Word can't do that] .

Similarly, d(dEx) = 0 = dwk E; - w kA dE; = dwhkEf wi' Aw’ AE; =
(dw‘k - wkz/\w Jz ) Ej ==0.

so, dwk = w/Aw . The Second Structural Equation. Eqn. 13b.

The “all low” orthonormal bases convention from O’Neil had: d&i=Z w ; A 6;. {e.g.,
dB; =d(sin® d¢ ) =-cosBdB dp = w 32/\0, = (-cos® dd )/\dB} ??7?

Also, dwj = Z wi/\ wy. {for the “second structural equation”}. This is also written as:
dw)= wi/A w' (orthonormal frames).

Now consider an R® “adapted frame” where E;, E; and 8', 87 are required to be
on the surface (symbol T ) but E3 is now normal (L ) to it. For the sphere case, S?, we
simply cyclically rotate the trio (r, 8 ,¢ ) 2> (8,9, r) =(i=1,2,3) where the angles are on the
surface and r is naturally perpendicular to it. The third dual is now gone, 8 = 0 because
it is a linear functional that operates on tangent vectors, v, which are parallel to the
surface: ©%(v) = v- E3 = 0.

dE=w/E; + wEx (with i,j,k cyclic). So, e.g., dE1=w+°E; + w,’Es. And for the
duals, d8' = 8?A w',, and d6? =8 ' Aw?,.

And 8°=0 = de’=0=0"Aw’ +°A\w >,

Re-applying the 2™ structural equations in the adapted frame gives special cases
with new names called the: “Gauss Equation” [18] : dw®= wAw 3> Eqn.14a,b.

and two “Codazzi equations:” dw®* = w?Aw;® and dw,®> = w' Aw 4>

Finally Curvature:

An introduction to Gaussian curvature begins with observing how much a
normal unit vector to a surface “falls” forward with movement on the surface. This is
extrinsically described (by something called the “shape operator, S.”

The Shape operator Sy(v) = -V U, where U is a unit normal to M [1]. This is
extrinsic geometry since a normal lies beyond the dimensions of a surface (embedding).
For an “adapted” frame, the third direction E; is that unit normal vector: Sy(v) = -V ,Es.

For our sphere, U = unit r = vector r/|r| = (x;U;)/r. Then VU = 1/r and Sy(v)= -v/r.
So S is simply multiplication by -1/r = -k.

If u= unit tangent, then
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Sp(u)- u =-1/r = k(u) for a “normal curvature” with respect to the u direction on the
surface. For S? all tangent directions give the same curvature.

In general, for principle directions e and e, on a surface, S(e1) = kie4, S(ez) =
koe> may be expressed as a diagonal matrix S¢4 = ky and S, = k,. Then Gaussian
curvature is the determinant of S: K = detS = kko.

Since V E; describes a frame base rotation along v, shape is also described by
w turning forms. S= w3E; + wa3Ey; Egn. 15a
and all the Cartan dual forms and connections apply.
Then we can show [1, p270] that: K61/ 0, = w3 A wa3 = -dwq,. Eqn. 15b
(kind of a 2" derivative of E4, Ey).
That is: S(E1) = -VE1E3 = -U)31(E1)E1 - (.1)32(E1)E2
and S(Ez) = -VE2E3 = -(A)31(E2)E1 - U)32(E2)E2
The determinant of the 2x2 matrix of these w terms is
detS = U)13(E1)(1)23(E2) - U)13(E2)(1)23(E1) = K.
But the 2-form on 2 frame bases (w13/\ w 23)(E+,E2) which also equals this determinant
expansion. And this also gives the Gauss equation for dw1 .
And, as a 2-form, the duals obey (81/\8,)(E1,E2) = 61(E+1)62(E2) + 0 =11 =1.

In 3d, for 2d surfaces, 6° = 0 and the Curvature 2-form Q = Dw =dw +w? will only
depend on the firstterm, Q ', = dw ', = K8' A\ 62

And for a sphere S?% (1/r%)(rd® A rsin6d¢)= sin@d6Adp =Q ', =dw ',

Also, Q% = dw? =-dw', . So Qis a 2x2 skew symmetric matrix of 2-forms [°.*,]
[The diagonal Q'; = Q% = 0]. The curvature of S? is a positive constant: K =1 [18].

The 2x2 Ricci curvature tensor is a somewhat different beast.

Ree = 1 and Ry = sin’8, and the scalar R = g;R" = 2/r* =2K . Ricci is symmetric and has
entries on the diagonal, while Q is anti-symmetric with zeros on the diagonal and non-
zero entries off of the diagonal.
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Additions: “Intrinsic geometry” uses math that can be expressed using a metric line-
element or “first fundamental form:” smooth curve lengths (dating back to Euler 1736),
areas, torsions, connections, Gaussian curvature or curvature tensors (e.g., Riemann
1854). “Extrinsic geometry” needs an immersion or embedding of a manifold in a space
of higher dimension. The “shape operator” for example uses normals to a surface
(needing a dimension perpendicular to the surface). There was supposed to be a
difference between

extrinsic curvature of objects embedded in a space and intrinsic curvature using lengths
of curves in a Riemannian manifold. But Gauss’ Theorema Egregium (Outrageous
Theorem) says that the same K pertains to both.

A “frame field” (is a set of n vector fields) as an orthonormal basis for a tangent space --
and has direct physical meaning. What are called “coordinate bases” are like partial
derivatives and are not unit vectors for frame fields.
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Consider a smooth curve. Zoom in on a point and look at its neighborhood. The exterior
derivative of a 0 form measures the difference between the zero forms evaluated at
points infinitesimally apart. As the points draw nearer and nearer, the difference
becomes more and more a differential. This physically measures the difference in flow
that exits one point and enters the other. If one were to add all these infinitesimal
differences across a curve, the interior regions cancel leaving the exterior difference
behind. For when the flux exits one end, it immediately enters the next.

Exterior derivative generalizes gradient of a scalar function, and Stoke’s theorem
generalizes the fundamental theorem of calculus (FTC).

If f(x) = dF/dx, dF = fdx, | dF = F = | fdx >F(b)-F(a) atends of alineatob,i.e.,, 0 =.
. Atx=aandb. FTC. fdxis a 1-form and F is a O-form ( just a function).

Stokes Theorem (1854) now: If dw is an n-form, | odw = § ;oW

Similarto | s(VxA)ndS = | ;s A-dr . Adris a 1-form.

The name exterior derivative because the integral of the "exterior derivative" leaves the
difference of the exterior behind. Loosely the word "integral" cancels "derivative" leaving
" exterior" behind...hence its name.

Word Option: & ,B=opt s, d=opt d A=opt j \=opt v [=opt b. u=m, 6 u, Q=z, and * for temperature
degrees (not Kelvins).
LaTeXvar___ =p, 9, @ and varsigma=¢ .



The Lie Derivative

Dave Peterson, 3/18/19 —6/22/19

A vector “Lie derivative,” L x Y, evaluates the change in a vector field, Y, subjected to a

flow defined by a separate vector field, X. The overall coordinate invariant concept of Lie
derivatives is more general than this and applies to any differential manifold for scalar functions
{f}, vector fields {X}, one-forms {w}, or tensor fields {T}. The concept dates back to 1931 but is
based on the earlier works of Sophus Lie near 1890. “X” as a contravariant “vector” is also a
differential operator on something: for example, vector X = X'( /0 x') = contravariant component
times a “coordinate basis.” One expression for the Lie derivative at a point p with respect to two
vector fields is called the commutator, £ x Y o) = [X,Y] (5) = (XY-YX)), and using it for
calculations is straightforward. But an equivalent form is in terms of a more traditional limit of
difference ratios that requires first finding integral curves for vector flows to move points and
tangents on a manifold. It is unusual in using two different mappings together: a displacement
map for points (say “q” » @(q) ) and a tangent vector map, ¢. , for returning a vector back to
location q [See Fig 1].

Y((ptq)
(Ptq*Y(q)

q)-lq*Y( (ptq) Y(q) (plq
q

Figure 1. Flow @ moves point q along a streamline of X
and can relocate vector Y. @, is a tangent mapping that
moves tangent vectors and can move Y(¢yq) back to its
starting point for comparison. [Lim Zheng Liang, Singapore].

OUTLINE:

Lie Derivative of a scalar function, Directional derivatives.

Lie Commutator [X, Y].

Lie Derivative of a vector field, PushForwards, PullBacks, forms.
Flow streamlines and integral curves

Background Material and definitions in Differential Geometry.
Applications of Lie Derivatives

References.
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Simplest Case: The Lie derivative of a scalar function, f: which is just the familiar
“directional derivative” at a point p -- the scalar value of a gradient vector projected on a
vector of a vector field: [survey of definitions]

[Ean. 11 L xf(p) = (L xf)(p) = X(f) = XIf] = X-Vf(p) =(X- V) f(p) = 9 xf =




X" 9, f(p)= (d/dt)(f(p+tX)|=0= 0 + ( f(P(t,p) )

[-- with a variety of different notations and conventions across sources]. If this Lie
derivative is zero, then its scalar function has the same value all along its streamlines or
“‘integral curves” (see function examples below). {f can be treated as a scalar function
or as a 0-form}.

Note that elementary introductions to directional derivatives often begin with
familiar “unit vector” “physical” bases (like u, or e, =i, j, k for ® *) combined with vector
values coefficients a,. So, in calculus, the directional derivative was presented as v-V f
= (v- V)f. Butin differential geometry, a preferred basis may instead be a tangent vector
basis like 0 x = 0/0 x (which are called “coordinate bases”) with vector
X=X (0/9x). Anexample is angle phi-base 9 ,=rsin@ e, for spherical polar
coordinates with unit vector bases. Or, in terms of the metric tensor, 9 4 = (v Jgo) €4
These 0 ,'s are more than basis names—they function as first order differential
operators.

A vector can be written in three different ways: A = a, e, =A" 3 , = A e" [Eqn. 2].
(with “Einstein convention” of summing over all repeating index values p = 1,2,3...
together). A" is called contravariant (with tangent vector bases) and A, is called
covariant on gradient coordinate curves: e = Vu, = dx" of size |1 /(v g, )| — usually
NOT unit vectors. The product of bases (3 ;)(dx)) = §; (=1, or 0 if i# j).

Example [Burke]: the derivative of f = x?+y? in the V direction
(0/0x+0/dy) {=(1i+1j)-V} isgiven by V[f] = (3 /0 x + 3 /3 y) (x*+y? ) =2x+2y.

So the funny notation v(f) or v[f] makes sense because it is an application from the left
that pre-empts having to formally take a gradient V.

As another example [Wik], if vector field X = sinx d - y? 9 « and scalar field
f=x*—siny, then £ xf= X df = (sinx 9 ; -y 3 ,)(2xdx-cosydy) = -sinx cosy -2xy®. [using
d x dx = 1 -- contravariant base of a covalent base is & ;. “d” is “exterior derivative,” and
dx is a “1-form” and df is somewhat like a gradient, Vf].

For the scalar function case, the terms Lie derivative, covariant derivative, and
directional derivative all coincide. For a scalar function all by itself, covariant
differentiation is just partial differentiation: f..= 0.f .

The Commutator, [X,Y] (this will be used for L x Y below):

Since a vector field X is a differential operator that can operate on a function to
yield another function, a second vector field Y can operate on that function. So,
Y{X[fI} = dv(dxf) [MTW]. In general, a commutator of such double applications will
not commute. In coordinate-based calculation (notation ,, = derivative wrt x* ):
X,Y1F=X"3/ax*(YP 0f/axP)-Y 0/ax*(XP aflaxP) =[(XY®o—-YXP,)(D/0xP) .

The presence of the (4 /3 x* ) basis says that this commutator [X,Y] is itself a
contravariant vector field. {see definitions in Background section}.



If vectors X and Y are themselves just simple contravariant bases (or covariant
dual bases), then they do commute: [3 /9 x%, 6/ xP ]= 0 and [eq, es] =0. [MTW].

Later on, we will consider a single basis d = 0 /0 t for transport along a tangent
with parameter t such as time (streamline flow).

Many texts describe how to picture such commutators as approximate
parallelograms that don’t quite close up but have a gap = [X,Y] when vectors do not
commute. That is, start at a point p, and draw vector arrows X(p,) up to a new p; and
Y(po) across to a new point p,. Then draw more side arrows again from these points:
X(p1) and Y(p2). Do the final vector tips match up or not?

Roger Penrose says that the Lie bracket measures the gap in an incomplete
quadrilateral of arrows made alternately from eX and €Y vectors (epsilon is a tiny number
resulting in a tiny length). He adds that L xY states how the vector field Y actually
changes as contrasted with just having it “dragged along” by X [Penrose]. If [X,Y] =0,
a function or “flow” phi ¢; pushes a point along X; and flow theta 6, could push a point in
the Y direction. Then for a point p, 6. ¢ 6; ¢s(p) = p — a curvy parallelogram with sides
determined by small s and t and having no gap. But, if [X,Y] # 0, then the parallelogram
won’t close and will have a gap ~ st [X,Y](p) [Frankel].

{Elementary examples of torsion include the helix curve and the “Archimedes” screw
surface}.

If the commutator was written for 3-vectors in §R3, then the vector [X,Y] =
(X- V)Y — (Y- V)X. When this equation holds, the Lie derivative is said to be “torsion
free.”

The Lie derivative of a vector field Y with respect to a vector field X at a
point p can be defined as:
L xY(p) =[X,YI(p) = 9xY(p) - 9 vX(p), [Wik] [Eqgn. 3].

where the commutator [X,Y] is called a “Lie bracket” and is itself a vector field.
For notation, the capital X in 3 x means (X! 9 ;) for all its coordinates. Initially, this
commutator-bracket definition looks new and strange, so lets postpone it momentarily
until we can derive it in a way that agrees with our previous understandings and intuition
about derivatives.

In ordinary calculus, we define a derivative as a limit of difference ratios
f’(x) = df/dx = Limay_o {Af/Ax = [f(x+Ax)-f(x)]/ Ax }.
We want something similar to this.

For the Lie derivative we can state as difference ratios [Frankel] :
LxY =1imo[Yox - o Vit =1im i o[d Yo - Vit [Eqgn. 4]

We move the vectors Y in a special way and have to compare differences at a
common point like x = p(t=0). In Figure 1 above, we can pick the common point either
as p or as ¢(x,t) slightly ahead of p. Here the first difference in equation 4 is at the point
x + € pushed slightly to the right, and the second expression is at x,=x(t=0). In the limit,



both expressions are equivalent. We haven’t said yet what ¢ or ¢.. mean. So, to go
further, we first need to present some background and introduce new symbols to
develop the Lie derivative from this definition.

{Some of this background is also given in the later section “Some Definitions.”}

Equation 4 is itself an expansion of another definition L xY, = (d/dt)|=o (P-t+ )Y ot(p)
at point @(t,p). @ (-1, @(t,p)) = @(-t+t, p) = @(0,p) = p. @.. is a “push-forward” that happens
to be pushing backwards —t.

Mappings and Push-Forward Tangent Mappings:

Tangent vectors are defined by components v* =dx%dt (a = 1,2,...m, the
dimension of M if we have a mapping from manifold M to N; coordinates x in M and y in
N). A corresponding pushed ahead tangent vector in N is

dyP/dt = (3 yP/ 6 x%) (dx%/dt) where o and B are indices over the dimensions of the
manifolds. The middle term linear transformation is called the “Jacobian” or Jacobian
matrix J = Jgg . If N = M so that both manifolds have the same dimension, then the
middle term is a square matrix (with a square determinant also called the Jacobian
determinant). Jqg is a “tangent map” Fx from v to Fx(v) {using mapping label “F”
here because we are referring to coordinates rather than parameterized flows. {The
asterisk * (unless placed high *) denotes transport of tangent vectors rather than just
movement of points}.

Note that a push-forward of a vector is different and obeys:

dx>(0F%dx) dlon®. Butfor F: R"™> R", etain Nis justxory (orz).

Math books emphasize that a tangent vector is “an equivalence class of curves” [Burke]
and so also are basis vectors like 0= d/9 x.

Example 1 F: R*> R? (x,y)>F(x,y) = (f1,f2)= (xX*- y?, 2xy ) [O’Neill p.36]
(called the “realification of the complex square function,” and corresponds
to a vector field flow V = 2 dy )
{e.g., p =(a,b) =(3,1)> p’=(8,6), and (0,0)> (0,0)}.

The mapping F is a non-linear transformation: matrix M: f; = Mj x;.
Let vector v = (v4,v2), and J = Jacobian transformation. Unit base vectors i and j.
Fx (v) = F(p+tv)'(0) = v- (V Ty, V) = (v4i+vy)) (2xi-2yj,2yi+2X))= 2 (XV1-YV2, V1y+XV2).
Initial velocity df; /dt = J (dx! /dt)= (9 /4 X))(dX! /dt) [as 2 by 1 column vectors]

i.e., B'=(df,/dt) = 2x(dx/dt) - 2y(dy/dt), and (dfa/dt) = 2y(dx/dt) + 2x(dy/dt) .

J can be called “dF.”

So, for small increments
F(a+eq, bt+ey)|p = F(p)+Jdx = F(a,b) + (2a€4 -2be, , 2beq + 2ae; ).
{check: F(1+0.01, 1+0.01) = F(1,1) + 0.01(2-2, 2+2) ~ 2.04 vs. Direct F = 2.0402 }.

{Note: Taylor approximations aren’t relevant because they apply to scalar functions.
Here we do need the Jacobian, J }.

A transformation “T” is linear if: T(cv) = cT(v) and T(v+w) = T(v) + T(w).
The function for incremental change dF = Jdx (or dF = Jde) is linear because if we let
dx—> dx+dx and dy - dy+0y, then we do get dF’ = Jdx + Jox ,



and for cdx we have dF’= cJdx.

So, in the close vicinity of a given point, p = (a,b), we have a linear transformation
away from that point and can apply linear algebra.

The Jacobian matrix in this example is [2x -2y; 2y + 2x] and has det J = 4(x2+y2) which is
positive except for the origin, (0,0) , i.e., on %2\ {(0,0)}. The inverse matrix then exists
and is

J'= (1[203+y?)] [x +y; -y x], and dx=J" df .

So, is F a diffeomorphism? Well, not quite because it is not one-to-one
(bijection). That is, F(1,0) = F(-1,0) = (1,0); two points map to one point. Actually it is a
whole family of parabolas: F(+ x, 0) = (x* ,0), and a bit of y shifts the parabola up or
down. But, we can still discuss “local diffeomorophisms” at infinitesimally small distances
from a reference point p.

In retrospect, the flow streamlines in this case come from a simple vector field
similar to the common circular flow V=0¢ =0/06 =y d, -xd,. Butthis flow is faster
and could be called V =2 9 5. The time parameter integral streamline curves turn out to
be F;= (r’cos?t-r’sin’, 2r’sintcost) = (rPcos2t, r’sin2t) that goes twice around a circle.
[END].

Example 2 F: R> > R®, Plane to Spherical Cap: Project a circular area on a plane

up to an upper half-sphere. That is, find a map (F) and its Tangent Mapping (F.) from a
u-v plane in R? to a unit radius spherical cap with coordinates x,y,z in R*:

Let u and v be orthogonal axes for R? used within a unit radius circular domain on
the plane from a center point p, = (0,0). Suppose we consider coordinate map is
F(u,v)=> (x,y,z) to the spherical surface directly above the plane. So (u,v) 2 (u, v, z)
where z =(1- u% v?) *.

Examine a sample point in the plane at p = (0.5, 0.5) so thatz=0.707 . That s,
q = F(p) = (0.5, 0.5, 0.707) in R®.

Let the initial partial velocities in the u and v direction of the plane be unity so that
we look at a tangent vector V, = (1, 1) and push this forward to the cap-surface via a
tangent map F.(V). What are the partial speeds x, (holding v constant) and x, (holding u
constant) on the cap?

We can have the tangent map on S? be derived from a straight line curve a(t)
from (0,0) to a great circle curve B(t) on S%. Use 9 z/ 4 u = -u/z — speeding forward in u
and v makes z-speed move downwards.

B (t) =F.(a’(t)) = F.(V) =V[F] where Bj(t) = Z( 0 Fi/ 0 X)(p) times base units at F(p)
— namely i,j,k natural or unit vectors. OR, B’(t) = J o’(t) where J is the Jacobian Matrix =
[1,0,-u/z; 0, 1, -v/z] times a column matrix [i; j; k] . So an initial u unit vector in R? will
yield (i — 0.707 k) at point q. And a v unit vector will yield (j — 0.707k). So V, =(1i+1j) >
(i+j -1.4 k) at point q. The absolute value speed goes from the original v 2 to speed 4 on
S? Itis ok to have a faster speed since we mapped from a flat surface to a spherical
surface having longer arc lengths.

Alternatively, we could have used a “geographical patch” for Earth coordinates
with equator at north-south angle 6 = 0 and longitude lines for ¢ [-TT, + TT]. Then
x(u,v) = F(¢, 8) = (x,y,z) = (r cos 6 cos¢ , r cosb siné , r sinB) [e.g., O’Neil p140].
Then partial speeds are F,= x,(u,v) = r(-cosBsin¢ , cos8 cosé , 0), so |F,| =rcosb .
And F,= Fy = r(-sinBcos¢, -sind sing, cose), |F,| = ro"*



Here, theta-hat is a unit vector upwards. The view here is for uniform angular speeds for
0 and ¢ angles on a sphere.
The previous example was uniform radial speeds for u and v.

Example 3 . [Benn, p129] M=R? > N = R*, with mapping

p=(x.y)= (f',F,P)= (¢, xy+1.y).

There are several approaches to pushing a vector V=(v',v?) to new tangent
vectors in N (note upper case for contravariant tangent vectors). One is just working out
the Jacobian matrix [ 4 f'/ 9 X! ] for two rows of j :(0 /3 x, 0/ y) and three columns of i
forf', f2 f3. The “J” matrix for row 1 is (2x, y, 0) and row 2 is (0, x, 1). Multiply by row
(v',v?) from the left yielding the answer: Dyf(p) = (2v'x, xv*+yv', v?) — a new 3-vector.

Another is to find the directional derivative usinga 3d V- Vf=
(v',v3,0) - 3d V gradient on function f. This is equivalent to the Jacobian J above.

The original definition of the directional derivative of a function, f, is:
Dvf(p) = Limy o [(f(p+hV)-f(p) )/h]
The f(p+hV) portion = ((x+hv')?, (y+hv?)(x+hv')+1, (y+hv?)).
Expanding and subtracting f(p) and chopping off h’s (and ignoring any tiny h?’s) gives the
same result as above.

In the following, it might help to keep symbol names somewhat consistent. As a
convention, we might prefer to use the symbol “F” above for mapping using coordinates
versus ¢ = ¢(t) = ¢; for mappings using time flows along streamlines (¢; moves a point x
forward by t seconds). {But, different sources use different conventions}.

Ingeneral, let: {tEITC R}, y: 1> M--¢p > N--f> R,

Parameter t& real-interval I (not necessarily time). M and N are differential manifolds
possibly of different dimensions, but often here N=M. The symbols ¢ or F refer to a
smooth mapping of points x from M to y& N, and scalar function f is any function from
N to real numbers (or, M to R). Associated with a linear transformation mapping ¢ are
two maps: the “Push Forward” ¢= or ¢. for tangent vectors in M at point p to tangent
vectors in N at p’ . The push-forward for F essentially looks at changes to F = (fy, f2...)
using the Jacobian, dF =Jdx for tangent-mappings. We might think of an integral curve
¢ as similar to d¢ = (d¢/dt)dt on tangent vectors along streamlines.

Consider a curve y (t) in M. ¢. is a linear transformation mapping of a tangent
vector in M to another corresponding tangent vector in N. For short parameter
increments s and t, ¢.(s+t) = (¢.s) + (¢.t). A curve y can be pushed forward by
composition “c ”: y, = ¢ oy . Summarizing, X and Y are vector fields with ¢(p) and y(p)
as respective integral curves starting at point p, and ¢; and y; the associated

diffeomorphism [Benn].

To make this more conventionally clear, consider the parameterized curve
gamma =y =x°(t) = (x4(t), x2(t), ...) and “push it ahead” with a mapping ¢ from M > N to
a new relocated curve labeled by y. = yf(t) = y? (x%(t)) — just a composition. So, y. =¢o y



Pullbacks *:

[Frankel] For a function fonye N> R, (F*f)(x) = (f o F)(x) = f(y(x)) where F* is
called a “pullback” and simply means that the function expressed as f(y) is referenced
back to xe M: f(y(x)).

{“Asterisk-high” F* means reference backwards, Fxor F. means push forward from
manifold M to N}.

A vector V acting on the pull-back of a function f is V(F*f) = V[f(y(x))] = (F+V)(f) = df(F*V).
{For 1-forms w acting on vectors, (F*'w )(v) = w (F.v), (p,V)>F.,, DvF(p) = dF(p)V .}
For the case of a covariant tensor (a p-form, ap,, the general pull-back is expressed as:
F*ap(v1, Va,v3, ... Vp) = ap(F.vy, ..., FLvp) [Frankel] — a distributed push-forward of p
tangent vectors.

These concepts will carry over to flows, ¢:.

Comment Push forward (tangent map) &, Pull Back: F* pulls back forms w.

Forms w are functions on vectors V or v, F, pushes v’s. (Contravariant) Vectors are
operators on functions f.

Useful Equations: For a Mapping F from manifold M to N, let y or w be
one-forms in N. X or V are vector fields. y is a parameterized curve. ° is composition of
functions. x' are variables in manifold M, and n' or y'are coordinates in manifold N (y’s
are overused and can be confusing). p is a pointin M. {u is a patch variable like x}.

Frg (V) =g (F. V) = (g - F)(u) =y r (dFy (V) {F.~dF,}

(F*V) f=[(Fe vy ).(0)] f=V(f° F) =y, f°F. [Bishop p55] for curvey,y.0 =V.
V(F*f) = VIf(y(x))] = (F. V)(f) = df(F.V) ,

For Components: F, X, = X(3 /9 X)F'(3/0n')lq=rp) - [Benn, p 148]

Or for covariant base: dx/(F., Xp) = X', (9 F/ 0 X)) = (0 F/ 8 X)) dX'(Xp)

For w =w; dX, F*w = (w'e F) (4 F/d x)dx' . [Benn p 149]

Jacobian J: dyP/dt = (9 yP/ 9 x7) (dx“/dt). { v’ = J v}. *wa(p) = (3 y*/ 3 x%) we(p’)
{Integral Curves} dg(t)/dt =V(d(t)), or dx'(t)/dt=Vi(x)}.

Flows: (Streamlines. Address the Lie derivative as difference ratios). The Lie
derivative could be called a “flow” derivative.

Consider a given vector field X to be generated by a “flow” such as the velocity
field, vi(x) = dx'/dt, analogous to a streamline flow of water as a function of time, v, =
doyp)/dt| =0 [Frankel] . X could be the wind vector field above an ocean. Another field Y
can also be generated from its own scalar function, y(t) . At parametert = 0, we have
tangent vector X along its streamline and vector Y(x) along its streamlines. x= ¢;t is a
point t seconds along the streamline curve of X. Let the vector field Y have direction at
angles away from X and also be carried along with the flow from some initial point p = x,
to a later point x(t) =¢(t)x,. For “curvy” flows, the angle of Y with respect to X may be
quite different from point to point. An integral curve is a parameterized trajectory or
streamline through a given point.




In words, what the “difference ratios” expression for the Lie derivative is saying
(equation 4 above) is: For a vector Y at x, = p, evaluate a new Y at p’=x(t) at a point t
seconds along the X streamline using ¢:. Then use “tangent-mapping” to map new vector
Y backwards using ¢.. to the original point p and compare it to the original Y.

{The essence of this can also be stated in a variety of different ways” At new
reference point p’ = ¢«(p), find Y there and subtract from it the original Yp tangent-
mapped to p’ using push forward: ¢ . ~ d¢;. Notice that eqgn 4 has these two equivalent
expressions. And then two other forms can be stated using pull-backs (and a variety of
texts reference one or two of these four forms) }.

Finding Integral curves:

Find a mapping ¢: t€ R>%? such that dé(t)/dt = V(¢(t)), and p=¢(0) = x, for a
vector field with components V = (vy, Vo) on R%. ¢ = (1, f2) or (1, d2) or (x(t), y(t))
functions of parameter t (different sources have different names—but it is easiest to think
of ¢ =(x'(t), X(t), ...x™(t) ). Then the first order differential equations look like:

dx'(t)/dt = V'(x')

treating the left side as a function of t but right side as a function of x.

Case 1: For a constant Field Let v4=1, v, = 2, ¢(t) = (0,0) + | (1,2)dt = (1t, 2t). And
do(t)/dt = [dd'/dt, ddp?/dt] = (1,2). The “streamlines” here are straight lines of slope 2 one
of which passes through the origin. {e.g., “ http://planning.cs.uiuc.edu/node382.html }.

Case 2: Linear Velocity Field, X =-20-10 = (-2, -1): So, dfi/dt= - 2f, dfy/dt = - f,.
So, ¢(t) = (0,0) + (exp(-2t), exp(-1t) ).

Here, $(0) = (1,1). d¢/dt|, = (-2, -1) so the initial slope is 5. For tiny times, ¢(€) =
(1-2¢, 1-1¢).

Case 3:

Suppose vector field X = (x 0y —y d ) =(-y, x)- ( 0 x, 0 y) starting at p = (a,b).
Note that for Polar coordinates (r, 8 ), position r =i x+jy =ircos 6 +jrsin 6 and
Theta 6 =tan™(y/x). Suppose |r| = constant = unity. V 0 =-iy +j x = (-y,x) =e,.
So, field X =e, = 0 , positive CCW rotation on the unit.
Solve integral curves such that: 9 ¢(p)/ 0t = X(d(p)) {X and ¢, describe a rotation}.
Let & = (¢4, ¢2) obey o ¢4/ 0t=-d, and 9 ¢/ dt=+d, [Benn p158].
{or more clearly, dx(t)/dt = -y and dy(t)/dt = x}. For operator D = d /0 t, we have the
coupled equations D¢+ = -¢, and D¢, = +¢1.
Applying a second derivative operator : D?$; = -Dd, = -¢; and D?p, = Do, = -, for the
form (D*+1)¢; = 0. Both sin t and cos t are solutions of this equation so that both ¢ and
¢> have solutions of the form ¢ = c4sin t+c,cos t.

Recall that the rotation matrix has (a’;b’) = [cos 0, sin 6 ; -sin 6 ,cos 0 ](a;b).
p’ = Mp. Rotating a position vector p CCW is the same as rotating axes backwards
ClockWise, CW.
Write: (a’;b’)=(acosf +bsinf ,-asinf +bcosf ).
Let 0 grow with time, 6 =t.

So, the diffeomorphism ¢; has [e.g., Benn, p 153]:



p=(a,b)> (a’,b’)= ¢(a,b)=(acost+bsint, bcost-asint).

With respect to the above coupled equations, this solution implies t> -t !

This will be used in a later problem [i.e., Find the Lie derivative for the above X
field and a given Y, Example 2 below], d¢/dt|, = (-b,a), so the initial slope is —a/b.

Case 4 Example: “Consider the quadratic vector field on R,” [Frankel exercise p 35]
V(x) = x*d/dx. From the requirement dd(t)/dt = V(¢(t)) = Vd(x) treated as a derivative
of x for ¢ = x(t). Solve dx/dt = x* with x(0) = p =x,. The time derivative on the left is
replaced with an operation by V on the right!

Integrate | dx/x*= | dt with limits O to t and p to p(t). Result is ¢ = x(t) = [Xo/(1-X.t)],

and ¢ =dx(t)/dt = V(x(t)) = x(t)* = [xo/(1-X,t)]>. And this “push forward” satisfies dx(t)/dt

= V(x(t)). Thatis, (d/dt)[xo/[1-Xot] ) = XoT/(1-Xot)* = VO(X)=(X* 3 ) (X)=X> 3 x(}/[1-Xt])|, -
{For small t and p, ¢:(p=0)=tV, and here ¢~ x,*+X,t, but V=x? so yes ~ tV }.
{Note, for example, Claim by [Burke p. 124] }.

Case 5: Flow Field [Burke p 94]

LetV=yd,—(y+x)dyand ¢ = (9", $°). Then 0 ¢'/dt=¢> 0 ¢%dt=-[dp° + ¢'].

{or more clearly, dx(t)/dt = y and dyi(t)/dt = -[y+x] }. Take another time derivative 0/t
of the first equation and plug it into the second equation.

Then 02"/0t+ 6¢"/ot+¢'=0,0r (D*+D" + 1)¢" = 0. From mechanics, “The integral
curves are spirals representing damped harmonic motion.”

LxY=[X,Y]:

Now, to derive the commutator form [ , ] for the Lie derivative:
L xY is a vector operator, so let it operate on any scalar function f(x) over a “small”
(linear) neighborhood of x. Let X(f) be a differentiable function go(x) and f(¢,x) =
f(x)+tgi(x) so that composition (fo ¢) =+t g(x) where g = g(t,x). [Eqgn. 5].

This is like a Taylor’s series expansion: f o ¢, = f + tXf + t#2 X*f + ... and just
keep the first two terms for linearity {the existence of function g(t,x) is called
“‘Hadamard’s Lemma” [Frankel, p126].}

Now apply Eqn. 4 to scalar function, f, from M to R (and let manifold N = M) .
From equation 4, [L xY](f) = lim t50 (T/)[Yox = dee Y(F) -
But, [ Y,](F) = Yx(f o d) = df(¢. Yy) = Y«(¢*f) {and we don’t have to explicitly use the
“pull-back ¢*}. {some texts emphasize the use of pullback}. So, using Eqn. 5, we now
have:

[L£ xY](f) = lim t50 (1)[Yox (F) -Yx( fo &)l = 1im ¢ o ()[Y g (F) -Yu( f+ tgo)] =
lim ¢ o (/[ Yox (F) -Yx( )] - lim 0 Yx(go)] =
XY () = Yx(9o) = XLY(F)- YX[X(f)], So, L xY =[X,Y], Egn 3 again.

A variety of these derivations can be found elsewhere [e.g., Burke].

In local coordinates, the commutator can be re-written as:
X,Y]'=XY-YX= Z{X{(aY7ax)-Y (dX/dx)}. [Eqn.S6].

{Again, the expression XY means that X is an operator on Y where
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X =X(0/3x)=X 9. X are contravariant components and 3 /9 X is the
coordinate basis of the vector X}.

Note, of course, that Lie derivative [X,Y] bears no resemblance to a covariant
derivative:

V.,Y=Ve, (0 yi/ o X )+ vjyi Fkij €k,
where ey is a basis like 4 /4 x* and I is a Christoffel “connection” — a correction term for
how basis vectors rotate under translation (like in a curvilinear coordinate system).] The
Lie derivative and Lie Bracket are “independent of any particular choice of connection.”
[Penrose].

That is, Lie derivatives don't use the connection at all. They operate on the notion
of evaluating a vector field along an integral curve of another vector field, this is
inherently different to the notion of parallel transport [stackexchange].

“Look at what happens when you take the commutator of integral curves, you get the Lie
derivative. On the other hand if you take the commutator of parallel transport, you get
the curvature tensor.”

The Lie derivative depends, not only on the value of the vector at the point p, but also
depends on the value of the vector in the neighborhood of p, and thus is not a
conventional directional derivative {Quora}. A problem with simple directional derivatives
on a curved manifold is that the resulting vector V V will often not “lie in any tangent
space to the manifold.” But Lie derivatives using [W,V] will always lie in the tangent
space because the off-surface components cancel out. The alternative “covariant
derivative” using connections will also always lie in the tangent space.

Examples of Calculating the Lie derivative £ x Y, = [X,Y] (5

Ex. 6 Easy Example: Suppose we are given vector field X = (yd x-xdy)and Y = X2 0
Simply plug into the commutator [X,Y] = (X)(Y) - (Y)(X). Some terms will cancel out
leaving just the answer [X,Y] = 2xy 9 , + x>0 y - another contra-variant vector.

{Note that we treat Y=x?4 , as a product of x* times a base 9 4,
soyd,Y=yx?0,0,+2xyd, , and all the double s will always cancel out}.

Ex. 7 Example: Find the Lie derivative for X =(xd -y dy)
[Benn,p153] =+4 , in polar coordinates. Let another field Y = (x* 9 ,+ xy 9 ) P =(Xy).
{This is the hardest but most illustrative problem so far}.

This X field is like a “pin-wheel” rotated in the CW direction say by little rockets (tangent
vectors). Note that this simple case of a rotating point at fixed radius is d¢/dt = X(¢(t))
with X =+ 9 , . So d¢/dt = +d¢/d6 implies t = 8+c, and we can set c = 0. So t or time is
essentially an angle 8.  The easy commutator calculation [X,Y] = - xy d x — y? 9 y is seen
to be another vector.

The base vectors will be altered by the flow field: 9 /o x* > d0/d x*+ X", 9/ x*
[Burke, p124]. Applied here gives 0> 0,+10, (andalso 0,> 0,—10). Thisis
intuitively obvious fora o , circular flow of water adding another y direction vector to x
and another —x direction vector to y. This is a flow change from field X rather than a
transformation from mapping function F.
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BUT, we also want to do it the other way too --- using limits and integral curves:
LxY =1imo[¢ Yo - Yilit [See the arrows shown in Figure 1 above].

We first calculate integral curves of the X flow with the streamline mapping
function ¢; . The Y, evaluates Y at a future point in time t, and the ¢ is a tangent map
(sometimes called d¢™") pushing the tangent vector back to its original point, p, for
comparison.

The field X here happens to be minus that of our previous “Case 3” above. Fora
starting point at ¢(0) =p =(a,b)=(a d x,b 0 ), then
»=(9",¢%)=(acost-bsint, bcost+asint); _ “Equation 7_d¢.”
{this is the correct equation for positive time flow, t > 0}
This is an example of X generating a 1-parameter affine group and is just a rotation
matrix for rotation of axes by angle —t.

If ¢; of point p = (px, Py) 2 9 = (ax,Qy), dd/dt = (-a sin t- b cos t, -b sin t + a cos t) which is
seen to be (-qy, +qx) or {just like X itself = (-y, x)=(d x, 0 y). }

In terms of coordinates (d 4, 0 ,): (a,b) forY = (x%, xy). Plug these a,b’s into Eqn. 7_¢

to get moved ahead coordinates (a’, b’) for Y. Differentiate d/dt( ¢: ) to get the
tangent push ahead (or back) ¢ _. using —t for the inverse. [Benn, p153, 165].
If we have successive applications of small time flows, then the resulting (x',y’) from
applying egn 7 is input into eqn 7 again (x,y’)> (a’, b’) —e.g., a’=old (acos t—b sin t). If
thepext flow is —t, then the next application will be (x”,y”) = the original (x,y) [using sin? +
cos” = 1].
So the new (a’,b’) go into this new equation with the result ¢ _.Y4x = (-Xy, x?) (again
using cos?t+sin? = 1). This might have been expected since the driving vector field X =
(y, -x) -- reversed from the coordinates of p = (x,y).

Proceeding through the details of calculating the Lie derivative by limits:

A first step is to use the useful coordinate formula given previously:

FoXp = X(0/0X)F(0/0n")|q=r - [Benn, p 148]. |

This looks like the push forward begins with the operator X, but the X' could be
placed at the end. What matters formally is the usual Jacobian [ ¢/ 3 x' ] for push
forward and ¢ = (¢', ¢?). We insert Y'=x* 3, and Y? = xy 9, in place of the X' ‘s. Since
our spaces are Euclidean, the new basis of N is still the old basis of M, thatis (d/dn)is
just (0/9x)= 0«

So, step one is writing the Jacobian and realizing that it no longer needs to be
explicit: [ Benn p 153].

0.5 = X2 (PH(0x0")(P) 0 x + (9 x9°)(P) 9 yHop) + Xo¥pl( 3 y®)(P) 9 x + (340 *)(P) 0 Mo -

L xY =lim t"{(cos t-1)[x* 3 x+xy 3 ,] -sin[xy 3 x+y* 3, [}. {the y* term is the tricky part}.
Answeris LxY =-xy d,—y* d,. [i.e., (sint)/t > 1).
[and the commutator [X,Y] is a much easier calculation].

A different elaborate step-by-step approach is developed in a text by Burke
[Burke p. 164]. This selects a simplest reference point p = (0, 0) in R2 and examines
small x, y values near that zero (i.e., effectively first-order approximations). This is a
derivation of the commutator from limits of flows: £ xY = [XY-YX].
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When applied to the current problem above (tiny-circles about the origin), it yields the
same Lie bracket answer as before.

Expressions for (L xY)

(LxY)p=1limo[Yp- (0o Y)p Vt=1im o[(¢ Y)Y, /t
{An important nuance or correction to the above: (£ xY), = lim t50 [Yp-(®e (Y(d+(p))) I/t }
about the points where Y is evaluated [Felice, p 63].

[X,Y]x = (d/dt)( (DXLIJ t)-1 Y Y (x) ) |t=0 or L XYP = (d/dt)|t=0 ((p-t* )Yq)t(P)
(£ xY), = (d/dt)(d* Y)|eo (using Pullback) = ~(d/dt)deY (X)|o.=0

Example: Lie derivative of a function, f (again) [Felice].
(£ xf)p = (d/dt)(d* Do = ~(d/ct)dpef(X)|p=0=-d/dt [fo ¢ = fo b = F(¢.)]
= +d/dt(f(yp(-t))= dy/dt f = X(p)f = X(f),. Which is again just the directional derivative.

Derived Properties of the Lie Derivative:

Lyxf=Xt , Lx($)=X()=X"0q0.

Lx(0/0x)= -Lij50X=(0/dy)??or minus -?

LG (010X)=[(a/1dx),(a/3x)]=0

[Lx,Ly]l=Lxy -

Lx(fg) = (Lxf)g +f Lx g, and Lx(fY)=(Lx)Y+H LxY .

Lxww=Lx +Ly.

[£x,d]=0, Lxd=d Lx (d=exterior derivative).

Lxw = ixdw + d(ixw) {Cartan formula for exterior forms —
see “contractions,” ix, in the Definitions section}.

dLx w= Lx(dw). {one form fields}

The Lie derivative also applies to a 1-form field

The concept is: “Lie-derivative = Lim(value pulled back - value already there”
[Burke]. For a 1-parameter transformation ®e: M > M; point g q; the Lie derivative
ofa 1-form w is = Lime,, (®" - w(qe) - w(q) )/e with an asterisk superscript for pull-
backs. This resembles using V* for dual vectors of V. In general, a mapping ¢* takes p-
forms on N to p-forms on M (the opposite direction from the ¢. mapping for tangent
vectors); but here we are only considering p = 1 or 0 forms.

A 0-form is just a function, f = f(y?). f*=fod or f*(x* )=f(yP(x*)).

[Gibbons] 0 /0 x*=(dy*ax¥)afoy?, ¢*w =*w , a moved object.
*wa(p) = (0 y* 9 x°) wp(p’) -- using the Jacobian, J, transformation again.
An exterior derivative will commute with pullback: d(¢*w) = ¢*(dw).

Ex. 8 Example of Lie derivative calculation for one-forms: [math.stackexchange]
LetX=adg and w = 1-form sin6 d6 /A d¢
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and mapping Wt a;0 (6,9)= (6 +at, ¢),
£ xw = (d/dt)]o { W ¢ 206 *(sin@ dBAdd ) =sin(6+at)d6 A do }=
a cos(0 +at)|io d6/A\d¢ = a cos 6d6 A\ dd. (answer).

Some Definitions and Background Material:

Notation: There is much variation and little standard convention in symbols used in
Differential Geometry. But here is a possible sample:

Curves: a, B,y Vector fields: V, X, Y, W.
Mappings: F, G, (others use ¢, y) Functions: f, g

1-Forms: y, o, w 2-Forms n, oA yw=0y
Points P, 9, Xo Bases: dxj(U;) =& ;.

M Coordinates F: M> N, X CoordinatesinN:y,n, x 4, y

Vector V=3vUi=2Vv'd;=3v' 9/9X.
1-1 correspondence on R*: Zfidx; « ZfiU; < fsdx;dxo+fodxsdx,+fidxzdxs. {star,*,+}

A curve is a differentiable or “smooth” function y : I >M from an open interval
into a manifold M. Parameterizations of curves might select an interval [0,1] or [0, 21T ]
on the real line R', but any real interval is allowed. For example, the helix curve might
have a parameter t € R over all reals: y(t) = (x(t), y(t), z(t) ) = (acost, asint, bt).

A speed of y(t) is y'(t) = (dy(t)/dt, dyo(t)/dt, dys(t)/dt) or (d/dt)(x(t), y(t), z(t) ).

A tangent vector is the vector speed of some curve for some parameter (e.g., t for time).
Unlike elementary Euclidean ‘vectors,’ it has two parts: its point of application p and its
vector part v. Other names for tangent vector are just “tangent” and “contravariant
vector.” The space of tangent vectors at point p is called T,.

Covariant versus Contravariant: definition .. any set of quantities
transforming according to the following form:
y'= (0 x 19 x*)* =Jacobian- x* is called contravariant. x 'is a function of the x*s [Adler,
GRT 1965]. Other notation may be: v' = (dx/dt)= ( 3 x/ 3 x)(dx"/dt) . Transforming a
function f(x"s): df = (0 /0 x')dx' ... is contravariant. {sometimes called a “famous
classical formula™}.
Covariant goes like A= (3 x* 3 x') A, and 1-forms obey w’=( 4 x*/ 0 X) wy . {So, are
the last two indices the same ? [contravariant] or different [covariant]. Contravariant
components have indices high and covariant components have indices low.

But the bases 0, = 0 /0 x for contravariant vectors transform like the covariant
form: 9= (0x/3x)9; --sowe might write the push-forward of a base as
W.:0x2(0Y%dx)(a/dy")[Burke p 79]. And a form-base pull-back may look like:
w* dy > 0 Y/dx%)dx® (which looks contravariant).

A vector field Y on a curve y : Interval I >M is a function that assigns to each
number t €1 a tangent vector Y(t) to M at the point p = y(t). Y(t) = (y1(t), y2(t), ys(t) ) y.

Mathematicians like to emphasize generality (e.g., the term “wlog” means
‘without loss of generality’) and work from most primitive structures upwards. We all
learned the definition of continuity as:
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vV € >0, 3 0 >0 such that metric measure d(x,y)< & = d(f(x),f(y))<e.

But that depends on having a “proximity function” such as |x-y|. Topology uses a
more primitive approach based on open sets.

For function f: U->W and continuity at point p: {let “nbh” be an open
neighborhood}

vV nbh W’ with f(p)& W’, Inbh U’ containing f(p) whose image f(U')S W'.

{“nbh” = neighborhood [Benn] }. “A space with topology defined on it is called a
topological space.” “If a map between topological spaces is continuous with a continuous
inverse, it is called a homeomorphism.” Then we add the Hausdorff property that:
“disjoint neighborhoods can be defined about distinct elements of the space. We also
need the space to be locally homeomorphic to an open set of R" (“locally Euclidean”).
Then we have a “topological manifold.”

A manifold is a set of points with “neighborhoods.” A differentiable manifold has
the property of being locally similar enough to a linear space to allow one to do calculus
[Wik]. One can have a coordinate system for the neighborhood (but it may take multiple
charts to cover the whole manifold).

A curve a(t) “in R® is a differentiable function a :7 > R® from an open interval J
into R®*” (O’Neill). For the special case of relativity, we re-parameterize h: J> I, t> a (t)
where the parameter in Jis arc-length s = tau = 1 (proper-time). For simple lines, we
might have a(t)= vt , and (since dt/dT = gamma, y ) t =y 1. Then velocity a’=da/dT =
(da/dt)(dt/dT ) = ya’. The 4-velocity is U = dx/dt = y (c,v). {And, “a material particle a in
spacetime M is a future-pointing timelike curve a: 7> M.” [ONeill-Kerr] }

Mappings: If F is a mapping from manifold M to N and v is a tangent vector to M
at point p. Fx(v) is the initial velocity of the curve t> F(p+tv). A tangent map takes a
tangent vector in M and maps it to its corresponding tangent vector in N. [ONe:ill].

{ Math expression) For mapping ¢: M>N, 3 d¢ :T,(M)>T,(N). The differential
map d¢ preserves tangents: for a curve a C M, “d¢ carries each vector a’ (s) to the
tangent vector (¢° a)’ (s) of the image curve (¢>a) "N [ONeill_Kerr].” }

The “Jacobian” J = J ;:

J is a generalization of the gradient concept which became the matrix of all first-
order partial derivatives of a vector-valued function, also Df, J;, Few sources say what
the Jacobian matrix operates on — but for several cases it is column vectors.

The Jacobian of a scalar function is the transpose of its gradient (that is, Vf = a column
vector but J = [row vector]. )

For mapping F: manifold M > N, if mapping F = (F'(x,y), F4(x,y)), then the first
row of J is conventionally [d F'/ 3 x, & F% 4 x]. In general for “push aheads” it is
(0 F/dt)=[0F/0ox](dx/aot)where [dF/dx]=J;;. We say that mapping F at point p
induces a tangent vector mapping F., such that (F., V)(f) = V(fe F). Or, tangent velocity
VonN =J VonM- = F*p (V)

Integral Curves and “FLOW:” (motivated by time-independent flow of water in
R 2 telling how the individual water molecules are transported) [Frankel]. Each vector
field has an associated flow {¢;} having v as its velocity field. The flow describes the
“integral curves” or streamlines of transport points from one time to another; and these
are solutions of the differential equation:
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9 up)/ 3 t=v(dbi(p)) or dx'(t)/dt=V(x)

{--called “The fundamental theorem on vector fields”}.
¢«(p) moves a point p to a later point. An intention is to restrict the range of parameters
so that we can talk about a “local flow” — a 1-parameter group of diffeomorphisms so that
&' = ¢. For short parameter ranges tand s, ¢;o ds = ¢ 115 = Dsod.

“In mathematics, an integral curve is a parametric curve that represents a
specific solution to an ordinary differential equation or system of equations. If the
differential equation is represented as a vector field or slope field, then the
corresponding integral curves are tangent to the field at each point.” [Wik]

“Derivation” as a term-- is a generalization of the derivative operator. A derivation is an
operator on an algebraic system which is linear and obeys the product rule (Leibnizian:
V(af+bg) = aVf + bVg ). This includes the exterior product: d is a derivation. ix
contraction or interior derivative, partial 0 is an R-derivation; Lx Lie derivative; and a
linear map on p-forms A’M" >AP™"if r is even (else an anti-derivation with a negative
term). “A vector field X on a manifold M is a derivation on the algebra of smooth
functions” [Benn, 142].

In differential algebra, a derivation is just the linear differential operator term of
the Taylor’'s series expansion of a mapping and obeys the Leibniz rule for derivatives:
D(fg) = fD(g) + gD(f). In differential geometry, derivations are tangent vectors. The
differential dx represents an infinitely small change in the variable x. The differential of a
mapping at a point p is a linear approximation of the mapping near p — it is sometimes
called a “push forward.”

Df(p) is a linear transformation, so Fx; is a linear map on tangent space T,. Some
conventions place the asterisk lower, f. or (. If a mapping has a smooth inverse, itis a
diffeomorphism.

FORMS: Forms are intuitively described in a variety of ways:

a) They could be considered as “a thing” under an integral sign: | 2xdx has a 1-
form g = 2xdx, | 3xydxdy has 2-form a = 3xydx/\dy {that is, the 2-form has to be anti-
symmetric so that dxdy = -dydx, order is important; and the “wedge” sign /\ is a
reminder of that}. Of course this also implies that we can integrate forms: | g . Note that
repeats are zero, dxdx = - dxdx = 0.

b) Some view 1-forms as a “family of flat, equally spaced surfaces” [MTW], and
the number wv = ( y, v) is the “number of surfaces pierced” by a vector v passing

through the surfaces y {the “bongs of a bell” — one for each piercing}. For de Broglie
waves, a 1-form k (made from wave-number k) may be made of surfaces of constant

phase (on a sine function). Then (k,v) is a phase difference. k is the gradient of a
function for advancing phase, k =d¢ . K is a “machine into which vectors are inserted
and from which numbers emerge.” A directional derivative is d ,f = (df, v) = v,[f] with
differential df.

c) In differential geometry, “a 1-form y on R is a real valued function on the set
of all tangent vectors to K> such that y is linear at each point, that is
y(av + bw)=ay(v)+by(w)” [O’'Neill]. At a point p, g, is an element of the dual space of
T,(R®) — the space of all tangent vectors.
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d) The Dual space V* is the set of all linear maps ¢: V>F (field) where ¢ is also
called a form or convector. ¢(x) = { ¢ ,x) . For example let a non-orthogonal basis of R?
be e'= (¥, ) and €* = (0,1). Then the dual basis is e = (2,0) and e, = (-1,1) or e(x,y)
= 2X, ex(X,y) = -x+y. Soese' =(2x %, 0 %) =(1,0) [WIK]. For quantum mechanics,
bra’s are linear functionals on ket’s: { bra,ket) = a positive real number.

e) Cotangent Space [Felice]: “The set of all linear maps from T,(M) into R is

called the cotangent space at p, T*,(M). The differential of a function w = df; is an
example. dx' is a basis so that any “covector” w = w; dx' {In very simple terms, a covector
is any differential placed inside an integral sign.}

For a mapping from M to N, ¢, :To(M)» T4 (N), and ¢*: T ;) (N)» T*p(M) —
backwards. Tensors can be decomposed into a sum of tensor products of vectors and
1-forms.

So tangent pull-backs are intended for covectors or 1-forms, ($*w), = ¢*(w(d(p))
= ¢*(w > @) . For vectors V, $*(w)(V) = w(¢. (V)) taking covectors on N into covectors at
M. So, pullbacks and pushforwards are inverses of each other, (F*)x =F. ¢*wis
always a well defined covector field, but ¢, V is indefinite unless ¢ is 1:1.

Pullbacks are defined in terms of “PushForwards”

F*w (V)= w(F. V) = w (dF(V)) =F*(w ° F).

Although this is a “definition” it may be “derived” via the common composition
expression.

Ex. 9 Example: Pullback ¢ *w of a form w: [stackexchange]
Suppose mapping ¢ : (u,V)E M+ (x,y)€ N, R>> R

Lets suppose: ¢ (u,v) = (x,y) = (uv, u?), and 1-form w = xy dx + 2x dy on N.

In terms of uand v, dx = (9 x/ 0 u)du +( d x/ d v)dv = vdu+udv, and dy = 2udu,

Simply substitute these into w(x,y) to get

@ *w= we @ = w(u,v) = (uv)(u?)(vdu+udv) , 2(uv)(2udu) = (U*v?+4u?v)du+u'vdv. <«

So, the form w is now expressed in variables of M pulled back from N.

Now try the “other” definition in terms of “push-forwards”: ¢$*w = w(d$) — note “a
function of” rather than product w dé¢ .
For d = (d¢1, dd) = (dx, dy) = (d(uv), d(u?)) = (udv+vdu, 2udu).
w = xy dx + 2x dy > uv u? (udv+vdu) + 2(uv)(2udu) = (same answer as above). <
Replace all the x, y, dx, dy of variables for N with u, v, du, dv variables of M.
If $: M> N, and f: N=> IC R , then the pullback of this smooth function f is just

(¢*F)(x) = f(d(x)) = (f e )(x) . fcan be considered a 0-form.

Use of “Contractions” i, on forms (i for “inner product”): [Frankel]
The notation a ” stands for a p-form. If a is a covariant vector (a',a1-form)and vis a
contra-variant vector, then a(v) = ayv' is a scalar (a 0-form, and a° is a 0-form). {Recall
that for a tensor T that is p times contra- and g times co-, a contraction T =" _; is (p-1)
times contra and (g-1) times covariant — a reduction in rank}
i,a®=0, i,a' = a(v) = a V' (like a dot product).
Contraction of a function: ixdf = X(f) = L x (f) .
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A volume element in ®* can be a 3-form (n-form), vol"= p(u)du' A ... Adu" [Frankel
p.90,120]. Its contraction with a vector is a special object called a “pseudo-2-form” like
the magnetic field B (recall that B = curl A is not a vector but rather a pseudo-vector that
changes sign under mirror reflection).

B2 =igvol® =By dx®*/Adx® + Bg; dx*Adx" +Bpdx'Adx? . “2is3-1 form”.

“The following is perhaps the most often used formula involving Lie derivatives” when
acting on exterior forms—Cartan’s Formula: L x = ixe d + do ix.

Then [Wik] L xf=ixdf, Lxw = ixdw + d(ixw), dLx w = Lx (dw).

Ex. 10 Example interior product of vector field X on 2-form dw [stackexchange].
Let X =y d,+2z 3 ,+3xy 9 ,. And 1-form w = 3xdy -7zx’dz, so
dw = 3dx/\dy — 14zx dx/\dz (using dz/\ dz=0).
Just multiply Xdw through using 9 ,dx =1, 9;dx! = ;.
Or, more conveniently,
ixdw = X(dw);i dx' = X'dw1dx® + X'dw13dx® + X2dw (-)21dx" +X3dw(-)z1dx’
= (y)(3)dy + (y)(-14zx)dz + (2z)(-3)dx + (3xy)(--14zx)dx
ixdw = 3ydy-14xyzdz - 6zdx + 3- 14x?yz dx -- a one form (p-1=2-1=1).

Comment: A very concise and modern summary of the above is given in Barrett O’Neill’s
book on Kerr Geometry [ONeill_Kerr] Chapter one on general background material.

Applications of Lie Derivatives:

Practical applications of the Lie Derivative seem to be more limited than Covariant
derivatives (e.g., General Relativity).

1. Fluid Flow, [Frankel, 143] Velocity co-vector V = vidxi, momentum density pv,
Momentum P = [ vip vol’. X = (v+ /4 t) vector field. £ x(pvol®) = 0. Total force
is dP/dt = [ [0 VY3 t+V( 0 vi/ 3 x))]pvol® =  X(v))pvol’ = | L x(vipvol®) . So, since
each velocity component is just a function, we can express force in terms of L .

2. “Advection” is material transport via bulk motion. Let u be a fluid velocity vector
field and g a relevant scalar quantity in its flow. There is a continuity equation,

oywl/ot+V - (yu)=0 and an “advection operator” u- V. The “Material derivative” is
defined as D/Dt= 0/dt+ (u- V) “and it computes the rate of change of say a time
dependent vector field along the flow as Du/Dt(¢«(p)) = 0 u (¢«(p),t) 0 t.” That is, u o dt
“on any field line.” Material vector field u is an invariant field with its lines “frozen into the
fluid.” [Childress] For steady flows, L,v=(d/dt)(¢:* v)|=o in terms of the “pullback.” The
Lie bracket can be calculated from this [pg. 5]. v(x,t) is frozen into a fluid if v; + [u,v]=0.

For 1-forms, 0 w/ 0t + Lxw =0.

“the spatial Lie derivative is an underlying element in all areas of mechanics: for
example, the rate of strain tensor in elasticity and the vorticity advection equation in fluid
dynamics are both nicely described using Lie derivatives.” [ArXiv 0912.1177 Mullen]
[Boyland] The gradient vector field V a is defined using the metric as the unique vector
field that satisfies da(v,) = g(V a,v,) for all vectors v,.
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In differential topology, “The importance of the commutator form [, ] for Lie
derivatives comes from Frobenius' Theorem, which tells us when a given distribution of
vector fields in a manifold can be "integrated" to form the tangent bundle of a
submanifold. This is a really, really, really important theorem. But, depending on the text
you're reading, that importance is not always evident.” {i.e., For an open set U and F a
smooth differentiable 1-form on U, “the Frobenius theorem states that F is integrable if
and only if for every p in U the stalk F, (of a sheave) is generated by r exact differential
forms [Wik] }.

Killing Vectors:

Killing vectors are named for a Norwegian mathematician named W. Killing, who
first described these notions in 1892. They are vector fields that preserve the metric, g,
and so are infinitesimal generators of isometries. Distances of objects are preserved
along Killing vectors. If X is a Killing vector, then L x g =0.

An easy example [Wik] is the upper-half x,y plane “M” with the metric: g = dr?/y?
= (dx?+dy?)/y? where (M,g) is called the hyperbolic plane and has Killing vector field 3 , .

The metric in R? is diagonal with only g¢; and g2 components.
L xg = 0 so that distances are unchanged along Ax displacements.
Thatis: L yg=V?0 agw (0 y VI)gav + (0 v V)gpa = V, VI +V, VI,
But K =0 x with £ ,g=0.

If there is a “tetrad” formalism, then Killing vectors can be computed using the Cartan
homotopy formula “id + di”).

Metrics in mathematics are supposed to be positive measures. But in relativity, a
metric g can have negative values -- as in “time-like” rays for ds’= do® — dt®>. Such
metrics are called semi-Riemannian or “pseudo-Riemannian.”

The generalization of a straight line in Euclidean space is a “geodesic” on curved spaces
or on semi-Riemannian manifolds.

“A curve y in M is a geodesic provided its acceleration is zero: y “ = 0 ” where ‘prime’
denotes derivative with respect to the parameter s of curve y(s).

The geodesic equation is: x* + & ™ x" X" = 0.
“If X is a Killing vector field on M and y is a geodesic, then the scalar product
XYY =9(X, y’) is constant along y.” [ONeill-Kerr p 20].

A Killing vector leaves the metric unchanged under infinitesimal coordinate
changes (e.g., from t-> t+dt). The Schwarzschild metric gy, in general relativity has no
dependence on variables t or ¢ so that examples of its Killing vectors can be
K= 0 t = ( o0lo t) 0,4 (held constant) and K, = 0 o= ( 0/d (I) ) tir,0 Or, sometimes, K; =(gn,0,0,0)
and K, = (0,0,0,94¢ )- These are also two of the Killing vectors for the rotating Kerr
spacetime in Kerr coordinates.

The contravariant Killing vectors are just K* = 8, just ones and zeros, K' =
(1,0,0,0) and K* = (0,0,0,1). K, = g,wK" . In another note [MTW], K K; = gx and Ky'Ky =
9¢e (for Kerr-Newman black holes).

{Another source, Matt Visser, The Kerr Spacetime: A brief introduction,
https://arxiv.org/pdf/0706.0622.pdf gives the same results (1,0,0,0) and (0,0,0,1)}.
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Killing vectors can be computed in tetrad formalism easily if one uses the Cartan
homotopy formula, Ly=ivd + diy (id+di) {Contractions, but we won’t discuss tetrads here}.
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Long Spin Disk Lube Migration

David Peterson, Member, IEEE

Abstraci—The open literature on surface lubricant depletion
of magnetic data storage hard disks has generally examined
nonporous media having no inner diameter hole and short spin
times (e.g., a few hours to a few weeks). Applied surface lube
was usually thick (above 10 nm) and subject to inertially driven
migration. Here we report the depletion of thin surface lubri-
cant (<5 nm) on commercially used particulate porous media
with radial migration driven by air shear stress over a six-year
spin period. The radial thickness profile of the outer disk pack
assembly surface labricant after long spin time is characterized
by nearly complete depletion near the inner diameter followed
by a ramp up to a semi-stable outer annulus plateau. ID deple-
tion does not occur on interior pack corotating surfaces because
of nearly solid body air rotation near the hub and the associ-
ated reduction of air shear stresses there. Elementary modeling
is done for the development of the outer pack surface profile.
One such model includes surface Jurbricant replenishment from
subsurface porosity, surface air shear stress, and effective in-
terface slippage of the surface lubricant.

I. INTRODUCTION

INCHESTER rigid disk drives require disk surface

lubrication largely because head read/write sliders
come in contact with the disks during start/stops. Unfor-
tunately, nonbonded liquid lubricants have often been ob-
served to migrate away from the inner annuli of outer pack
disks, thus producing disk underlubrication conditions
which contribute to “‘head crashes.”” The thickness of lu-
bricant above the surface of commercial disk’s is gener-
ally very thin (from 1.5-10 nm). For such thicknesses,
the primary driving force on outer-pack surfaces of head/
disk assemblies (HDA’s) is the ‘‘air shear stress’’ due to
the pumping action of a spinning disk pack {1]-[4]. In this
paper, we will be primarily concerned with the long term
migration radial profiles of surface lubricant on outer pack
disk surfaces. Inner disk pack (or ‘‘corotating’’) surfaces
have a different migration profile near the disk ID which
may be driven by a combination of weak inertial forces
and weakened air shear stress. The air near the ID of inner
pack disks is in nearly solid body corotation, and that
means that air shear stesses are strongly diminished there.
Even at the outer pack surfaces, air shear stress is some-
what attenuated from that of a spinning ‘‘free disk’" due
to the proximity of baseplates and plastic shell shroud.
Outer pack surfaces often evolve a ‘‘ramp’’ profile of sur-
face lubrication thickness which separates a depleted in-
ner annulus from a higher “*plateau’’ level outer annulus.
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Disk pack interior surfaces usually lack this profile, and
the surface lubrication thickness of the entire surface is at
the plateau level. Many factors affect the nature and rate
of disk lube migration. These include: the lubrication ca-
pacity of coating porosity, the size distribution of pores,
the relationship between surface and subsurface lubricant
thickness, the disjoining pressure of the thin lubricant film
[51, [6], surface hydrocarbon contamination, disk surface
roughness {7], laminar to turbulent air flow transition, the
resulting surface radial air shear stress profile (7(R)),
coating thickness radial profile, lubricant viscosity and its
modification near the interface, surface lubricant diffusion
rate, possible interface slippage [8], possible lubricant
gvaporation [9], lubricant molecular weight distribution,
and the existence of an ID boundary initial condition in
addition to the initial surface lube thickness distribution
profile. It is impractical to include so many factors in a
precise model of disk lube migration. This is especially
true since such important concepts as disjoining pressure
and polymer slip are not currently well characterized. To
account for observed development profiles with time, we
use an ‘‘engineering model’’ which relies primarily on
three parameters: the effective efficiency or coupling of
air shear stress (E < 1), an effective interface lube slip-
page (or ‘‘extrapolation length,”” B), and an approximate
proportional replenishment of surface lube to provide a
balance with subsurface lubrication (with P = surface/
total lube thickness). It is understood that these few con-
venient parameters may incoiporate some of the effects of
the much more complex underlying reality.

1I. EXPERIMENTAL RESULTS
A. Surface Lubricant Thickness by ESCA

3380 type disks from head/disk assemblies were e€x-
amined after spin times up to 77 mo under normal usage
drive operating conditions. These HDA’s contained 356
mm (14 in) diameter hard particulate media referred to as
“‘type C2"* lubricated with a **Fomblin type Y’ fluoro-
carbon lubricant (see Appendix 1 for details). Selected
outer pack disks were systematically analyzed by radial
scan ‘*15-point-line-ESCA’’ (electron spectroscopy for
chemical analysis [10]) for the radial surface lubricant
thickness profiles, A(R). The calibration of ESCA is en-
sured by a standards program at SSL (Surface Science
Laboratories). *‘ESCA thickness’’ is intended to measure
the lubricant thickness above the binder surface, &, rather
than the total lube thickness throughout the porosity, H.
The ability to determine h by ESCA techniques depends
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on knowing the escape depth of photoelectrons in the fluo-
rocarbon lubricant. Conventional measurements (the
*“Tau method™” [10]) assume that this value is 4.0 nm. A
recent publication [11] reports an actual measurement at
2.9 nm. This means that all conventional reported values
of ““ESCA lube’ may have to be scaled down by a cor-
rection factor, f = 1.4. We will continue using the sym-
bol # for conventional ESCA surface lubricant measured
value thickness but will use *‘real ”* = h/f inside com-
puter programs modeling theoretical migration.

A typical set of long spin surface lube thickness profiles
is shown in Fig. 1. Profile ‘0"’ near & = 4 nm average
surface lube thickness represents the initial state of the
lubricant at zero spin time. This profile is an average of
ten sample surfaces processed by ‘‘point-line’” radial sec-
tor ESCA and the older individual point *‘punched sam-
ple’”” ESCA analyses. Curves **A”" and *‘B”’ show typical
ramp profiles for outer pack surface lube migration after
77 mo of HDA spin time. Nearly complete depletion of
lubrication has occurred at the inner annuli of the disks to
a disk radius referred to as “*R1.”” This is followed by a
ramp up to an outer annulus platean level of higher thick-
ness surface lubrication beginning at a radius called
““R2.”’ The point where the ramp joins the plateau is
called the *‘vertex.”” The outer plateau may also represent
the decrease from an initially uniform A(R) to semiuni-
form lube levels that would have resulted from spinning
disks which had no inner diameter hole. The difference in
depletion radii (R 1’s) for curves 4 and B may be due to
differences in surface roughness of these two outer-pack
surfaces (roughness average R,[A] as measured by me-
chanical profilometry was ~19% rougher than was
R,[B]). Curve **C’’ is an average of the two opposite side
interior pack surfaces and shows typical lack of surface
inner annulus depletion.

Fig. 2 is a detailed plot showing another typical ramp
from a depleted 1D annulus which has just formed on an
outer pack surface at 14.5 mo of HDA spin time. The
extent of this ramp is 12 mm—a typical value for initiai
formation ramps. The dashed curve of Fig. 2 shows that
lube depletion has not occurred on the opposite *‘interior
surface’” side of the disk. Plots that follow will charac-
terize the nature of the “‘ramp’’ from R1 to R2. Collec-
tive data shows that after =4 yr of spin time, both inner
and outer pack plateaus have a mean “*ESCA’’ thickness
=2.6 nm (standard deviation = 0.5). The overall inner
regression of plateau decline is A(nm) = 3.2-0.13 T(yr)
with outer-pack surfaces approaching this line a few ang-
stroms faster than inner pack surfaces. The thickness of
the lubricant molecule is =0.7-0.8 nm. In comparison,
the overall average height of ““ESCA’’ measured surface
lube thickness at ID *‘depleted’’ annuli is only 0.42 nm.

Fig. 3 shows the radial location of depletion, R1, ver-
sus HDA spin time in months. Depletion to a surface lube
level near 0.5 nm thickness becomes noticeable after about
one year of spin on this type of particulate media and then
subsequently widens radially at an average rate near 6.3
mm per year. After 5 years of spin, the depletion annulus
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Fig. 1. Surface lubricant thickness “‘ESCA(R)" versus disk radius after
77 months spin time. 0—Initial lubicant levels. A, B—final outer pack sur-
face profiles. C—Inner pack profile.
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Fig. 2. ESCA surface lube thickness versus radius ““ramp™ detail at 14.5
months spin time on outer pack surface (o--inner pack).
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Fig. 3. Inner annulus lubricant depeletion radius versus spin time, R 1(7T).

has an average radial width of nearly 25 mm. The short-
dashed curves show a 95% confidence level surrounding
the linear regression line of the data. Lube depletion does
clearly grow with spin time. However, the regression coef-
ficient is only r = 0.7 and implies that spin time, 7, is
not the only parameier determining the degree of disk lube
migration. Fig. 4 shows how well the final ramp radius,
R2, correlates with the initial ramp radius, Rl (r =
0.955). N = 49 outer pack disk surfaces were analyzed
by point-line ESCA to estimate the radii R1 and R2 for
each surface. In most cases, the ramps had clear resolu-
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Fig. 4. Correlation of outer ramp radius to inner ramp radius, R2(R1).

tion. The slope of the regression line is higher than one,
and the ramp radial extent from an initial radius of R1
increases from an average of 10.7 mm at 90-mm disk ra-
dius to 17.0 mm at a radius of 130 mm. The ID contact
angle after one yr spin time is =2 X 1077 or =0.04 sec-
onds of angle. The longest spin examined in Figs. 3 and
4 is 77 mo. In classical models of viscous lube flow away
from the boundary 1D initial condition (no lube interior to
R = Ry = 90 mm), both internal and air stress driven
migration modeling shows that the point (R, A) = (R,, )]
would be a **pivot point’” of the development profile h(R,
T). An example showing computed total lube thickness,
H(R, T), for **wind driven migration’” is shown in Fig.
5. The fact that the experimentally observed radius R1
increases with time implies that (R, i) = (R, 0) is not a
pivot point. R 1(T) develops ‘‘as if*” liquid interface slip-
page were occurring.

The interior pack (magnetic read/write utilized) disk
surfaces lose ESCA thickness quickly during the first year
of spin from an initial 4 = 4 nm of surface lube down to
an average of =3.1 nm, but they then only lose =0.16
nm for each additional year of field spin. Thicknesses be-
tween 2.2-2.8 nm appear to be a crudely stable level for
many years. The surface lube profile is generally flat; but,
at about 5 years of spin, there is a poorly developed *‘ID
cut’’ (a weak ramp from ~1.51 nm at R = 94 mm to
2.34 nm at R = 99 mm). Air flow measurements per-
formed on our HDA’s (Fig. 6) show that the inner pack
ID air moves as a solid corotating body for at least several
centimeters outwards from the spacer rings. Therefore,
little differential air movement exists to produce air shear
stresses for this case. At larger radii, differential air flow
becomes more significant. In contrast, for the outer pack
surface, ID tangential air flow is roughly half of the disk
ID rotation speed. We therefore expect significant ID lube
migration on outer pack surfaces and almost no cutaway
of lube from the ID of inner pack surfaces. Observation
shows that this is indeed the case.

B. Bulk Lubricant by Solvent Rinse

Another measurement method for monitoring the state
of disk lubrication is the rinsing of disks with freon or
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Fig. 5. Total lube thickness profile, H(R, T), for wind driven migration
with zero slip length.
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Fig. 6. Measured tangential air velocity/disk rotational speed versus disk
radius. Dashed curves are “‘arms at ID.”"

with Fluorinert(3M) solvent and then weighing the re-
moved residue which remains after boiling off the solvent.
This may be performed per disk surface or by sequential
annuli from OD to ID. If adequate coating exists on the
OD and OD-chamfer of the disk, then lubricant will mi-
grate to there; and the accumulation can be measured by
a ‘‘rim strip.”’ Rim lubricant is measured by rotating the
outer 7 mm of rim of the disk through a watch glass con-
taining freon. Fig. 7 shows the growth of rim lubricant
for n = 137 such measurements on C2 coatings. The rim
weight is divided by 2 to represent each disk surface. Rim
weight increases during the first 30 mo of HDA spin and
then stabilizes at ~ 1.18 mg /surface (standard deviation
= (.24). At the resolution of this test, differences be-
tween interior pack and outer pack disks cannot be seen.
The remainder of the disk may be ‘‘annular stripped’” by
freon rinsing of three annuli of equal area. All of these
annuli lost weight over the first 2 yr of spin. This tech-
nique is not noted for its accuracy; but crude averages
after 3 yr of spin show that the inner annuli have lost an
average =0.7 mg of lubricant. Since the outer rim has
gained roughly 0.8 mg of lubricant, migration to the rim
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Fig. 7. Accumulation of lubricant on outer disk rim due to migration ver-
sus HDA spin time.

has indeed occurred; and evaporation of lubricant must
not be very significant. This is interesting because mod-
eling indicates that evaporation should be very significant
within the first month of spin [9]. Our independent theo-
retical calculations also predict rapid evaporation within
a month; so we concluded that at least onc of our as-
sumptions must be in error. We believe that thin film sur-
face lubricant effective vapor pressure must be well below
bulk level vapor pressure. It has been shown that very thin
lubricant films have molecules which are not in a bulk
state but which instead lie flat on the surface due (o strong
attractive forces [12].

C. Total Lubricant Thickness by FTIR

A more precise measure of total tubricant thickness, H,
integrated throughout the binder is “‘FTIR" (Fourier
transform infrared) analysis of perfluorinated polyether
lubricant peaks [13], [14]. In FTIR, infrared light which
is polarized parallel to the planc of incidence and which
has a high angle of incidence (=70°) is used for maxi-
mum absorhence in the thin disk coating [14]. Krytox or
Y-lubes have strong absorbences between 1100-1350
wavenumbers, but we use a smaller side band near 985
cm™! for analysis. Representative stripped disks are used
for background subtraction from the peak near 985 em™’
on lubed disks being evaluated. Background subtraction
near these wavenumbers is more reliable than at the larger
absorbence peaks. Calibration of FTIR lubricant at the
used absorption peak has to be performed statistically
against freon surface strips or annular strips. Applica-
tionof this technique also shows loss of lubricant on the
disk surface over time and has enongh resolution to dis-
tinguish between interior pack and exterior pack surfaces.
In the inner depleted regions of outer pack disks, FTIR
shows about 6 ng/mm’ average remaining lubrication.
This corresponds to an integrated thickness of 3.2 nm of
lube throughout the porous coating down from an originai
24 nm total thickness.

D. ESCA Versus FTIR Lubricant Thicknesses

Lubrication is often applied by one or more sequences
of an atomized spraying during disk rotation which is fol-
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lowed by buffing operations with an absorbent cloth.
There is a maximum weight of lubricant which can be
absorbed in the binder before the surface lubricant thick-
ness becomes too high and hence too easy to buff off. Let
this **saturation lube’’ have a thickness, H,, [nm].

One method of characterizing particulate media is to
generate ‘‘lube filling curves’” (or *‘saturation cusves™’)
by plotting ESCA versus FTIR for h(H). These curves
usually reveal a middle linear growth region which then
breaks into a steep growth region until saturation occurs.
We often approximate these curves by a tangent function
but do not have the resolution 10 see its curvature clearly.
The underlying physics which produces these curves is
currently unclear. Since the curve can depend on the
method or number of sequential lube applications, h(H)
is not a unique equilibrium and must vary with some ad-
ditional parameter. We might then expect the long spin
migration h(H) profile to be different. In practice, the high
end of the initial tangent type curve is sometimes avoided
because it can lead to excessive lube stiction. The middle
or ‘‘working region’’ of the saturation curve is well ap-
proximated by a straight line of the form,

h=hy + mH/Hg,. (1

OQur ““‘C2"’ type media would use ““ESCA’™” hy = 3 nm,
H, = 80 nm, and m = 3.7 over a domain 0.08 <
(H/H_) < 0.806.

One of the virtues of porous media is the ability of lu-
bricant to teplenish the surface after a migration loss or
wearing of the surface occurs. Replenishment is easily
demonstrated by argon etching of surface lubricant and
observation of ESCA increase from a few minutes to an
hour after the etching (some bias exists, however, be-
cause of the unusual activation of the surface produced by
this test). Let P = dh/dH = the slope of the long spin
migration curve h(H) at some disk radius. If a thickness,
dh, is removed from a thin annulus of the disk surface;
replenishment will result in a net loss in the value of dH
= dh such that the net surface loss is eventually P X dh
instead of dh. The effect of the factor P is then to retard
surface lube thickness loss. In this sense, one could model
only the lube thickness above the disk surface and treat
the lube viscosity or the migration driving force as if it
were varying with the thickness of the lube in such a way
as to duplicate the effect of the replenishment factor, P.

The **depletion curve’” lies below the initial lube filling
curve. Fig. 8 shows a collection of n = 77 pairs of
*“ESCA versus FTIR” data for sample disks which have
sustained years of migration. The sample radii used are R
= 96 mm, 109 mm, and 137 mm; they are merged be-
cause little noticeable difference is seen between them.
The dashed line represents the approximate initial filling
curve, and the initial lubricant state is at £ = 4.1 nm and
H = 24 nm on that curve. No initial data exists for H <
9 nm, but the filling curve has to drop to the origin be-
cause the total lube thickness includes the surface lube
thickness. Almost all of the data points lie below the ini-
tial dashed line. A possible reason for this is that migra-
tion replenishment cannot occur until a thickness loss gra-
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Fig. 8. ESCA versus FTIR lubricant depletion scatterplot.

dient has been established from the top down. In contrast,
the initial lube filling was from the supply at top to the
initially empty porosity. This sort of decline of h(H) pro-
file has been noted on some other types of media as well
as the C2 type reported here. The exact shape of the de-
pletion curve is not clear from the scatter plot data sup-
plied; but a crude approximation, 2 = PH, is possible. In
this case, the replenishment factor, P, would also be a
constant of proportionality.

1. MATHEMATICAL MODEL

Our initial lubrication replenishment assumption will
simply be that the relationship between surface versus to-
tal lubrication thickness during migration is given by: k
= PH. The fluorocarbon lubricant is characterized by a
density ‘‘p,”’ a viscosity ‘‘n,”’ and a kinematic viscosity,
“p”* = u/p. The air flowing over a spinning disk will
have parameters with subscript “‘a’’: p,, B4 ¥.. The
boundary layer thickness of the air above a spinning disk
is a few multiples of 8, = (v,/)*° = 0.2 mm, where
is the rate of spin of the disk in radians per second.

The air (or “‘wind’’) shear stress is given by [l], [4],
[15].

T = 7o = R(pupew®)™’ /2 = 8Rw’p, @

where u, = viscosity of air, R = disk radius, and § =
(va/@)0./20. As recently as 1983, the majority of
DASD corporations believed that the primary driving
force for disk surface lubricant migration was inertial. The
variable § was then selected for ease of comparison to
inertially driven migration. A physical interpretation of
the term 8 is that it would be the thickness of a layer of
fictitious lubrication above the actual lubricant surface
which would duplicate the effect of wind shear stress in
the real lubricant-to-air surface via inertial forces only. A
typical value of & is 60 nm, and a typical value for the
radial (and also the circumferential) wind shear stess is 7,
= 2.3 Pa (for temperature =44°C, R = 110 mm). Cou-
ple this to the shear stress of the surface lubricant by the
boundary condition, 7(z = h) = 7, (where altitude z = 0
refers to the binder/lube interface). Then, following a
procedure similar to that outlined in the well known ro-
tational flow model of Emslie [18], we obtain a partial
differential equation for both inertial and wind shear stress
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driven lubricant migration,

oh oh

ot T ¥ ar
where & = Pw? /v now includes replenishment, and *‘real
P = P/f (the ESCA correction factor). Introducing re-
plenishment effects in this way (replacing a dh loss by
Pdh for constant slope P) is verified by an independent
finite difference computation which yields the same final
lubrication profiles as those calculated from the equation
(3). This equation can be solved in closed form from T(h)
and R(h) and yields lube thickness profiles for A(R, T} in
which the inner boundary wall becomes a ramp which pi-
vots about the fixed point (R, h) = (Ry, 0). This fails to
conform to experimental observation, however. The ex-
perimental migration profiles would suggest that the con-
ventional ‘‘no-slip boundary condition’’ might need to be
relaxed. We then assume that there is an effective velocity
of lubricant slip at the lube/binder interface which is pro-
portional to the local lubricant velocity gradient,

v(z = 0) = B(dv/dz). @)

The proportionality factor *‘B’’ is called the slip length
or extrapolation length. Volume flow rates, @ = d
Vol /dT (per unit of circumference), may be calculated
by successive integrations of Navier Stokes equation to
yield:

3
(R + h8) = —k (2—2— + h26>, 3)

3 2
Q= 1 pRw? — PN (", h) + SR’ (h* + hB).
M oR 3 v

(5

The last term represents wind driven flow with interface
slip, and p is the pressure which is the disjoining pressure
(I = -—A/(6xh 3) plus the meniscus pressure
(—+v/a(R)). a(R) is local radius of curvature, v is the sur-
face tension, and A is the Hamaker constant (typically
=10"" J [12]). The validity of using *‘bulk level’” sur-
face tension values, and the estimate for the Hamaker
constant and for the power of h valid for our ultra thin
film situation is currently unclear. Because of this and also
the complexity that would be introduced, the pressure term
is deleted from the equations which follow. The flow rate
Q is used to produce partial differential equations from
the equation of continuity

h 13

3T~ "RR (RQ). 6

Finite difference equations derived from (6) were pro-
grammed for wind driven lube migration and alsc for dis-
joining pressure gradient flow. The numerical modeling
was used to check analytical models but also has the ad-
vantage of being more flexible (e.g., being able to use
arbitrary initial lube profiles). But, analytical solutions
also have their worth. It is interesting to examine the rel-
ative strengths of inertially driven migration to that of
wind driven migration.

O(wind) /Q(inertia) = 8(B + h/2)/(hB + k*/3). (7
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For surface thickness ESCA near 4 nmand 0 < B < 3
nm, this ratio is 23-30. Thus, wind driven migration
strongly overwhelms inertially driven migration for the
case of thin liquid films. We aliso note that a flow rate near
the observed 0.3 mg/y is close to the flow rate predicted
by the simplest wind flow model slip (Q = 0.5 mg /y for
an average ESCA near 3.6 nm). The agreement between
theoretical and measured flow was even better for the next
generation of media (**C3’"). Therefore, wind shear stress
alone does have the ability to drive lubrication at observed
rates, and the concept of inertially driven migration may
be deleted. Since inner pack surfaces have plateau level
ESCA nearly as high as plateau level ESCA on outer pack
surfaces, it is suggested that inner pack driving forces
must not differ drastically from that of the wind shear on
outer pack disks for radii away from the ID. Even though
the spacing between corotating disks is only 7.6 mm, that
spacing divided by &, is =38, which is not a small num-
ber. Even though the circumferential air shear stress
should be strongly different for outer versus inner pack
disks, the radial shear stress might not be strongly differ-
ent for radii away from disk ID,

Another useful parameter will be the “‘efficiency, E,”’
expressed as the experimentally deduced shear stress ra-
tioed to the value of wind shear stress of an ideal free disk
with no hole. E will include the air shear stress coupling
to the lubrication layer and various factors which may
impede lube flow across the disk. If the outer pack disk
surface were “‘free,”’ then we would expect the inner an-
nulus of the disk to have laminar air flow, but the outer
annulus of these large disks should have turbulent air flow.
The transition radius may occur near R = 110 nm where
the Reynolds number (R’w /) = 3 X 10°. The turbu-
lent radial shear stress is given by [17]

7,[Pa] = 0.00225p, (cRw) v }/*(1 + « /804, (8

where o = 0.526, and 6, = a(vﬂ/m)UsR”s. In the outer
annuli of the disk, this shear stress is expected to be
~50% higher than the laminar radial air shear stress. The
multiplicative enhancement above laminar values is nearly
linear with disk radius (=0.267 + 0.00782 R[mm}). This
means that E(R) may rise gradually with disk radius.
Therefore, even on the outer pack surfaces, the ‘‘effi-
ciency”” could be a variable rather than a constant. For
inner pack disks, we also assume that the efficiency of
wind driven migration is approximately linear, E = E(R)
= ¢ + YR. The radial air shear stress of inner pack co-
rotating surfaces is not yet well characterized in current
literature. However, at least one study indicates that the
radial wind shear stress at the surfaces of corotating disks
might be significant (perhaps 30% of the outer pack
‘“‘free”’ surface values [18]). Incorporation of the param-
eters B and E(R) leads to a partial differential equation of
the form:
oh

oh
— + — [8EKR(B + K
a7+ ar OB ]

— —SK[EQKB + 1Y) + RY(Bh + R*/2)]. 9
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The initial condition (IC) of this equation is usually
(initially flat surface lube) A(R, 0) = hg for 2Ry < 2R <
0D and (ID-IC) h(R, 0) = 0 for R < R,. One of the
characteristic curves of (9), the development curve from
a point (Ry, hy) to (R, h)), can still be found in closed
form,

E(RR?/(ER)RY = [(h} + 2hoB)/(h* + 2hB)].
(10)

But the others require numerical methods. For the outer
pack surface approximation, E is constant, we can obtain
h(T) in closed form:

ho
(/2B + 1) exp [2KEB &(T — Ty} — ho/2BY

(11}

In the limit as B — 0, this equation reduces to the easier
form: K(T) = (hg/1 + PEkhy 8T). Then, in the asymp-
totic limit as T —> oo, we obtain 2 = 2u/
[PEw3*T(p,p)'/?). With the exception of the factors P
and E and the square root of air density, this equation is
the standard form given in [19]. Again, note that this form
has limited usefulness because it fails to deal with replen-
ishment and the existence of the ID hole. For outer pack
surfaces, the two equations (10), (11) suffice to calculate
the approximate ramp and plateau levei profiles A(R, T).
Fig. 9 shows a sample computed output profile for 40
months spin time with £ = 18%, B = 3 nm, and hy =
4.1 nm. These values for E and B provide a best fit to the
overall data profile set, and effective efficiency E had a
plausible value. In this sense, mathematical modeling is
reasonably consistent with real measurement. The ramp-
to-plateau ‘‘vertex”’ should lie along a characteristics
curve of the partial differential equation. To obtain the
low depletion level of final ESCA, the model also made
the ad hoc assumption that a residual 0.5 nm (less than
monolayer thickness) of the surface lubricant was
“‘bound’’ and did not participate in migration. If we let £
= E(R), then the time from hy to h is evaluated by the
integral,

KT =

g" dh /(3k)
T = . .
1o (h + 2RB)[EQR) + R¥/2)

(12)

The term in brackets is evaluated at each increment of
h using (10). Let the original lubricant boundary (the 1D
IC and initial flat lube surface) be a set of points {{Ro,
ho)}. After an elapsed spin time, T, (10} and either (11),
or (12) yield the final lube boundary, {(R, k)}. Compu-
tation shows that on a uniform disk with initially flat sur-
face lubrication, if E(R) ramps up from ID to outer di-
ameter (OD), then the final *‘plateau’” outer annulus after
the 1D ramp should tilt down from ID to OD. This down-
slope is mot observed experimentally. Long spin 2(R)
curves are usually flat with an occasional rise to the OD.
It is therefore possible that the shrouds about the spinning
disk pack modify our expectations so that E is approxi-
mately constant. Another possibility is that plateau levels
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Fig. 9. Lubrication radial profile output from mathematical model.

have gone asymptotic within a few years, so that the mi-
gration approach is no longer visible. Another important
discrepancy is the ramp-to-plateau ‘‘vertex’’ development
with spin time. All wind shear and inertial models predict
a gradual motion of the vertex (R = R2) across the disk
with time (e.g., the dashed development curves of Figs.
5 and 9). Real data shows that the vertex actually falls
with more initial steepness from higher to lower ESCA
within a shorter radial distance. For other types of disks
with bigher initial ESCA, this fall has sometimes been
seen to be more dramatic and steeper than the data pre-
sented here. The combination of this result with the de-
cline of h(H) profiles indicates that the first few year’s
response of ESCA h values involves a ‘‘vertical migra-
tion’’ component in which surface lube appears to fall into
the disk porosity. This new effect competes with “‘in-
plane’’ radial lube migration. It is possible that this effect
is a consequence of the vertical gradient switch from the
filling versus the depleting of disk lubrication from the
surface. These unexpected new observations provide di-
rections for future research.

IV. CoNcLusioN

The fact that lubricant is lost from the data zones of
disks and accumulates on the disk rims (and sometimes
on baseplates and shells in the planes of the disks) means
that radial lubricant migration is actually occurring. The
fact that we can account for most of the displaced lubri-
cant means that lube evaportion is not a dominant loss
mechanism. The fact that outer pack disks lose more inner
annuli lubricant than do corotating inner pack disks means
that the driving mechanism near disk ID is stronger on
outer pack surfaces. This would be expected because
“core’’ air rotation between interior pack surfaces tends
1o approximate disk rotation speed more closely. The fact
that nearly complete lube depletion occurs on the inner
annuli of outer pack disks may imply that conventional
fluid dynamics is not adequate. Outer pack lubricant mi-
gration evolves as if interfacial slippage were occurring.
The primary characteristic of the final migration state is a
well developed ramp separating an inner depleted annulus
from an outer annulus with a plateau level of lubrication.
Disk porosity provides a reservoir for lubricant replenish-
ment to the disk surface which effectively retards the loss
of ESCA surface lubricant with time. Model equations
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were devised which included the effect of proportional re-
plenishment, interface slip, and wind shear stress driven
migration. The model using parameters for driving effi-
ciency, E, and slip length, B, was matched to long spin
experimental data. Although ““E”’ was intended to be a
free parameter in this model, its fit value on outer pack
disks was in an acceptable range. This implies that wind
driven migration is plausible as the driving factor for outer
pack disk lubricant migration. The six-year examination
vielded several unexpected results. Additional research
should explore the nature of the ESCA drop between the
lube filling curve and the depletion curve A(H), the ini-
tially precipitous decline of the ramp-to-plateau vertex,
and also the possibility of deriving the observed ESCA
profiles A(R, T) by a method which avoids interface slip-
page. If interfacial slip is indeed occurring, its underlying
physics needs to be elucidated. Some steps in this direc-
tion have already been taken [8]. The mean radial air shear
stress values, 7,,(R) at the surface of inner and outer pack
surfaces also needs to be better characterized. Ultimately,
more of the ignored factors mentioned in the introduction
should be included in modeling in hopes of a more com-
prehensive explanation of the simple ramp profile evolu-
tion on outer pack disk surfaces.

APPENDIX [

Commercial epoxy-phenolic gamma-ferric-oxide par-
ticulate media may be further classified by the type of
plastic additive incorporated into the binder. Roughly 10%
of the initial organic binder weight may be either the
chemical agent PVME (polyvinyl methyl ether [20], [21]),
Butvar (polyvinyl butyral), or the thermoplastic CAB
(cellulose acetate butyrate [22]). The magnetic coatings
with these ingredients may be called type P, type B, or
type C. Coatings made with PVME tend to have a high
*‘porosity’’—a high capacity to absorb fluorocarbon lu-
bricants. Type B coatings tend to have very little porosity
because Butvar is an anti-foaming agent for disk binders.
Type C coatings tend to be intermediate; but, under the
right conditions they may have as high a porosity as type
P coatings. In this paper we examined type C coatings on
3380-type *‘large disks’’ (356-mm [14"] diameter). C type
disks have evolved over many years from a subcategory
which could be labeled as *“C1"" to *“‘C2”” and then **C3.”’
The very long spin time study evaluated here is primarily
devoted to type C2—the C type disk at its middle stage of
development.

The 356-mm outer diameter size disk has an inner di-
ameter of 168 mm and brown particulate coating applied
from a radius R = 91 mm. The media is spin coated onto
an aluminum substrate which is 1.9-mm thick and has no
conversion coating. In a head-disk-assembly (HDA), the
disk spins at ~ 3,600 r/min. The outer-pack surfaces of
the HDA are separated from the HDA baseplates by a
distance of ~ 16 mm. The inner-pack disks are corotating
with a spacing of ~7.6 mm. The HDA air fiow measure-
ments shown in Fig. 6 were performed on an older type
HDA (**8650"") which also used 356-mm disks, 3,600
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r/min spin rate, 7.6-mm disk separation, and similar en-
closure spacings. Fig. 6 is a modified form of mean ve-
locity graphs presented in [23]. At a typical operating
temperature near 44°C, the type **Y’’ fluorocarbon lubri-
cation (polyperfluoropropylene oxide) has a kinematic
viscosity near 400 mm? /s. High viscosity lubricants have
slow migration rates. Nonbonded Fomblin type “‘Z*" lu-
bricants (a copolymer of tetrafluoroethylene oxide with
difluoromethylene oxide) were previously rejected by us
largely because their viscosities were too low and the mi-
gration rates were too fast. The binder thickness of the C2
disk has a wedge from ID to OD data zone from ~0.5-
1.0 pm. The media ‘‘packing fraction (PF) is the volume
of iron oxide relative to total coating volume and is typi-
caily 29%. The porosity of the coating is defined by the
““saturation capacity’’ of the applied lubrication ratioed
to the total volume of the coating and has a value near
12% (later type C3 and type P media achieved porosities
near 18%). To a large degree, porosity is determined by
the PF of the iron oxide, its orientation, chemical addi-
tives, and the durations and temperatures of oven baking
of the coated media. We have not yet found a method for
reliably characterizing sizes of pores on actual disk coat-
ings. Mercury porosimetry on Jarge samples of baked me-
dia (grams rather than milligrams) indicates pore *‘diam-
eters’” peaked near 0.1 pm, and high magnification
scanning electron microscopic analysis also shows some
spaces between oxide grains near that size. Porosity is
desirable because it allows for a greater quantity of lube
on the disk, provides replenishment of surface lubricant
to assist protection against surface wear, and retards the
decline of surface lube thickness with HDA spin time.

The realization that outer pack disk surfaces were sub-
ject to inner annulus lubricant depletion led us to abandon
the use of those surfaces for new particulate media data
storage products as of 1983. None of the <*C2’’" or **C3™"
outer pack surfaces discussed here have read/write arms.
All of the interior pack surfaces do.
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Long Spin Disk Lube Migration—II
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Abstract—Significant improvements in the persistence of disk lubri-
cation thickness profiles are reported from observation ever five years
of head/disk assembly (HDA) feld spin time for a final version of par-
ticulate media. This direct long-term monitoring has more validity than
previous attempts at accelerated lube performance testing.

Radial migration of disk surface lubrication was a significant prob-
tem for hard disk drive manufacturers in the early 1980°s. The im-
pact was especially severe for those producers who elected to uti-
lize outer pack disk surfaces (“*free’” or noncorotating surfaces
which faced out towards the drive casing) for data read/writes.
Wind shear stresses would produce a depletion of lubrication at
disk inner diameters (ID’s) sometimes within a month to a year of
field spin time. If heads were used in that area, they tended o
*‘¢rash.”” This letter shows that particulate media eitimately
achieved a level of highly reliable tribological performance. The
goal for our final particulate media product was to improve lubri-
cation surface thickness persistence by increasing the porosity of
the disk media and applying more lubrication. These efforts led to
an improvement by nearly a factor of four in the reduced rate of
surface lubrication loss. The selection of lube levels is always a
tradeoff berween tribology and stiction. For perspective, we pro-
vide a sample long-term ( ~one year) profile of lube stiction force
development. It is not clear that lubricant migration is a nonissue
with current thin-film media. The reliability of the final generations
of particulate media was due in part to significant replenishment
from subsurface porosity. Although thin-film media use partially
bonded lubricants. the media are largely lacking in replenishabil-
ity. In addition, thin-film drives also utilize the outer pack disk
surfaces and hence are highly subject to wind shear stresses.

In a previous paper [1]. we studied disk lubrication persistence
for an early version of "*3380 type’’ pariculate media over six
years of field spin time (and finally over eight years—the longest
sample was at 105 months of spin time). No such real study of lube
thickness profiles had previously been reported for any type of disk
media. Studies had been reporied for tests using thick surface lu-
bricants, very short spin times. disks without inner diameter holes.
or accelerated spin-off testing—but those tests were largely irrele-
vant to industry needs or flawed because the causes of radial lubri-
cani migration were poorly understood. References to research per-
formed in the area of disk lubricant migration are provided in {i].
[2]. Reference {1] demonstrated cleady that **thin" (<6 nm) sur-
face lubricants flow primarily in response 1o “*wind shear stresses™
from HDA internat air flows rather than from inertia (*“centrifugal
forces''). Accelerated testing {(which we also performed) was ofien
based on increasing temperature and rotation rate 1o boost centrif-
ugal forces on surface lubricants and lower their viscosity. For our
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356 mm diameter disks. this also had the undesirable effect of al-
tering the laminar versus turbulent air flow profiles. In addition.
thin surface lubricants do not have the same properties as bulk lu-
bricants. The result was unreliable scaling of experimental resulis.
However, the obvious flaw of long-term field testing is the long
time reguired. It might 1ake a decade or more to obtain clear and
comprehensive results for well-performing media, and several gen-
erations of product occur before the test is complete. Such lengthy
testing and postmortern analysis were still desirable and should still
have been encouraged for improved industry perspective. They
shoutd also be encouraged for current thin-film media.

In our previous study [1]. we characterized surface lubricant
thickness radial profiles by well-known “"ESCA"" techniques and
total lubricant profiles by **FTIR"" (Fourier transform infrared).
and “‘annular freon strip-and-weighs."” We report the industry con-
ventional **Tau method™” for ESCA lube thickness measurements
[3] (although we know that “‘reality”" is differeni [ 1} and dependent
on the type of media). FTIR used a lube absorbence sideband near
985 cm ™' [4] and a spot size of several millimeters. The disk pack
air flow was characterized at an altitude of 3 mm above the disk
surface. The drives had a spin speed of 3620 r/min. computer shop-
controlled humidity. and a typical operating temperature near 44°C.
Measurement and characterization details are discussed in the com-
prehensive report [1] along with a mathematical model of disk lu-
bricant radial migration with spin time. An Appendix also dis-
cussed the details of the branched and viscous **Y-type™" lubricant
and the media (epoxy-phenclic gamma-ferric-oxide with cellulose
acetate butyrate thermoplastic add—cailed **C2"" for “*CAB™" type
media at its intermediate level of development). In this letier, we
show that a desired improvement in lube retention of over a factor
of four was produced largely from an additional 50% increase in
binder porosity on a new (and final} media labeled **C3."" The po-
rosity of this media averaged 18% (defined as **spray-and-buff sai-
uration capacity'* of applied lubrication ratioed to total media coat-
ing volume). Our products used a **Fomblin Y™~ (or. equivalently,
a Krytox i43-AD polyperfluoropropylene-oxide) type unbonded
disk lubrication with a bulk kinematic viscosity of about 400
mm’/s at drive temperatures near 44°C. The lube guantity aver-
aged about 10 mg/surface. which was later dropped to 8 mg/sur-
face to avoid stiction: and the long spin testing reported here was
for disks with the initial 10 mg of surface lube. Disks were polished
to a flat wedge near 0.5 pm thickness. The initial **ESCA surface
thickness™™ was about 6.4 nm. We aiso used a more traditional
“PVME" type epoxy media (‘*P"") in another related product, and
compared it against the C3 media. Both media had nearly the same
initial {and final) lubrication levels and had initial lube quantity at
about 73% of saturation guantity. Their final tribological and lu-
bricant performances were essentially identical. Porosity improve-
ments in our primary C3 media resulted from improved binder
chemistry, improved oxide loading. and longer baking time and
temperature which paradoxically led to a much longer tived. but
also softer media more prone to handling damage during assembly.
When combined with improved particle contaminatior controi, im-
proved mechanical design, and improved control of magnetic con-
tamination [5]. we obtained a 160 year MTBF HDA (for a dual-
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actuator HDA). This MTBF result is easily competitive with that
of thin-film media drives (but particulate media cannot be used for
very low flying heights).

The initial response of **ESCA surface lube thickness #*" during
the first few months of spin is a decline of nearly | nm. After this
thickness loss. a lube concentration gradient normal to the surface
is established in the media; and replenishment of surface lube oc-
curs from the subsurface binder reservoir. Afier the first two years
of field spin. the **C3"" media **ESCA surface lube thickness'” for
outer pack surfaces dropped from about 6.2 to about 4.2 nm and
had a radial migration flow rate near ¢ = 1.1 mg lube loss per
surface per year. The simplest wind shear lube migration model
discussed in [1] predicted this value almost exactly. This is sur-
prising and probably fortuitous. Other measured resuits showed that
abourt a third of the initial bulk (FTIR measured} lubrication and
about a third of the overall surface (ESCA) lubrication were lost
on this medium after two years of spin time. This was largely due
to the initial surface lube thickness being above the *‘saturation
knee" (above which ESCA thickness climbs steeply with applied
lube quantity). After this excess lube was gone, we then entered a
slow loss regime with much higher plateau levels of lube than we
had on the previous *“C2"" product. Additional data showed that
the plateau regression on inner used surfaces was k() = 58.7 A
— 0.3857 (time in months). If this trend continued, the main body
of the disks would not be subjected 1o lube thinner than 20 A for
over eight years of spin time. Bur this result includes the initial
rapid ESCA decline., and is hence overly pessimistic. The **P*
type media began with 5.7 nm surface lube thickness (¢ = 0.47. n
= 40) and 1! mg lube/surface (but with a thicker and ramped
binder~so that lube is below the *‘saturation knee™"). The plateau
level lubrication drops as k(1) ~ 57.3 A ~0.322¢ [months].

We desired a metric for comparing the lubrication performance
of “*C2°" versus “*C3"" media. In [1]. we saw that the easiest short-
term test for lube ongevity was the monitoring of the decline in
ESCA surface lube thickness at the inner diameter (ID) of *‘outer
pack™” disks. In Fig. 1, we show an ESCA surface lube thickness
profile at 55 months of field spin time. For this sample, four outer
pack disks showed ESCA surface lube ID thickness of 0.6. 0.7,
0.8, and 1.0 nm (considered 1o be danger levels), Depletion of lube
from the deliberately unused outer pack disk ID’s could occur after
only one year of spin time for older products [1}, but at abour 4.5
years for the final **C3"" disk formulation. A comparison of mean
performances showed that C3 was an average of 4.7 times better
than C2. This also implies that we would need to monitor this prod-
uct for more than 20 years to obtain the many details we reporied
for the C2 disk. Fig. 1 also shows that the used inner pack coro-
tating surfaces have a higher and more resistant surface lube thick-
ness due to reduced wind shear stresses between corotating disks.
Typical lube thickness levels on used surfaces piateau across the
disk at about 37 A surface jube thickness after 55 months of field
spin time. The outer surface lube thickness ramp (up to the *“pla-
teau’” lube level) has a radial width of about 11 mm—the same
width previously observed for the C2 media. Fig. 2 shows a set of
43 measurements for ‘*spin time to ID depletion™ made at a stan-
dard radius of 94.5 mm.

A lubrication-related problem encountered with this C3 medium
was our initial desire to fully utilize our increased porosity by ap-
plz*4g lubrication “*at or above the knee™” of the applied lubrication
“*saturation curve™” {of measured ESCA thickness versus milli-
grams of finally absorbed buffed lubricant). This led to high **head/
disk™" stiction growth. Fig. 3 shows a piot of striction growth over
a vear of observation time for those tnitial HDA's which had high
lubrication. Again, no such long-term study had previousty been
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Fig. 1. Surface lubrication thickness profile of sample disk after 55 months
of field spin time. Quter peak surface lube has cut away from the disk ID.
Corotating surfaces have less migration due to lower radial air-flow shear
stresses.
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Fig. 2. Loss of inner radius lubrication with spin time. For a = 43 ID
ESCA data points, a depletion level of 3 A will be obtained at 56 months
spin time ( ~95% confidence that the 1D depletion spin time is greater than
42 moaths). ’
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Fig. 3. Tangential stiction forces for two similar HDA's monitored for
more than a year. The final data points are for 220 days of room tempera-
ture sitting time. Slider load force was =15 g (0.147 N/slider).

reported in the literature. Stiction forces were measured by torque
meter testing on the ground hub nut of the HDA. We applied a
slowly increasing torque to the disk pack until it broke free from
the head assemblies. These particular HDA's had 75 A of ESCA
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surface lubricant and about 12 mg of applied Y-type unbonded lu-
bricant per disk surface. Stiction was obtained from the calculated
force applied to the heads. and was normalized 1o a *per-slider™
basis. We observe three typical regions: low growth, steep loga-
rithmic growth, and finally a “*flooding™ or *‘saturation’” slow-
torque decline near 23 g average force per slider. The solution to
this stiction problem was simply to apply less lubrication so that
head/disk meniscus growth is discouraged. We were able 1o select
a safe level which still guaranteed adequate lubrication and product
longevity (as observed via MTBF and returns for ‘*head/disk in-
teraction™").
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Tape Magnetization Waveforms

Dave Peterson
Date: 5/29/01

Preliminary

Several questions were recently posed about what the magnetic field strength would be
above the surface of .~ type media and also what the magnetization waveform might look like
in the presence of write equalization pulses. These questions are partly addressable by my Fourier
Series equations for the “Superposition of arctangent transitions for magnetization.” A simple
MATLAB model was written “magwave.m” for plotting output M(x), demag fields Hd(x), and
fields above tape Hx(x) and Hy(x). [ claim that external fields like Hy are much stronger than
previously supposed and that write EQ pulses slightly lower the average peak magnetization for a
low frequency waveform (1,7 zeros LF = HF/4) and place ripples at the top of the M(x) profile.

Tape Magnetic Waveform Profiles, A = 3140nm

10007371 AB Mag
Mr= 200 §

ave.m, DP, 5/29/01
800, A =70 d'= 40

500}-------- L

M emu/cc, H Oersteds
(4)]
8 o

0
0 1000 2000 3000 4000 5000 6000
Longitudinal Tape Distance, x[nm]

Figure 1. MATLAB “MAGWAVE.m" output for a low frequency =" magnetization pattern.
Peak Magnetization is M = 182 emu/cc (for a given Mr = 200 emu/cc and He = 1625 Oe. Peak
DeMag field is 890 Oe, Hx = 525 Oe, and peak Hy is a huge 1010 Oe (at an altitude of 40 nm
above the coating).




SUPERPOSITION OF ARCTANGENT
TRANSITIONS FOR MAGNETIZATION.

David Peterson, 5/21/92.
USEFULLNESS OF FOURIER SERIES FOR REPEATED ALTERNATING WAVEFORM.

If a ragular series of magnetization reversals is written on a data disk,
it is a convention to assume that each transition is Tan' in shape. The most
convenient way to represent the resulting M(x) coating magnetization is by
Fourier Series. In opposition, the direct superposition of alternating arcTan
(ATN) shapes 1is more cumbersome, usually converges more slowly, and hence
requires more terms. Usually, only a few terms of the Fourier series will
suffice for practical applications. The Fourier Transform for isolated ATN’s is
not defined, so we work with the transform for its derivative, the magnetic
charge density, p(x) = -OM/9x.

2M.a
x(a2+x3?) '

(1)

= 2Mr -1 E - = -
M(x) — Tan (a). p (x)

where "a" 1is the arctangent transition parameter. The profile of p is
“Lorentzian”, and the “shift theorem” 1is used to superimpose repeating
alternating Lorentzian charages.

pix) =- Y

1,3,3..

B g-zman/d cog( 2“;”‘) , (2)

where 4 is the plus-to-plus longitudinal peak separation wavelength.
This series is then integrated to get back to the desired M(x) repetition.

4aM o -2man/)
r e 81n(2nnx)
1,5,5.. n A

M(x) = . (3)

This series could also have been “derived” from an assumption that the Fourier
transform of an isolated M(x) transition 1shﬁexp(-2usa)/1ns. The illegitimate
divergent contributions would cancel when the alternating series is superimposed.
In place of the exponential in the summation, we could use just “1" for the
simpler "square wave” pattern, sinc(gA/l) for ramp (trapezoidal) transitions, or
a more complicated {(am‘n/i)/sinh(am‘n/A)} for alternating series of hyperbolic
tangent transitions.

The use of this series assumes linearity (but we know that the write
processes is intrinsically non-linear). For inductive read voltage output, it
is the steepest part of the magnetization transitions that counts, and that fact
makes this approach generally acceptable. If we wanted to know the actual peak
values of recording magnetization, however, then this approach would be more
dubious. Real transitions are not perfectly arctangent. For thin film zig-zag
transitions, an error function may be more appropriate. The choice of the




functional shape of the transitions has a strong affect on peak magnetizations
when an alternating series of transitions is superimposed. When bits get crowded
close together, the arctan shape would lead to a much stronger attenuation of
interbit magnetizations than would the tanh function.

The "Fourier transform generation of a Fourier series” approach is alsoc
useful for superpositions of alternating isolated voltage pu1s% outpyts. For
example, if the isolated pulse line shape is Lorentzian [V = Vet)/(b1+x )1, then
the Fourier approach yields the series:

Vix) = 4nbV, E o-2%ba/A cos(21tnx)_ (4)
A 55 A

The series for "MFM all-ones— 2F" for pole strength p{(x) can be used to
calculate coating mid-pliane demagnetizing fields as a much easier approach than
muitiple superpositions of the more conventional Potter’s expression:

- 1 x8/2
Hy(x) = 8M_ Tan (x3+a3+a6/2)' (5)

where & is the coating thickness. We simply integrate the expression
4pATN(S/[2(x’-x}] over all x. (The answer should then properly use x’, but we
retain x ).

- -x8n/2
Hy = -16M, ¥ e et sin(z"Tm‘) (1_"9_'}:—") : (6)
1,3,.

Finally, consider the strength of the magnetic field above written disk
data. This can be §a1culated from p(x) using the older "Wallace" approach with
dH, = 28p(x)(x’-x)/r'dx, where the distance r depends on the aititude z above the
midplane of the coating. This gives

163M 1t - R 27X
H = — % sin g-izatarz)/a 7
a = 1{3: (=) (7)

Magnetoresistive (MR) head reading would see the H, component (which is the same
as the above but with a Cosine term in place of tLe sin term).

The following collection of papers derives these Fourier series expressions
and discusses their use.



GENERATING FOURIER SERIES FROM TRANSFORMS:

Dave Peterson, 5/22/92

The Fourier transform of a function f(x) is defined as

f_“ F(x) e 2"imsdx, (1)

(I 1ike Bracewell’s convention of having a factor of “2n” in the exponent and no
coefficients of 2n outside the integral). A Fourier transform only exists if the
integral of |f(x)| from -o to +w exists [e.g., the FT of ATN(x) then does not
exist, but I show that it is possible to make practical use of it anyway]. If
f(x) describes some sort of localized “pulse” shape, we will be concerned with
forming Fourier Series from superimposing an infinite series of alternating
pulses of shape f(x). This is done using the “shift theorem” and the "addition
theorem™:

[ fix-a) e-tmmdx = eimmmp(s) ;[ [£(x) +g(x) ) "™ dx=F(s) +G(s) . (2)

We separate an "up” pulse f(x) and a following "down” pulse “~f(x- A/2)" by half
a wavelength, A. The Fourier transform ("FT") of this dipole will be F(s)[1-
exp(-insA)], and we label the dipole itself with the symbol, f~(x). We now form
a periodic function, p(x) from the replication of the "up—down“ dipole at in
interval, 4. This is done by convolution with the replicating symbol, “shah”
I, or p(x) = M(x/A)*f"(x) = IF*(x-nd). Convolution of twe functions, say f and
g, is defined by | f(u)g(x-u)du. “Shah" can be defined by [(x) = I5(x-n), or
H(x/A) = I53{x-nA). Shah is its own Fourier transform. Now, by the "similarity
theorem", if f(x) has the FT F(s), then f(ax) has FT equal to F(s/a)/|a].
Therefore, “FT'D{x/ix) = Al(As), and M(As) = (1/A) 5(s- n/A) [ e.g., see [11
pg 78]. The function p(x) can then be formed by taking the inverse Fourier
transform of the FT of the convolution (which is just a product in frequency
space). The inverse FT is defined by: f(x) = [ F(s)exp(+2misx)ds. So:

Define p(x) = [I5(x-nA)1*f~(x) = (1/AM(x/A)*f~(x) - W(As)F"(s) (3)

Then, "FT* of p(x) = (1/A)I8(s-n/A)F(s)(1-e™), so Tet s = s, = n/d only.

Note that (1-e¢'™l) = 1 for odd n but equais zero for even n. Therefore, the
series can only have odd values of n (1,3,5...). The sum is from —= to +«, S0
if F(s) is an even real function of s then the exponential in the inverse FT can
be replaced by 2cos{2mnx/d) with summation only over positive values of n. So,
finally, we have:




F(3)

2T nx
T °°5(_7[_)' (4).

FOURIERSERIES = p(x) =
1,3,5..

If F(s) were an odd function of s, then the Fourier Series would use
28in(2unx/A). The last useful property in Fourier Transforms is the derivative
theorem, "If f(x) has the Fourier transform F(s), then f’(x) has the Fourier
transform i2nsF(s). We are now ready to produce a Fourier Series for any given
initial isolated function shape used to form an alternating periodic function
waveform. This is useful in read/write in magnetic recording.

REF:
{11 Ron Bracewell, The Fourier Transform and Its Applications, McGraw-Hill,
N.Y., 1965.



EXTERNAL MAGNETIC FIELD FROM A MAGNETIZED RECTANGULAR SOLID dp 4/9/91

Let a hard magnetic solid have dimensions 2ax2bx2c and
magnetization in the -x direction, M{emu/cc).

- »5 ver

w( ::) A surface pole density will then exist at x = +a, and
9 a magnetic field, H{Oe), will result from the
E North source at x = -a to the South source at x = +a.

If we let rectangle function f1(x) = 1 Ixi<1,z0 Ixi>1.
and  N(x) = odd impulse pair = S(x+1)- &(x -1), then
an{x)/ox = N(x). The pole density function is given by:

0 = MMNx/a) [Ty/b) M(z/c) = -¥-W

"o _ We wiil restrict ourselves to horizontg] magnetic fields
Cgc’ig?ez") dH, = (x - x}dH/|r-g]  where dH = pdv/r (€GS).
[~
Ju A The radius vector from an element of soupce on a._pole fac 0
x - y VT to a location (x,y,z) is [¥ =f,] = l'(xic‘;1)5+()/—_3/0)2 +(z-zo)§ *
N <2 |s
2b > = ¥ A computer could just sum up all the contributions from
4 the area of the pole faces, but it is sometimes convenient
to do a little analytical integration before the final
e gﬂa.__,gb[ computer integration.
b _c
H. e = f M, dYodZs (% ta)sgn(Za)
X
[I'J(x;r-a)— J‘(Qi-a)]&-x,)d‘)ra e (r—r.) 3

-5 fx*—‘d)ﬁg“@‘ﬂ A "Y" integration will be performed first. For maximum

resulting Hx field, we will also restrict ourselves to
output along a centerline with y = 0.

. RS =S
Let B (x2a) + (z—a,jzj (r-r°)3 = [B + (O—J,)]
b

. e - b : SO
wt 200.03: Yo = By = A e—
< N -
_ M, dz, (x*a)syn(*) 24 (z-
) = : o ()

~e [(x2a) +(2-2 ] Acx 2 a) +(2-23+ b

Actually, even this integral isn't bad. Its closed form expression can be found in
Grébner and Hofreiter's "Unbestimmte Integrale® springer-verlag 1965- 19a:)

2 2
a-~-¢ q{-&C’.‘C’gw aL>C'

..__C.’I_E____..._.. = ! arcfon
J;&‘*cf)‘V:xc4wz cvac* (;E;;G;:::;:T

C
- b (E—Eo')
="Ma (¥ *a)s n{ta) 2b T an = 11)]
R "9 [(;i‘ﬂb (e2e)Yfz-2.) +(xza) + b |
_C

_ Tan fz-c)b ) = Tan ((22C)b__ b
- Hy= M. " x+af& ey +la+a) +b ) (x +en + ) #lata) +b

\

3

— Tan~'/lZ=-00b - \\ T (z+ c)b
(=) - (%~ +h

- ) *lr-0) b Ji



Tape Track Distortion

David Peterson

“Long Version”
(8/30/00 StorageTek Symposium'00 )
[Presentation with Linus Wang]

Abstract

High density data recording tape has a viscoelastic substrate thal can be
deformed by the actions of creep, shrink, and environmental factors. The physical
distortions of data and servo tracks become increasingly more important and
problematic as we increase the number of recorded linear tracks placed on tape.
Tape width narrows at outer cassette spool radius due to applied tension and
widens near the pack hub due to the combination of compressive circumferential
stress and high radial stress. Tape creep development is guided by these stresses
and progresses with exposure time. The creep profiles of center-loaded tapes are
often referred to as “lips plots” or “bow-tie.” Servo position error measurements
(PES) over a triplet of servo readers enabled rapid and highly detailed profiling of
tape distortion over many tapes. Supporting studies include physical tape
characterizations, mathematical analysis, optical width measurements, pack level
stress modeling, and responses to high environmental temperature. Severe
distortion of tape can affect “servo dynamic range* and lead to servo efrors.
Distortion can also limit frack misregisiration margins and contribute to RAW data
errors. The development of future tape products with high track density requires
strategies to deal with these exposures.

PES Triplets for Tape Creep

6 - ﬁ;;&ers, Cassette “
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Figure 1. Example of Position Error Signal ("PES”) output profiles for a friplet of
magneto-resistive servo readers {upper, middle, and lower elements, UM, and L}. The
PES Tester traces a full wrap of data from one end of the tape to the other along a two-
spool cassette.

introduction

As a tape is stretched under tension, it elongates elastically in the direction of the
stretching force and also narrows its width in the transverse direction. Servo and linear
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Figure 5. Results of Altmann spreadsheet modeling for tension in ounces and radia! stress
in MPa {for convenient use of the same numericat scale on the y-axis for stresses). With our
9840 plastic hubs, the hoop tension crosses over below zero to “compressive tension” at
inner pack. The sum of hoop stress and radial stress (T + P in the same units),
then has a fixed point somewhere towards the pack ID. These curves match those
from Wickert numerical modeling.

Tape Distortion vs Hub Rigidity
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Figure 6: Comparison of 9.6-day creep for a “soft plastic® 9840 spool hub versus a stiff
steel hub for end loaded 9840 tapes. These detailed and complete profiles cover the entire
tape from hub-to-hub. The plastic hub tape creep curve is profile is nearly “linear downhill®

DISTOR Symposinm00dpl.doc 6 StorageTek Protected




Brief Summary of Collapse to a Schwarzschild Black Hole

Dave Peterson, 11/13/17 (note for Cosmology+).
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Figure 1. Radius of a collapsing massive ball with proper time on the vertical axis. An
additional spherical mass shell then falls toward the black hole horizon.

The study of Black Holes (BH) presents many counter-intuitive challenges to
nearly all of us. Part of the problem is the strong difference in view between using
coordinate time (with respect to distant observers) or proper time (on the clock that
moves along with an in-falling body or shell). In proper time, a body approaching a black
hole simply and smoothly falls through the Schwarzschild horizon right on to a central
singularity where it is utterly destroyed. This smooth fall is shown in Figure 1 in the
boundary of the grey region; the vertical axis being proper time. But seen by a distant
observer, a falling body or collapsing star freezes at the horizon leading to the “frozen
star” view of black holes. Weinberg (1972) says: “The collapse to the Schwarzschild
radius appears to an outside observer to take an infinite time, and the collapse to R =0
is utterly unobservable from outside” [still true in 2017]. Its light doesn’t suddenly
disappear but does fade out of sight due to gravitational red-shifting. A century after
Schwarzschild, some finer points and the interior behavior are still the subject of debate.
The fall and fade of collapse can be seen in web movies [from CU]. As for mathematical
descriptions, since Einstein’s general relativity theory (GRT) is required, calculations can
be challenging.

One of the first black hole collapse publications was by Oppenheimer and Snyder
(OS) in 1939, “On Continued Gravitational Contraction” [1]. They considered a
spherically symmetric finite radius ball of pressure-less dust collapsing freely in its own
finite proper time (time in the frame of the moving body). Collapse models may treat a
collapsing interior metric first and then dovetail it to an appropriate exterior model
second. The initial ball free-falls in on itself because it has enough mass (say like 10
suns for example) to clearly exceed that of neutron stars and overcome any opposing
degeneracy pressure. The profile of the equation of motion r = r(1 ) for a ball of uniform



density will show collapse just like that for the end of a closed universe model (using the
usual FLRW metric for the cosmos). The fall towards its “final crunch” is a “cycloid”
graph even for the Newtonian case r = r(t). A big star will collapse into a black hole with
the formation of a one-way membrane called the event horizon (EH) that is then followed
by a crunch to a central singularity S where density, curvature, and gravitational field
become infinite [Figure 1]. We can also talk about a similar “apparent” horizon at each
instant that first forms when a stellar surface crosses it's Schwarzschild “gravitational
radius, r < rs ” -- but only for the OS type of collapse. More about that later.

The final outcome of collapse is viewed from an external observer “O” far away at
large times. The collapse horizon is defined as a radial shell location of closest approach
at which radially directed red-shifted light is just barely able to escape to infinity. What
we call the “event” horizon is an “absolute” invariant surface defined with respect to
asymptotically flat spacetime ideally (but not practically) at infinite distance and infinite

future time labeled as “future null infinity”, 7°, and commonly called “scri ” for script i. It is

often pictured on paper as a future end-line of light rays transformed down from infinity
to just a new convenient angle-number distance by using an arc-tangent function,
/2 = tan™ (). Infinity then becomes just an inch or two on a drawing.

This horizon occurs at the familiar Schwarzschild radius rs = 2MG/c? = 2m (where
“m” means MG/c? with a standard unit convention of G = ¢ = 1). At that radius from
mass center, the gravitational field is |g|=GM/rs*> = ¢*/4GM = 1/4m, and the Gaussian
curvature is K = 1/r,> = 1/ (2m)? . The Schwarzschild coordinate radius from a mass is
defined so that circumference (C=21rr) and area (A=41r?) are the same formulas as for
usual Euclidean geometry. If we conveniently assume the same for volume (not strictly
true), then density = mass/volume = p =3c%/32G*M? = 3/(321 m? ) --e.g., the Milky Way
mega-Black Hole Sgr A* density is about the same as that of water).

In the Oppenheimer “toy model” case, a series of consecutive mass shells
making up the uniform ball all fall to center at the same proper time 1 [2] --just like the
Newtonian gravity case for t. But real stars have strongest density at their centers (and
have pressure and radiation) so that the central shells converge first. Then the event
horizon (EH) originates first at the center [as in Figure 1] and expands outwards over
increasing proper time as more shells “fall in” (the horizon is dynamical). This means that
a far observer will first see the center become faint (if matter were ideally transparent)
and then spread out to the limb over a time similar to that of light traveling a distance r..
If the center were to momentarily become a black hole, then it would have infinite
density, curvature and gravity (i.e., m or rs = 0 in the equations above). But the central
density profiles in real stars aren’t too strongly peaked, so “zero” might just mean “in the
neighborhood of center zero.”

From our far perspective, coordinate time, t, is really frozen close to the horizon
(goo>0 and g » > <), and we will never see a particle penetrate the horizon. Sparse falling
matter or inwards directed light will be seen to accumulate just outside the EH. Once a
black hole actually exists (meaning that somehow its mass is now essentially all interior
to r = rs), consider the special case that another mass shell is still infalling from the future
(say Mpew = 20% M,). There should always be some additional matter falling in. Since
EH is a far view, it anticipates this new infall and smoothly begins to widen [5] [and see
Figure 1]. There are equations describing this continuous expansion of EH before
complete merging of masses, and they act to smooth out the AH discontinuities of Figure




1. After the infall, the new EH and AH is at rs = 1.2 rs, and has expanded to engulf the
new shell (the horizon crosses it!). This anticipation is called “teleological” (it
incorporates future history as discussed in Kip Thorne’s books [3]). The other
convention called the “apparent horizon” (AH) only expands at the merging — a “fait
accompli” view. Beyond that, the two conventions are the same.

Stephan Hawking considered the “apparent horizon” with some contempt and
uses the phrase “absolute horizon” for our event horizon (>1970). The absolute horizon
is smoothly increasing with new matter, is continuous and teleological, and looks at
signals that “can” eventually just make it to the distant universe. The apparent horizon
can be thought of as the boundary of black hole for light at this instant. Since it is not
defined with respect to “future null infinity”, it may not be invariant (and we strongly care
about this). The AH separates light rays that are trapped inside a black hole from those
that can move away from it, and the AH radius is always < EH. Since the mass shells
inside the horizon continue to fall to the center singularity over proper time, there is also
an “inner AH” that begins with the formation of a horizon as a trapped surface boundary
compelled to infall. This interior trapped boundary then falls to the singularity. Interior fall
may also be described loosely in interior coordinate time which isn’t too different from
interior proper time and converges with it at the center [2]. Again, rather than coordinate
time used by distant observers, proper time is carried along in the frame of moving
bodies. Of course for the exterior case, coordinate time is drastically different from
smooth fall in proper time.

OBSERVATION

Knowledge from observation comes mainly from deducing collapsed mass of
unseen objects that are part of binary systems and matching them to theory.
Distinguishing between a hard-surfaced neutron star and a black-hole may be aided by
x-rays from accreting matter. But for hints about size, a current primary hope is the
Event-Horizon-Telescope (EVT). This uses combined data from whole-earth Very Long
Baseline Interferometry (VLBI) that may succeed in imaging the mega-black hole in the
center of our galaxy [6].

Otherwise, we merely have un-practical heuristic aids for conceptual
understanding .

Two views: We suppose that a far observer “O” at rest has a clock and records
measurements over time. Since it is in flat space without gravitational curvature,
coordinate time is the same as proper time.

One: Suppose we have a uniform lattice of numerous little bright blue light LED
emitters filling the matter and space of a collapsing system. A far-observer “O” looks for
and records the most redshifted photons it can see versus time on its own clock (pick a
particular very weak frequency for the light energy, Einreshoid)- Since we only care about
gravity and rays of light, we may assume that matter is ideally transparent. In the
beginning of collapse, there may be little red-shifting because no concentrated mass or
black hole has yet been formed. Then, threshold photons begin to be seen beginning
first near the center of collapse. We are looking for faintness, and the arrival rate of faint
photons increases with black-hole area (which increases up to the time of the creation of
the final event horizon, EH, and then becomes a some-what constant weak rate.

Two: Outer surface of Collapse: [Misner-Thorne-Wheeler Text p. 847] says:
“Place an astrophysicist on the surface of a collapsing star, and have him send a series




of uniformly spaced signals to a distant astronomer at rest.” In a time approach to the
EH, the spacings will widen and the light frequency will red shift. The net result is that
the luminosity of the signals decay exponentially with time and weakens quickly. A
confusion factor is that some of the light will come not from just outside the horizon but
rather from photon orbits at r = 3m with redshift z ~ 2. Worse than that, if we could see
the light as representing a visual radius for the black hole, it would be at 3/ 3 m ~ 5m,
which is broader than the “photon sphere” at 3m that surrounds the hole (which itself is
supposed to be at 2m). There is a lot of distortion, and decipherment requires that
appropriate math has to be very carefully worked out.

The singularity: For the case of the OS homogeneous collapsing ball, the central
singularity S begins after the collapsing mass falls inside its calculated Schwarzschild
radius (rs=2m), and the mass has completed its journey in proper time to the center.
Since all the homogeneous mass arrives at the same time, there is no ambiguity about
when S begins. “Cosmic Censorship” says that this singularity will (almost always) be
shielded from view by the event horizon. For more centrally concentrated initial
densities in the collapsing ball, S will begin before all the mass arrives at center [as in
Figure 1]. Is S physical? With a little bit of rotation of the black hole, it may begin to
broaden into a “ring-singularity”. And with quantum-gravity, there might be a limit or even
a bounce to the compactness of the center [4]. An interior Schwarzschild solution is
known for the OS case of a constant density star, and it dovetails to the exterior solution.
Although this ideal interior Schwarzschild solution is simple, real physics might be
different. And we should note there is no really viable interior Kerr solution for more
common case of strongly rotating black holes.
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Appendix: The Early Event Horizon for r > 2m

The “concave-up” early time portion of the event horizon, EH(T), at the bottom of
Figure 1 remains counter-intuitive. One approach to a derivation of this is assisted by the
using “cycloid” coordinates, n = cycloid time (or cycloid parameter 0< n < 11 ) and chi x =
hyperpolar angle [Penna 5] [Rezzolla 7].

{ The term “Early EH” means from proper time tau: 1, =0 at bottom of Figure 1
up to Tom =creation of the apparent horizon, AH. Dust Ball radius falls from an initial R,
down to Ray=2M. And cycloid time n, = 0 up to nay -

For a preliminary perspective on geometry, first begin with the elementary
distance metric for a two-dimensional spherical surface S? (8,¢ ) with radius a (e.g., a
basketball with a ~12cm). This can be written as:

do? = a?dQ? = a%(d6?+sin®0d$?) = dp?/(1-p%/a?) + p2dd?,
where p = radius from a vertical axis line through the sphere, and dQ? is an increment of
spherical “solid angle.” This latter metric is called a “Schwarzschild” form because
circumferences are simply still C = 2mrp . On paper, draw a circle and pick some upper
angle 0 from north and draw its ray from center to the point, p, on the circle arc. Then
draw a horizontal line from the y-axis to p. This distance is p, and we will add an
increment dp onto it. Sketching out an incremental arc of ad® at p and a base of dp as a
tiny triangle, we see that surface arc-length ad® = dp /cos6 = dp /{1-(p%/a)? }*.

The Gaussian curvature of the sphere is k = 1/a%, so the terms under the radical may be
written as (1- kp?). The realization dp = a cos8 d8 is Key because it means that p =
asin® for a transformation between the two metric forms above (diffeomorhism).

Next consider a closed cosmology Friedmann metric (or “Friedmann—Lemaitre—
Robertson—Walker, FLRW”, to give appropriate credits) metric cosmology as a time-size-
changing 3-sphere S* (x,0,4 ) where we've added a third angle X and replace ad® for S?
with ady (and r = siny ) to get a spatial metric:

do? = a(t)[dr?/(1-kr?) + rPdQ?]

The collapse of a dust sphere to a black hole in the simplified OS collapse versus
proper time is similar to this closed collapsing Friedmann (FLRW) cosmology.

Expressing this metric directly using the new hyperpolar angle x gives:
do? = a(t)’[dx® + sin’xdQ?], and ds?= -d1?+do? (c = 1 is understood).
For a fixed 6 and ¢ angle, we have do = a(t)dx , or dx =do /a(t).

[With r = sinx/y~ K , the previous denominator (1- kr’) became 1-sin? = cos’X to
cancel that term in the numerator, dr® = cos® dx®. This metric is also good for the
interior of the OS collapsing ball].

The time-varying S* universe has no intrinsic definite length reference {Text MTW
says that there is “no fiducial epoch”}. So a(t) and/or curvature may be arbitrarily
rescaled away from some fixed meaning such as the basketball case (e.g., by k =k/a*(t)).




One difference between this FLRW universe metric and that for OS is that
outside the dust ball R= R,, the metric switches to the usual free-space Schwarzschild
metric [7] for a central gravitational body, and R, is a defined initial reference length.

At the boundary R = R,, this metric has to match the outer Schwarzschild metric based
on its coordinate r as usual circumference about a mass source: C = 21TR,, which also
equals  § (9¢¢) % d¢ =2a(T,)sinXo , or Re=a(To)sinX. , an initial value for x at wide R..

Proper interior elapsed time for the ball is given by the integral from R to r:
1= [ dR/[2m(1/r = 1/R)]* = {(R/2m)}- {(r(R-r)]”* -(R/2)sin™(2r/R -1)} —
(R2m)* - {(R(R-R)]* - (R/2)sin™(2R/R -1)} =

7= (R2m)* [ (r(R-r))”* - (R/2)sin™(2r/R -1)+(R/2)(11/2) ]

Simplify the answer for the time to fall with new angle variables:
Let the factor (2r/R -1) = cos n, sor(n) = R(1+cos n)/2. Substituting this r(n)
above to get: T = 1(n) = (Ro12M)"?(n + sin n )/2= an(n +sin n)/2

{We used sin"[cos n] = T/2- n; and a,, means max a}. [ref. 7] and see
“MathPages” [2]. Switch notation R to r becomes R, to R [So %, = sin™ (Ro/a(t) =
Ro/(R*/2M) % =1/(Ro/2M) ** ) ]. For the initial time = 0 at the bottom of the Figure 1, we
have n =0 (i.e.,, 0+sin0 =0 =T1)and R = R,(1+1)/2 = R..

R(n) and 1(n) are called cycloid relations.

[In contrast to proper time 1, outside Schwarzschild coordinate time t = {(R,,n ) about a
central mass is a very complicated expression not shown here, see [5] eqn. 6 ].

Notice that d1(n) = am(1+cosn )dn /2 = dn anr/R or =dn a,R/R, = dn a(1).

In cosmology, the present separation of stars: D,,w=§ cdt /a(1) = § c dn
from the time of light emission t, to the present time now = t.

Alternatively, we could have said: ds?=0=-c’dt?*+a®(t)dx? means dy = cdt/a(t).

The full FLRW metricis: ds® = a(T)?[- dn? + dx? + sin’xdQ?].

The proper time 1 = 7(R,,n ) from n =0 to max value n = 1 gives the finite total proper
time of fall from R, to the singularity S at R=0 as: T a1 = (11/2) (Ro>/2M)” .

For a uniform density ball, R¥m(R) is a constant; so proper time is a constant — all shells
will fall to zero at the same time! But this is true only for the OS constant density model.

Now from the matching condition Ro= amax(T)sin Xo =(Ro>/2M)"? sinx.. So the beginning
of fallis at n = 0 and x, = sin"(2M/R,)"? =sin"(R,/an) [7].

The time of fall from n =0 to the 2M event horizon is Taw = (Ro>/2M)” (Nau+ Sin Naw)/2.
So collapse has landmarks : N =0< naw < 1. And X = X, < 1 (note that ref 7 eqn 49
forgot the /2 — very important).

For the early event horizon, EH, Rezzola says “study the trajectory of the outermost
outgoing photon that was not able to reach null infinity,” and at each instant during
collapse the last outgoing photon that will be sent and reach null infinity [7].



Outgoing photons have ds®=0 , so from the angular metric we have dy/dt = + 1/a(7).
Their trajectory obeys dx/dn = £ 1 (chi is spatial, eta is temporal). The “place and time of
emission” obey

X =Xe £ (N —Ne)- [the slope +1 gives a —(n —ne)]- “A swarm of outgoing photons will be
trapped if their proper area will not grow in time,” dA/dn < 0 where Area A = | (gee g¢¢)1/2
d6 d¢ = 411 a*(t) sin®x (so un-trapped = free uses >, and free means can go to infinity).

Now a(n(1)) = (am/2)(1+cos n), contributes an eta factor of (1+cosn)?. But the chi curves
include eta also as X =Xe - (N —Ne)- So n derivatives have to include that as well using a
product rule (the simple math hides a lot of physics).

Rezzolla [7] claims that the net result of trapped area is ne 2 1 -2X. (a region of the x,n
plane, xe = T1/2 -ne). [And that is true from comparative graphs. The factor of 2 comes
from a term 2siny cosy = sin 2x ].

The apparent horizon AH is defined as the outermost trapped region trying to emit within
the star.

Nan =T -2X, = 2 cos™ (2M/R,)” [using the previous X, = sin™(2M/R,)
SinY,=Cos(11/2-X,) 1.

172 and

Notice that if we set 2M = 1(some distance unit), since cos(2x) = 2cos’x-1, where x =
2acos(1/R,) %, thenradius R = (R./2)(1+cos[2 acos(1/R,) ”* ]=
(Ro/2)(1+ 2/R, — 1) = 1.0 also. So after AH, Radius Ran = 2M stays constant!

Examples of values at R,=2M, 7 a4=0, x o=7/2, an=1.0, © = 0 [Google Sheet].
For R,= 4M (double wide) nan= 7/2, xo=7/4, an=2.83, © =3.64. But collapse to R
=0 gives 2.83(1 +0)/2 = 4.44 units > 3.64 (since there is more collapse after R=2M).

Formation of the Event Horizon, EH: Rey= Ran, but AH only forms at R = 2M and above
that we have x gy = Xan (equality holds) when n = nan. The “worldline for the event
horizon is given by”: Xen = Xot (N — Nan) for n < nau.

Recall R = 0.5 a(1+cosn ). But, for circumferential radial coordinates, R = Cir/2m or R =
(Area/4tr ), we have a 8 and ¢ metric coefficient also of siny . So,

Ren = 0.5 am(1+cosn ) sin(Xen = Xo*N-Nan)-

Now, Xo-nan is negative! So as n increases from 0 at R=R,, there is some positive eta at
which xeq = 0! That means that the event horizon begins at the middle of the collapsing
dust ball and then widens. xgn=0 for R,/2M = 2 with n = +0.8<3.64. Or for R,/2M=3, n =
+1.3 <7.41. So these beginnings of EH lie between R = R, and R = 2M.

A spreadsheet plot duplicates the shapes in Figure 1. Column of eta’s from 0 at 4M
to 4.4 at R=0. The EH begins near n ~0.8 1 ~ 2.15 curves upward to the intersection with
the AH (R=2M) near n ~ 1.5, 1~3.53 (should be 3.64).

We might say that the cause of an interior event horizon is due to viewing from
Schwarzschild space far away where radial coordinates are compatible with circle
circumferences C = 2mR.



Boulder Cosmology and Modern Physics Group:
Questions and Comments

{Boulder Library Meetings} Dave Peterson, last 11/12/19
SAMPLE TOPICS:
Comments and Addenda to Group Selected Book Readings
Observational Cosmology, Stephen Serjeant

An Introduction to Modern Cosmology, Andrew Liddle
NOETHER’'S THEOREM
Questions: Gravitational Energy (?), Friedman Equations,
Time curvature and Newton’s gravity
Previous Book: Basic Concepts in Physics, Masud Chaichian
Entanglement Swapping.

Addenda to: Observational Cosmology
TextBook by Stephen Serjeant , 8/23/19 -9/1/19

For Meeting on 9/16/19: Some comments and special additions that perhaps “should” have been
somewhere in our new Book for Cosmology and might answer some questions. Chapter Two is
longer and harder than Chapter One.

The Space Metric for a Basketball:

Serjeant just states a metric for a spherical space S* in eqn 1.6 (and uses it in
1.37). Where does his drzl[1 -krz] term come from? It helps to first have a clear
explanation for a simplest case like the surface of a basketball {or spherical shell, S?}
with polar angle 8 , longitude angle ¢ and radius R. That is easily done by examining a
curve portion like that shown in the Figure below. Pick any longitude, say ¢ = 0, and
only look at circular arcs in 8. Pick a point on the sphere and let r be the “radius” to that
point from a y-axis.




The usual differential angle space metric here is (df)? = R*(d6? + sin’0 d¢?) , so an
element of 8 arc {or B in the figure} has familiar length df = Rd6, and the element of
length around a latitude is RsinBd¢ =rd$ where r = R sinB. Examine a tiny differential
triangle having acute angle 8 again, hypotenuse Rd#, altitude dy, base dx=dr=Rd6 cos6.
Now cos 6 = y/R where y = / (R?- r%), so Rd6 = dr/cos8;

and cosB = (1-sin?) “ = (1- */R?).

So, (df)?=(Rd6 }*+ (rdo)* = [dr?/(1- PIR%)] + r’d¢°.

And, the curvature of a sphere is “k’= +1/R?. ...
...And then we play games with cosmological scale and scale factors and address
“three-sphere” metrics embedded say in 4-dimensional Euclidean space. We could now
discuss S® using three angles: 6, ¢ and a new “hyperpolar angle” chi, ¥, that we can’t
easily picture). Then, it will be the new (Rdy)? term that will be equal to dr?/[1- r*/R?] in
equation 1.6.

A touch of History for expanding cosmology:

Einstein proposed his static universe cosmology in 1917 using A as a term
counteracting gravity (at that time, our milky way was the whole universe — so the idea of
a homogeneous isotropic universe was inspired — or convenient). de Sitter immediately
published his own model universe without matter and using only A. Then in 1922
Friedman considered a dynamic radius of curvature R = R(time) — his new universe
could expand or even oscillate. In 1927, Lemaitre also proposed an expanding universe.
Einstein rejected both proposals. In 1930, Eddington stated that Einstein’s 1917 static
world solution was unstable and might easily expand or contract. So, in 1931 Einstein
finally agreed that the model of the universe should be a dynamic one like Friedman’s
and abandoned the cosmological constant.

{See “Einstein’s conversion” at https://arxiv.org/pdf/1311.2763.pdf }.

Cosmological Distance in Chapter One:

Brief Summary: We seem to have seven (or more ) types of distance!
One is just ruler or metric distance d, between masses (“proper” distance separation at
the same time — any time, not limited to light emission and absorption). Or, we could say,
“Cosmological proper distance” between two points measured along a path defined at
any constant cosmological time (d, = a(t) AR ). In Chapter two, Sergeant uses r, =
J cdt/R(t) as proper distance. Eqn. 2.12.

Then three deduced light distances. Let “then” be a time when a galaxy emitted
light and “now” when we receive it. Emit distance d. is ‘emit to receive’ distance both at
time = “then” = “d, then.” Look-back time or “light travel” distance d .t =cAt from there
and then to here and now. Comoving distance dc = | cdt/a(t) = § % cdz/H(z) includes
the expansion of space from “there and then” to “here and now” -- where the source and
receiver are now, d.is d, “now” and so is also called dnw Or d, (i.e., when a(t) = a, =1).

Distances ordering is demit < dit < dnow-

We also use dhor = d horizon = § €dz/H(z) from 0 to o (from emit time ~ zero! ).
The “Particle” (or cosmological or comoving or light) Horizon is the maximum distance
from which light could have traveled to the observer over the age of the universe — the
size of the observable universe.



Three observed distances: Angular diameter distance da= object diameter/AB ;
“proper motion distance” from transverse speed dy = v, /Aw where w = AB/At -- also
coincides with re = 1, - remit Or “coordinate distance measure.” And there is Luminosity
distance d, using observed light flux.
da=a’d, and dy = ad, (and da = ady, a< 1), so ordered distances are da < dy < dy.

For more, see “Misconceptions” at https://arxiv.org/pdf/astro-ph/0310808.pdf and
http://astro.pas.rochester.edu/~aquillen/ast142/Lecture/cosmo.pdf

The Text Equation 1.33 for Hubble ratio H(z)/H, =E(z) is important, is used, presents
problems, and looks like it deviates from everything I've ever previously seen:
{Such as Peebles’ Cosmology pg. 100: (H/Ho)*=Qmo(1+2)*+Qr(1+2)* + Qp = “E*(z)’.
Similarly, Misner,Thorne,Wheeler {Gravitation, “The Telephone Book”} eqn. 27.40 is
nearly the same but with scale a instead of z.

(a dot)¥/a? = -k/a® + A /3 + (8T1/3)(Pmo Ao/a° + Pro @0 1a%) } .

The H/Ho = E(z) formula by Serjeant must work ok but is hard to “grok.” {He set
Q; = 0 here and discarded curvature k}. He uses his equation in 1.34 and again in 1.44
&1.56 . {Bill Daniel has written out the algebra for the derivation of 1.33.} Without
radiation, Sergeant’s equation has limited range {Chela has commented on this}--
perhaps out to z < 5 -- which is adequate for Observational cosmology.

EdS The “Einstein-de Sitter” cosmological model of 1932 has only mass Qn,,=1, and
N = 0 (even though the de Sitter universe was all A ). It has the great virtue of easy
calculations in closed form (vs numerical integration otherwise) and works fairly well for
300<z<2. So itis good for homework exercises (like Ex.1.4, 1.5, eqn 1.45, Eqn 4.7 and
for simple understandings). It was very popular for many years—even in 1980 when it
was discovered that k= 0. Many books now don’t even mention it {...l don’t like to
discard history}. In section 2.7, the “particle horizon” for an EdS universe is d propers=dhor
= 2¢/H,.

The simplest Way to introduce Cosmic Inflation: (see Section 2.7- 2.8)
A thought problem for a cylindrical shaft filled with vacuum going all the way through the
earth.

A

R

The accelerating expansion due to inflation can be related to the freshman
physics problem of the motion of a ball falling through a long hole dug through the center



of the earth. At the surface of the earth, the gravity is g, (e.g., 9.8 m/s?). At any other
radius away from center, the mass of the earth that contributes to attraction is only the
mass inside a spherical “Gaussian surface” at that radius, R. Near the center, that
volume is tiny so that there is little force. As the body moves outwards, there is more
and more attracting mass below the ball, so the restoring force increases and the body
comes to a halt.

Force = F= - kR = mass-acc = m- d’R/dt?. The period of oscillation is found to
be tau =1 =/ {31/pG} ~ 1.4 hours (where average earth density is 5.52 g/cc) . The ball
simply falls through the earth to the other side and then back again. Because of the
negative sign; the solution is just simple harmonic motion like that of a spring with a
restoring force — a SINE Wave.

Now switch to A and change signs on the spring constant! - > +.
Inflation with a huge cosmological constant and with p = -p would end up with a net
negative -2p anti-source causing effectively a repulsive gravity which makes the
universe “fall outwards.' Or, we might consider a spherical shell of “pebbles falling
outwards.' This form has a repulsive force F = +kR, a similar but different differential
equation. Every step away from the center of the earth sees more “mass” behind it with
more and more repulsive force. Instead of sine-wave motion, the solution this time is a
runaway exponential expansion! {a “little” difference is that inflation has no “center.”}

[exercise: plug R = Rosinwt and also R = ke™ into d’R/dt? = + kR to show that the

signs work out right]. The inflation solution is:
R(t) = ke!™ where b =/~ {87G p /3}.

Two problems are, ““how does it start and how does it end?"

https://en.wikipedia.org/wiki/Inflation (cosmology)
http://w.astro.berkeley.edu/~jcohn/inflation.html

The discussion of inflation in our book sections 2.7,2.8 is not easy to grasp with
clarity.

Recall the two Friedman equations (1.7 &1.8): a first order one with a (dR/dt)?
term and dynamic one of order two with a d°R/dt? term. Given an intense scalar “inflaton”
field with huge energy density V(¢), the dynamic equation produces an initial fast
expansion that can be dampened by friction. Then, in the other equation, this expansion
quickly makes any curvature contribution negligible (k/a?=> 0, p.56 eqn.1.7, 2.22,2.24)
leaving a “possible” A and a residual scalar potential field V(¢) which can be considered
nearly constant due to a “slow roll” nearly flat potential. I'll just lump these together into
some new huge effective A (not our “traditional” or current cosmic constant A). A
resulting (dR/dt) 2~ Ac?R¥3 has a solution R = Ree’ "*??'= R e "' {rapid exponential
growth! — like the repulsive gravity above}.

Sergeant avoids most of this commonplace simplicity and just ends up saying H? o< V(¢)
{eqn. 2.24, which amounts very roughly to the simple math above} with no further
discussion -- as if you should know what it means! (This equation is similar to the old de
Sitter equation on pg. 36).

Note that there are so many different versions of inflation theory that it might not
be falsifiable (possibly meaning “beyond science”).

Planck Mass, m panck , Using h, ¢, and G : Dimensionless constants were suggested in
1899 before the Black Body radiation paper of 1900 that introduced what was later




called Planck’s constant, h (Mike and | are still not sure how). {Ref: M. Planck.
Naturlische Masseinheiten. Der Koniglich Preussischen Akademie Der Wissenschaften,
p. 479, 1899} (M pianck is Used in our book, Section 2.7). The fields ¢ used in Inflation are
near this mass energy ! (see answers 2.7 p. 295).

The scale invariant power spectrum (p. 63) with equal energy per octave can also be
called 1/ f noise or Pink noise, and has a “random fractal structure.”

The Speed of Sound, Cg, in the Universe at the time of Recombination,
(CMB, z ~ 1000): ... is a sizeable fraction of the speed of light!

For a photons-only (very early) universe without mass, cs=v (p/p ) =/ (c*/3) = ¢/

J 3.=0.58c. But after the Q,,~ Q; equality near z ~ 24,000, the inertia of matter begins
to alter and reduce this speed. “Acoustic Peaks” Page 73 says that the speed of sound
relative to the speed of light is B =c¢/c = (3 + 2.25Q,/Q)) 7 so we need to know the
baryon to radiation ratio.

Eqn 1.15 is Q=81Gp,/3H% Then Qu/Q, = pu/pr =pvo/a® / pro/a*= a(Quo/Qro) NOW. At
present, the Q fractions for “matter” (in this case being “dark matter”), baryons and
radiation with h ~ 0.7 is roughly
(Mo, bo, To) ~ (0.26, 0.043, ~2x10°) or Que/Qro~ 2150 — highly matter dominated!

Then z ~ 1000 says that temperature at recombination is near 3000K which
drops to the present TBB ~ 3K. Then, (a~ 0.0009)x(2150) ~ 1.98, so 3 ~ 0.45c.
Exercise 2.9 uses B ~ 0.58 — OK, but not exactly right. cs/c=1// 3 is a commonplace
conventional reference.

After the CMB, light pressure no longer counts and cs> (4¢?p,/9pm) ~ .
Temperatures of radiation and matter become nearly the same.

2.16 “The polarization of the CMB” “The detection of B-mode polarized clustering
would be terribly exciting...” ( p.80) .. and, an announcement of such a discovery was
made in 2014. BUT: [Nature Jan 2015]: “A team of astronomers that last year reported
evidence for gravitational waves from the early Universe has now withdrawn the claim. A
joint analysis of data recorded by the team's BICEP2 telescope at the South Pole and
by the European spacecraft Planck has revealed that the signal can be entirely attributed
to dust in the Milky Way rather than having a more ancient, cosmic origin. (Our Sergeant
book came out in 2010)

Addenda to Observational Cosmology, Chapter 3.
Dave 9/2/19 —11/2/19

For meeting on 11/18/19:
Galaxy Rotation Curves, v(r).

The plot of rotational velocity versus radius from galaxy center shown in text rises
more steeply than usual [Figure 3.1, p. 93]. Dark matter content varies from case to
case, but “Most spiral galaxies show flat rotation curves out as far as we can trace
them, even where no more stars are visible” (e.g., the Figure above). The rotation curve
of our closest galaxy Andromeda M31(not shown above) is also very flat. The implication
is that dark matter halos dominate and extend far beyond the visible disk of a galaxy.




The dark matter content of the Milky Way is about 90-95% which is higher than
the 85% for the universe as a whole. The mass density for a general rotation curve can
go roughly as p(r)/p, = 1/ [1+r%/r?] where r. is the radius of the galaxies central visible
“core.” So, for r >r,, dark matter density p o 1/r*. If p(r) is spherically symmetric (and
that varies too), then outermost velocities will be flat, v(r) ~ vqat.

Note that estimates of the size of our Milky Way galaxy recently doubled (Gaia
and HST data) now out to a radius near 130,000 light years and a total mass near 1.5
trillion suns (out to the outermost globular clusters). The number of visible stars in the
MW is about 200 billion (so roughly 90% of the mass is dark matter halo). Our mass is
now competitive with that of Andromeda M31. The extent of the DM halo may be ten
times wider than the visible galaxy. https://arxiv.org/pdf/1804.11348.pdf

Rotational velocity vs distance from galactic nucleus Chapter 3 The Iocal
universe
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Figure Velocity curves for Spiral Galaxies {hyperphysics.phy-astr.gsu.edu}

Neutrino Equation 3.1 presents a strange and curious little puzzle: why sum up the
neutrino masses and what is the meaning of the 93.5 eV value in the denominator.
Neutrino masses are not well known but there is an experimental constraint on the sum
of the masses of the electron, muon and tau neutrinos (perhaps Zm < 0.72 eV). There is
no individual identity since neutrinos transmute into each other over distance and time
depending on their energy. The mysterious 93.5 eV reference value in the equation
seems to be like the energy of an imaginary particle such that the same density of them
as the neutrino triplet density would close the universe (a replacement for critical
density). It is estimated that the number density of individual neutrinos now is roughly
330/cm® at a temperature near 1.9 K.

Section 3.3 p 96: For the simple but unreal case of all galaxy mass concentrated near
the central bulge, the discussion on Tully-Fisher in the text could be a bit more
transparent. Extremes of Doppler shifts come from the visible edges of the galaxy. If we
see a spiral galaxy “edge on”, then one side is speeding towards us with velocity v and
the other side away from us (so Av ~ 2v). Gravity force = centrifugal force, MMG/R? =
mv?/R =(m/R)(Av/2)% so M o< R(Av)?. Also notice that kinetic energy is — ¥ times
gravitational potential energy: KE = mv?/2 = mMG/2R =(- % )(-mMG/R). This is the
simplest example of the virial theorem for gravitationally bound systems (p 99). Note that




the virial theorem also applies to much smaller systems such as the ground state kinetic
and potential energy of atoms and molecules [Ruedenberg].

Using the Virial Theorem, detected kinetic energies of stars in galaxies and of
galaxies in galaxy clusters indicate what gravitational potential energy must be present.
That in turn tells us the amount of unseen dark matter that must be present (e.g., page
115).

“kSZ” (bottom of page 101). “Evidence of Galaxy Cluster Motions with the Kinematic
Sunyaev-Zel'dovich Effect,” arXiv:1203.4219 (and Phys. Rev. Letters). “The Atacama
Cosmology Telescope (ACT) performs the first statistical detection of the kinematic SZ
effect.” (This was in 2012, our book is dated 2010).

HISTORY: | was a bit appalled at the absence of human history in this book and in the
development of the expanding universe and feel that some outside reading is desired to
counterbalance that. For example, on Cepheid variable stars on page 105, it might have
said: Henrieta Swan “Leavitt's discovery provided astronomers with the first ‘standard
candle’ with which to measure the distance to faraway galaxies.” This 1912 work was
KEY to the great discoveries up to Hubble’s law of 1929.

See Wikipedia: https://en.wikipedia.org/wiki/Cepheid_variable, and
https://en.wikipedia.org/wiki/Henrietta Swan Leavitt,

HUBBLE Ho AND STANDARD CANDLE LIST: Red Giants as Standard Candles
(bottom of pg 105) and the dilemma of two different values for Hubble H,: You’ve all
heard that recent local Hubble estimates indicate that the universe is growing 10% faster
than indicated by analysis of the cosmic micro-wave background radiation (CMB).
https://www.quantamagazine.org/cosmologists-debate-how-fast-the-universe-is-
expanding-20190808/ : Recent research by Wendy Freedman says, “Using tip-of-the-
red-giant-branch stars, t