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George Boole’s ‘Conditions of Possible
Experience’ and the Quantum Puzzle

ITAMAR PITOWSKY*

ABSTRACT

In the mid-nineteenth century George Boole formulated his ‘conditions of possible
experience’. These are equations and inequalities that the relative frequencies of
(logically connected) events must satisfy. Some of Boole’s conditions have been
rediscovered in more recent years by physicists, including Bell inequalities, Clauser
Horne inequalities, and many others. In this paper, the nature of Boole's conditions
and their relation to propositional logic is explained, and the puzzle associated with
their violation by quantum frequencies is investigated in relation to a variety of
approaches to the interpretation of quantum mechanics.
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These . . . may be termed conditions of possible experience. When satisfied they
indicate that the data may have, when not satisfied they indicate that the data
cannot have resulted from an actual observation.

George Boole [1862]

I INTRODUCTION

An interpretation of quantum mechanics (q.m.) naturally involves ideas about
probability. There are two levels at which this concept enters the discussion.
On the first, more superficial, level there is the problem of determinism. As is
well known, given an initial state of a physical system, q.m. predicts only a
probability distribution over the values of future observations. The question is
whether this is, in some sense, a limitation of principle or, whether a better
theory can provide more definite predictions.

On the second, deeper, level comes the realization that the quantum concept
of probability is formally incompatible with the classical one.! As we shall see
later this realization bears directly on the problem of causality. Now the
question is whether microphysical events can be made consistent with any
(deterministic or otherwise) causal explanation. It is precisely this shift in
emphasis which brings out the revolutionary character of quantum physics.

In the early days of quantum theory, up until the 1960s, foundational
disputes tended to concentrate on determinism and related issues. Everyone
realized of course that the calculation of probabilities in q.m. is peculiar in the
sense that it involves complex valued functions. But only a few of the more
mathematically oriented physicists and some mathematicians noticed that
this calculation procedure yields results which are formally incompatible
with classical probability. Even fewer took this fact to have fundamental
importance.?

The peculiar nature of quantum probability had been recognized gradually,
the first indication being probably the case of quantum statistics. If we take
Planck’s [1990] paper on the black body radiation out of historical context,
and ask what is intrinsically puzzling about it, then the answer is not that light
is assumed to be quantized. There is nothing intrinsically puzzling about a
corpuscular theory of light, a perfectly classical idea. Rather it is the way in
which photons (light particles) are distributed which is puzzling. But this fact
was not explicit in Planck’s derivation, and was discovered a quarter of a
century later by Bose [1924]. Still the Bose—Einstein distribution (or the

1 By ‘classical probability’ I mean the theory which appears in all standard textbooks, and whose
axiomatic formulation is due to Kolmogorov. As we shall see subsequently, the problems we
are dealing with arise quite independently of the interpretation of these axioms and of the
meaning of the term ‘probability’.

2 An exceptional attitude was already expressed by Shrédinger in 1935: ‘At no moment in time is
there a collective distribution of classical states which would be in agreement with the sum
total of quantum mechanical predictions’ (Shrédinger [1935]) I would like to thank Y. Ben-
Menachem for calling my attention to this reference.
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Fermi-Dirac distribution which corresponds e.g. with electron gas) does not
contradict the principles of classical probability; it is just highly counter-
intuitive.3

The difference between classical and quantum probability was clearly
revealed in Wigner [1932]. The author attempted to construct a distribution
on phase space, which would be the quantum analogue of the distribution
function of classical statistical mechanics. He succeeded to define a real valued
function on phase space, nowadays called the Wigner distribution, from which
the expectation values of quantum mechanical observables could be recov-
ered. But Wigner'’s ‘distribution’ has negative values and cannot be made non-
negative. The importance of Wigner’s discovery for foundational problems was
not recognized until much later.*

A different early perspective can be found in Birkhoff and von Neumann
[1936], seminal paper on quantum logic. They argued for a radical thesis,
namely, that microphysical events do not conform to the rules which we
usually associate with an algebra of events (Boolean algebra), but rather with
a different set of rules which they called ‘quantum logic’. Consequently,
probability measures defined on a quantum logic violate the axioms of classical
probability theory. Again this contribution was by and large ignored until
much later.> Thus, as late as 1949, Max Born, who is credited with the
discovery of the statistical interpretation of the wave function, hardly
mentioned the difference between classical and quantum probability when he
summarized his philosophical views.

This difference becomes most transparent in the path integral formalism due
to Feynman [1948]. There is a formal similarity between the Feynman path
integral and the Wiener integral of the Brownian motion, a similarity that was
recognized immediately.® Both integrals represent summation over the
continuous paths that a particle may take (the path sample space). But while
the Wiener integral is an integral with respect to a well-defined probability
measure, the Feynman integral is, mathematically speaking, not an integral at
all, not even with respect to a complex valued measure.” The transition
probabilities, which are calculated from the Feynman path integral by taking

3 This is at least the way many probability theorists felt, for example W. Feller: ‘The appropriate
or “natural” probability distribution seemed perfectly clear to everyone and has been accepted
without hesitation by physicists. It turned out, however, that physical particles are not trained
in human common sense, and the “‘natural”’ (or Boltzmann) distribution has to be given up for
the Einstein-Bose distribution in some cases, for the Fermi-Dirac distribution in others. No
intuitive argument has been offered why photons should behave differently from protons and
why they do not obey the “a-priori” laws’ (Feller [1957], p. 5).

Moyal [1949]. See also Bartlett [1945].

Interest in quantum logic has revived with the emergence of the axiomatic approach to q.m.:
Mackey [1963]. The probabilistic structure associated with quantum logic has been completely
identified, due to a deep theorem by Gleason [1957].

The similarity is not so surprising given that the Shrodinger equation is a diffusion equation,

whose ‘diffusion coefficient’ is a pure imaginary number. See Kac [1959].
See, for example, Cameron [1960].

v
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the square of its absolute value, are even further removed from a classical
probabilistic picture. Physicists say that the various possible paths ‘interfere’.

Theory aside, the crucial question is what are the consequences of these
highly abstract observations to experience. The answer is quite obvious: the
difference between classical and quantum probability is manifested in the
phenomena of interference. But this answer is unsatisfactory for ‘interference’
is itself a theoretical, or at least a theoretically loaded term.

In the classical theory of probability, the observational counterparts of the
theoretical concept ‘probability distribution’ are the relative frequencies. In
other words, as far as repeatable (independent or exchangeable) events are
concerned, probability is manifested in frequency.® My first aim in this paper is
to analyse the phenomena of interference in terms of relative frequencies.

Surprisingly, the tools for such an analysis were developed, independently of
physics, over the last 140 years, beginning with George Boole [1862]. Boole’s
research problem in this context can be phrased in modern terminology as
follows: we are given a set of rational numbers p1, p;, . . ., p, which represent
the relative frequencies of n logically connected events. The problem is to
specify necessary and sufficient conditions that these numbers can be realized
as probabilities in some probability space. In other words, to establish the
conditions under which there exist some classical probability space, n events
E;, . .. E, in that space which manifest the aforementioned logical relations,
such that p;=probability (E;) for i=1, 2, ..., n.

The conditions in question were called by Boole ‘conditions of possible
experience’. They depend on the logical relations among the events and always
take the form of linear inequalities and equalities in the numbers p;, . . ., p,.

In quantum mechanics® we do not and cannot have a classical probability
distribution from which to recover the expectation values of all the observ-
ables. This means that the relative frequencies of microphysical events (which
are usually measured in several distinct samples) sometimes violate some of
Boole’s conditions associated with these events. This is what ‘interference’ is,
and as far as the phenomenon itself is concerned, this is all that it can be.

As we shall see, Boole's conditions of possible experience can be derived from
very elementary assumptions, either those of probability theory or alterna-
tively those of propositional logic. Hence the puzzling aspects of g.m. reside in
the phenomena themselves and not just in the theory which predicts them. To
a large extent, therefore, we are dealing here with a puzzle which does not
depend on the details of a complex physical theory. Even if the theory changes
in the future, the puzzle will probably remain.

8 This is just the law of large numbers. Either the version due to de Finetti, which concerns
exchangeable events, and thus preferred by the subjectivists, or the usual version which
concerns independent events.

9 The connection between Boole’s problem and quantum mechanics was first indicated in
Pitowsky [1989a].
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This point can be illustrated from a different angle. Quantum mechanics is
considered to be a paradigm case of a scientific revolution. But why? Really,
what is so revolutionary about it? This seemingly naive question turns out to
be difficult to answer. If we look back to the disputes among the old masters, or
alternatively search in the standard textbooks, we shall find only partial
answers. The difference between classical and quantum physics is usually
described in the language and terminology of quantum mechanics itself (‘wave
particle duality’, ‘collapse of the wave packet’, ‘uncertainty relations’, and the
like). In the worst cases, it is described in terms of an interpretation of that
theory (‘complementarity’).

There is an sense of question begging in these answers. A scientific
revolution, if it is to deserve this dramatic caption, must have an experimental
aspect to it. It is precisely this aspect which forces us to consider radical new
theories in the first place. If this logical (though perhaps not historical) order of
things is to be preserved, there must be a way to describe the phenomena which
is independent of the theory from which it is subsequently deduced. In the case
of g.m., Boole’s conditions provide an appropriate language for such a
description.

For these reasons I have decided to adopt the ‘bottom-up’ approach, begin
with a description of the phenomena, move to the theory, and conclude with
interpretations. More specifically I attempt to answer three questions:

WHAT precisely is it about microphysical phenomena that is different from
classical phenomena?

How is this difference incorporated into quantum theory?

WHY is it that microphysical phenomena and classical phenomena differ in the
way they do?

In Section 4 I shall provide an answer to the first question, expressed in
terms of Boole’s conditions of possible experience. The derivation and meaning
of these conditions is discussed in Sections 2 and 3. The second question is
really a technical one and I shall touch upon it briefly, in a non-technical
manner, in Section 5. The third question is the problem of interpretation. A
priori it is not clear that an answer to such a question is required, nor is it clear
what kind of answer can qualify as a reasonable one. I shall nevertheless
argue, in Section 6, that in the present context the wHY question does make
sense and that there are good philosophical (as opposed to scientific) grounds to
look for an answer. A few alternative interpretations are suggested in the rest
of the paper. I have made the effort to present the material in the least technical
way possible. Some further, slightly more technical material is given in the
three appendices.

The method adopted in this paper seems suspiciously empiricistic, yet the
motivation behind it is not. Unlike the empiricist I am not at all concerned here
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with justification, induction, or the analysis of theory acceptance. I merely
attempt to describe:

We must do away with all explanation, and description alone must take its place.
And this description gets its light, that is to say its purpose from the philosophical
problems. . . . The problems are solved not by giving new information, but by
arranging what we have always known. Philosophy is the battle against the
bewitchment of our intelligence by means of language. (Wittgenstein [1978],
p. 109)

2 BOOLE’'S CONDITIONS OF POSSIBLE EXPERIENCE AND THEIR
DERIVATION

George Boole is best known as one of the fathers of modern logic. Somewhat
less known in his work on the theory of probability, most of it published in his
classical book, Boole [1854]. About ten years after the publication on this
influential treatise, Boole arrived at a clearer formulation of a problem he had
considered to be of central importance for the theory of probability:?

We are now able to explain more clearly the nature of the analytical investigation
which will follow. Let py, p,, . . ., p. represent the probabilities given in the data. As
these will in general not be the probabilities of unconnected events, they will be
subject to other conditions than that of being positive proper fractions, vis. to other
conditions beside

p1=0,p,20, ..., p.=0

n<l,p,<1,...,p.<1

Those other conditions will, as will hereafter be shown, be capable of expressions
by equations or inequations reducible to the general form

apr+ap+ ... +ap,+a=0

ai, az, . . ., 4, a, being numerical constants which differ for the different conditions
in question. These together with the former, may be termed conditions of possible
experience. When satisfied they indicate that the data may have, when not
satisfied they indicate that the data cannot have resulted from an actual
observation.

A few words of clarification. What Boole means here by ‘probability’ is
relative frequency in a finite sample. As we shall see below, the conditions in
question apply to the concept of probability quite independently of the
meaning attached to this term. Boole’s problem is simple: we are given rational
numbers which indicate the relative frequencies of certain events. If no logical
relations obtain among the events, then the only constraints imposed on these
numbers are that they each be non-negative and less than one. If however, the

10 More on Boole’s conditions of possible experience and their relations to his more general
concerns will be found in Hailperin [1986].
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events are logically interconnected, there are further equalities or inequalities
that obtain among the numbers. The problem thus is to determine the
numerical relations among frequencies, in terms of equalities and inequalities,
which are induced by a set of logical relations among the events. The equalities
and inequalities are called ‘conditions of possible experience’. A few examples:

(a) Suppose that p is the relative frequency of the event E and q is the relative
frequency of the event ENE’ then g<p or

p—q=0

(b) If py, p, are the probabilities of the events E;, E,, respectively, and q,, g, are

the probabilities of E; NE; and E, UE,, respectively, then p; + p, =q; +¢5, or
p+p2—a1—42=0

This identity is commonly taken as one of the axioms of the calculus of
probability.

(c) If pis the probability of the event E and g the probability of its complement
E, then p+q=1, or

p+q—1=0

which is another axiom of the calculus of probability.
(d) Ifp,, p; are the relative frequencies of E;, E,, respectively, and g the relative
frequency of E;NE,, then p; +p,—q<1, or:

—p1—p2+q+1=0

From a mathematical point of view Boole’s achievement lies in the
realization that all the ‘conditions of possible experience’ are linear in the
probabilities. In other words, the inequalities and equalities never involve
expressions such as p? or 29 when p, q are probabilities. Moreover, given a finite
set of events, with (obviously) finitely many logical relations obtaining among
them, there is only a finite set of conditions which hold. To be more precise,
there is a finite set of equalities and inequalities, from which all other valid
conditions logically follow. This means that there is an algorithm which—
whenever given a set of events and their logical relations as input—produces
the relevant Boole’s conditions (in the form of a finite set of linear inequalities
and equalities) as output. Although Boole’s conditions are decidable, short
instances of the problem may require an extremely long time to calculate.

In the rest of this section I shall indicate how to derive Boole’s conditions.!! I
shall do so with the aid of a few examples. The outline of the general algorithm
is given in Appendix 1. This method is important to our concern because it
reveals the relationship between Boole’s problem and propositional logic.

1 The method presented below is in Pitowsky [1989b]. Mathematical aspects of Boole's problem
and related issues appear in Pitowsky [1991].
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(1,1,1)

(0,0,0) (1,0,0)
FIGURE 1

As a first example consider two events E;, E; with relative frequencies p1, p»
and let p;, denote the frequency of the joint E; N E,. Our purpose is to determine
Boole’s conditions on the numbers p;, p,, p12. Clearly we should have:

P12=20, p1=p12 p2=p12 (1)

Also the frequency of E1UE; is p; +p2 —p12, S0 we must have
p1+p2—pna<li (2)

Inequalities (1) (2) together are necessary and sufficient for the rational
numbers p1, p,, p1, to be the frequencies of two events and their joint. In other
words, they are Boole's conditions in this case.

These simple observations have a direct geometrical representation:
Consider the three-dimensional (real) space and in it the set of all vectors of the
form (p1, p1, p12), where p, pa, p1; satisfy inequalities (1) and (2). This set is a
convex polytope (Figure 1) whose vertices are (0,0,0), (1,0,0), (0,1,0), (1,1,1).
The vertices represent extreme cases: (0,0,0) is the case where p; =p, =0 and
of course the frequency of the joint p; ; is then zero too; (1,0,0) is the case where
p1=1 while p,=0, which entails that p;, =0, and so on.

Every convex polytope in a Euclidean space has a dual description, either in
terms of its vertices or in terms of its facets. Under the first description, a given
vector is an element of the polytope if and only if it can be represented as a
convex combination (weighted average) of the vertices. Under the second
description, a vector is an element of the polytope if and only if its coordinates
satisfy a set of linear inequalities!?> which represent the ‘half spaces’ whose
intersection is polytope. The existence of such a dual description for every
convex polytope is known as the Weyl-Minkowski theorem.

In the specific case above, our starting point has been the second type of
description. We have derived Boole’s conditions (inequalities 1,2) first, and
subsequently found the vertices. If we adopt the subjective approach to
probability we shall obtain the same result, in a reverse order.

12 If the polytope is full-dimensional, i.e. has non-empty interior, then we have inequalities only. If
however, the polytope is confined to an affine hyperplane, we have equalities as well.
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Given two propositions—a; ‘it will rain in Paris tomorrow’ and a, ‘it will rain
in Madrid tomorrow’'—we consider the truth table for a,, a, and a; & a, (O
stands for ‘false’, 1 stands for ‘true’):

a, a; a; & ay
0 0 0
1 0 0
0 1 0
1 1 1

The rows of the table, if looked at as vectors in a three-dimensional space, are
just the vertices of our polytope. The rows also represent the four logical
possibilities: that it will rain neither in Paris nor in Madrid tomorrow, that it
will rain in Paris but not Madrid tomorrow, etc. Suppose that we were to bet on
each one of the four possibilities, then we would choose four non-negative
numbers 4;, 4, 43, A4 such that 4, is the subjective probability assigned to ‘it
will rain neither in Paris nor in Madrid tomorrow’, A, the probability assigned
to the second row in the truth table, and so on. Since there are only four
possibilities, and since they are mutually incompatible, coherency entails that
At+Ar+As+4,=1.

Consider the vector sum:

(pl’pZ’plZ) = )»1(0,0,0) +/12(1v0v0) + 13(0'1'0) + ’14(]-'1'1): (/12 + j-4ri3 +)~4v)~4)

Here p; = 4, + A4 is the subjective probability assigned to the proposition a;,
that is, ‘it will rain in Paris tomorrow’; p, =13+ A4 is the probability of ‘it will
rain in Madrid tomorrow’ and p,, is the probability of the joint. Since (p;.p2,p12)
is a weighted average of the vertices it is an element of the polytope and thus
necessarily satisfies Boole’s conditions. In other words in the subjective
conception of probability, Boole’s conditions are just the conditions of coherency.

These considerations can be generalized easily. Let us take another example,
beginning with the subjective view this time. Consider three propositions ay, a,,
a; and their three pair conjunctions a; & a,, a; & a3, a; & a;. There are eight
possible truth value assignments to three propositions (and thus also for the
conjunctions). These are given by the following table:

a a as a; & a; a & a; a & as
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1
1 1 1 1 1 1
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Take each row in the table as a vector in a six-dimensional real space. There
are eight such vectors, and their closed convex hull in the six-dimensional
space is a full-dimensional polytope. Given a six-dimensional vector
(p1.p2.p3.P12,P13.P23), it is an element of the polytope if, and only if, it can be
represented as a weighted average of the eight vertices.

Boole’s conditions on the probabilities of three events E;, E,, E; with
relative frequencies p;, p,, p; respectively, and their three pair joints E;NE,,
Ei1NnE;, E;nEs3, with relative frequencies pi;, pi3. p23, are just the facet
inequalities of the above polytope. Let us attempt a guess. Firstly it is obvious
that each pair out of the three events must satisfy the conditions on a pair of
events and their joint. So we have for 1 <i<j<3:

pi=0, DiZDij» D; 2 Dij» pi+p—p;i<l. 3)

But these conditions are not sufficient, we must add to them constraints on all
three events and their joints. The relative frequency of E; UE,UE; is greater or
equal to p; +p; +p3—pi12—Pp13—P23, SO

P+p2+p3s—pi2—p13—pas< 1l (4)

Now if instead of the first event E;, we substitute its complement E;, then we
have to replace p; by 1 —ps, replace p;, by p, —p1», and replace p;; by ps —pi3.
while p,, p3, p2; remain intact. Substituting these values into (4) we get

p1—P12—p13+p23 20 (5)
and by symmetry

p2—p23—P12+p13=0 ©)

p3—Pp13—P23+p12=0

Satisfying inequalities (3) through (6) is a necessary and sufficient condition
that the vector (pi.p2.ps.p12.P13.P23) is an element of the polytope. Boole’s
conditions (4), (5), (6) have a special name in the physics literature; they are
called Bell inequalities.!?

The method illustrated above hints at the general algorithm. Suppose that
we are given the probabilities of a number of logically connected events. The
logical connections are exhibited in terms of propositional (that is, Boolean)
formulas. We write down the truth table for the formulas, take the convex hull
of its rows to obtain a polytope. Next we determine the inequalities (and
equalities, if any) corresponding to the polytope. These are Boole’s conditions.

13 Bell [1964]. Bell did not use these inequalities explicitly. They appeared first in Wigner [1970].
In these, as in many subsequent papers by physicists, mathematical and physical considera-
tions intermingle in the derivation of the inequalities. The purely probabilistic nature of Bell
inequalities has been demonstrated in Fine [1982a] where the sufficiency of these inequalities
is also proved. The relations to Boole's problem and the polytope method were developed in
Pitowsky [1989a, 1991].
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In Appendix 1 the reader can find more details, as well as a formal explanation
why this method yields the correct answer.

In the following I shall deal with relative frequencies only. More precisely,
with relative frequencies in a finite sample. By this I do not intend to imply that
probabilities are relative frequencies. Regardless of one’s view on the meaning
of ‘probability’, in the case of repeatable (exchangeable or independent) events,
probability is manifested in frequency.

3 CAN BOOLE’'S CONDITIONS BE VIOLATED?

One thing should be clear at the outset: none of Boole’s conditions of possible
experience can ever be violated when all the relative frequencies involved have been
measured in a single sample. The reason is that such a violation entails a logical
contradiction. For example, suppose that we sample at random a hundred balls
from an urn. Suppose, moreover that 60 of the balls sampled are red, 75 are
wooden and 32 are both red and wooden. We have p;=0-6, p,=0-75,
p12=0-32. But then p, +p, —p12> 1. This clearly represents a logical impossi-
bility, for there must be a ball in the sample (in fact three balls) which is ‘red’, is
‘wooden’, but not ‘red and wooden’; absurd.

Similar logical absurdities can be derived if we assume a violation of any of
the relevant conditions, no matter how complex they appear to be. This is the
reason for the title ‘conditions of possible experience’. In case we deal with
relative frequencies in a single sample, a violation of any of the relevant Boole’s
conditions is a logical impossibility.

But sometimes, for various reasons, we may choose or be forced to measure
the relative frequencies of (logically connected) events, in several distinct
samples. In this case a violation of Boole’s conditions may occur. There are
various possible reasons for that, and they are listed below in an increasing
order of abstractness:

(a) Failure of randomness. Suppose that we have a large urn containing a vast
number of balls of various colours sizes and constitutions. We measure the
relative frequency of red balls in one sample and obtain a number p,. Next
we measure the relative frequency p,, of wooden balls in a second distinct
sample. Finally we measure the relative frequency p;, of red wooden balls
in a third sample. If the samples are sufficiently large we still expect Boole's
conditions (1), (2) to obtain. The reason lies with the law of large numbers:
with high probability, the relative frequency of red balls in a large random
sample, is close in value to the proportion of red balls in the urn. The same
is true with respect to the other properties, ‘wooden’ and ‘red and wooden’.
Since the proportions of balls in the urn (the ‘population’) satisfy Boole's
conditions then so do, with high probability, the numbers p;, p,, p1,. Still,
we should not be surprised perhaps to obtain p;=0.6, p,=0-7 and
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p12=0-28 in three distinct samples of a hundred balls each. After all, at
least one of our samples may not have adequately represented the
population. The law of large numbers indicates that the frequency in a
sample approximates the proportion in the population with high probabi-
lity, not with certainty. Note, however, that the violation of Boole's
conditions due to a failure of randomness is a phenomenon of limited
scope, for the probability that it will occur decreases as the size of the
samples grow. Thus, if we have samples of extremely large sizes, and the
violation of at least one relevant condition persists, we should look for an
alternative explanation.

Measurement biases. Even when the samples are perfectly random we can
still observe a violation of Boole’s conditions which is due to a bias or
‘disturbance’ introduced by our method of experimentation. Consider the
following, somewhat artificial case. We take a random sample of college
students and present them with the following question:

I. Indicate whether the following statement is true or false:
The present U.S. Secretary of State is Mr James Baker.

Suppose that the relative frequency of students who answer (correctly)
‘true’ is p; =0-78. Next we take a second sample of college students and ask
them:

II. Indicate whether the following statement is true of false:
The present U.S. Secretary of State is Mr George Shultz.

The name sounds vaguely familiar (after all Mr Shultz was the previous
Secretary of State). Add this to the fact that the natural tendency of people
is to answer in the affirmative in matters of little personal consequence.
The net result is that quite a few students will wrongly answer ‘true’ to
question II, say p,=0-33.

Now take a third sample of students and present them with both
question I and II (in that order). Whoever the present Secretary of State is,
there is only one such person. Everyone knows that, so virtually nobody
will answer ‘true’ to both questions. Thus p;; =0 and p; + p, —p12> 1. Note
that the samples are random, at least there is no reason to believe they are
not. Still the violation of Boole’s condition is perfectly understandable, the
reasons have been specified above.

This is a typical case where the results of an experiment depend heavily
on the type of measurement and on the background against which it is
performed. In such cases we can blame ‘measurement biases’ for the
violation of Boole's conditions. In the artificial example described above, it
is easy to correct the bias and remove the background ‘interference’. But
this may not necessarily always be the case. Sometimes measurement
biases can be ‘stubborn’ and even unremovable in principle.
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No distribution. The law of large numbers asserts that, with high
probability, the relative frequency of a property in a (finite) random sample
approximates the proportion of that property in the population. For that
reason we expect Boole's conditions to obtain even when the relative
frequencies involved have been measured on distinct samples. Under
normal circumstances, the existence of a population with a well-defined
distribution of properties is an unproblematic assumption, which is even
accessible to direct verification. In other circumstances this assumption
becomes a matter of theoretical stipulation, which is empirically justified
by the observable relative frequencies themselves.!*

Whenever we are faced with statistical data, in the form of relative
frequencies, we tend to attribute the results to some pre-existing
distribution of properties in a hypothetical population. This attribution is
just a special case of the human habit to look for causal explanations, even
in cases when only the effects are present. But, as Hume [1739] taught us,
the attribution of causal relations between two events which appear in
temporal succession cannot be justified on logical grounds. If this skeptical
thesis is valid, then skepticism with respect to stipulated causes is even
more justified. Now, suppose that we observe a violation of Boole’s
conditions by relative frequencies measured on distinct samples. We may
attribute this failure to one of our habitual (often implicit) assumptions,
namely that there exists a well defined distribution of properties over some
population, and the results of our measurements merely reflect this fact.
Maybe there is no ‘population’, or, even if there is, there are no well-defined
properties, existing independently of observation and distributed in a
specific manner. All that exists are the phenomena themselves, which
simply occur without cause.

Mathematical oddities. It is logically possible to have a pre-existing
distribution of properties, random samples and unbiased measurements
and still obtain a violation of Boole's conditions. This can be achieved
when the ‘population’ (or more precisely, the probability space) is the
continuum. I shall briefly indicate how this can be done.!® Consider the set
of real numbers between zero and one, that is, the interval [0,1]. Let A be a
subset of that interval. Suppose that we sample points from the interval at
random. What then is the frequency of A-points (i.e. points belonging to
the subset A) in the sample? For some subsets A, the so called Lebesgue
measurable sets, there is a clear answer. The law of large numbers for this

14 This point is best illustrated by the case of classical statistical mechanics. The thermodynamic

averages are attributed to a particular distribution of molecular properties, the Maxwell-
Boltzmann distribution. As is well known, the existence of the population (molecules) was
hotly debated in the nineteenth century. Moreover, the particular choice of distribution could
not have been justified on the basis of classical mechanics alone, but required, in addition, the
assumption of equipartition (or statistical independence).

15 More details can be found in Pitowsky ([1989b], pp. 147-75).
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case asserts that, with high probability, the frequency of A-points is close
in value to a definite number, called the Lebesgue measure of A. (In case A
itself is an interval its Lebesgue measure is just its length.) If, however, A is
not a Lebesgue measurable set, then the answer is no longer so sharp. In
that case the frequency of A-points, in a large finite sample, can be any
rational number between two extremes (called the inner and outer
measures of A). That is, any rational number in that range, is an equally
likely (or unlikely) candidate. Thus, we can even conceive of two sets A, B
with the following properties: the relative frequency of A-points in one
random sample is 1. The relative frequency of B-points in a second random
sample is 1, while the relative frequency of AnB-points in a third random
sample is zero! Needless to say, sets with such strange properties are very
abstract creatures. The very existence of these non-measureable sets
depends on the validity of the axiom of choice, an abstract set theoretical
principle. This means that there is model of set theory (with the axiom of
choice excluded) in which no non-measurable sets exist.!® Since, however,
the axiom of choice is relatively consistent, the ‘construction’ indicated
above represents a logical possibility.

These are the cases, of which I am aware, where Boole’s conditions might be
violated. Another possibility, which has been neglected, is the case where we
erroneously believe that some logical relation among the events obtains, and
thus, wrongly expect some condition to be satisfied. Strictly speaking, this case
does not represent a violation of Boole’s conditions, but rather an error of
judgement. It is quite irrelevant for our concerns. In all the examples we have
discussed so far, the logical relations have been immediately recognized by
common sense. In subsequent sections we shall consider microphysical events.
The logical relations among these are also directly accessible to common sense
and are, furthermore, given by theory.

4 QUANTUM VS. CLASSICAL PHENOMENA

We are now in a better position to attempt an answer to the wHAT question:
the difference between classical and quantum phenomena is that relative frequencies
of microscopic events, which are measured on distinct samples, often systematically
violate some of Boole’s conditions of possible experience.

A few words of clarification. The microscopic world reveals itself when
events are registered in the (macroscopic) equipment of the laboratory. The
apparatus can be a photographic plate, a particle counter, a bubble chamber,
and so forth. By ‘microscopic event’ I mean the appearance of a black
(macroscopic) dot on a photograph plate, the sound of a click in a counter, the

16 Solovay [1970]. The situation is in fact quite intricate; Solovay’'s model also requires a
questionable axiom, the axiom of inaccessibility, see Shelah [1984].
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appearance of a track in a bubble chamber, and the like. All events to be
considered here occur at a more or less specific place at a specific time. Hence
all measurements to be considered are essentially time-position measure-
ments.!”

Usually the appearance of such an event is attributed to the impact of a
microscopic particle. But the term ‘particle’ is too loaded, for it implies a certain
mental picture. I shall rather use the word ‘thing’. Nothing which will be said
subsequently depends on what these ‘things’ are and what shape and spatial
location, if any, they have. It does not even matter whether ‘things’ exist at all.

When we observe a multitude of microscopic events we can measure
relative frequencies. For example, we can count the number of events
registered at a certain region in space and divide it by the total number of
registered events. Among the events considered, certain logical relations may
obtain. But when measured on distinct samples, the observed frequencies often
violate one or more of Boole’s conditions, dictated by those logical relations.

A natural question to ask is why should we measure the relative frequencies
on distinct samples, and not on one and the same sample? The answer is very
simple: in some cases we do not know how to perform simultaneous
measurements. Microscopic events behave consistently in that respect. In case
we know how to perform the relevant measurements simultaneously, then no
violation of Boole’s conditions is ever observed even when the measurements are
performed on distinct samples. Conversely, if one or more of Boole’s conditions is
violated when distinct samples are concerned, then no method for simulta-
neous measurement is known to exist.

To illustrate my approach consider the paradigm case, the two slit
experiment. We have a gadget which we call a source (a source of ‘things’). In
front of the source we put a screen with two slits and immediately behind it a
photographic plate (Figure 2).

We may choose to perform any one of four experiments. (a) Close both slits,
in which case no black dot appears on the plate, Figure 3a. (b) Open the upper
slit and close the lower one. In this case black dots begin to appear on the plate
and take the shape in Figure 3b. We can manipulate the source so the dots
appear on the plate at a very slow rate, on the average one dot per 10 seconds,
say. (c) Open the lower slit and close the upper slit to obtain the pattern in
Figure 3¢, which appears at the same slow rate. (d) Open both slits to obtain the
pattern in Figure 3b, which appears at roughly twice the rate.

Now consider the dots which appear in the region A, indicated in Figure 3. If
both slits are closed then no dots appear anywhere. Hence it is reasonable to
assume that the dots which appear in A in experiment (b) occurred as a result
of the fact that the upper slit has been opened. Thus some ‘thing’ (‘particle’,

17 It can be argued that all measurements are ultimately time-position measurements. We shall
not need this thesis there. Suffice to say that all experiments in which a violation of Boole’s
conditions occur have that nature.
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‘wave’, ‘influence’, ‘vibration’, or what have you) went through the slit.
Likewise in experiment (c). Now consider experiment (d). By the same
argument a dot which appears in region A is due to some ‘thing’ which went
through the upper slit or the lower slit. Note, this is not an exclusive ‘or’, the
‘thing’ may very well have ‘travelled’ through both slits at once. The point is that
there is no other possibility: we have verified that fact in experiment (a). Now,
let p; be the relative frequency of dots appearing in region A in experiment (b),
p> be the relative frequency of A-dots in experiment (c), and q be the relative
frequency of A-dots in experiment (d). Boole's condition for ‘or’ dictates that
q<p:+p,. But in fact we count q>p; +p,.

‘Wait a minute,” you may say, ‘isn’t it obvious that an interference, a
measurement bias, has occurred?” Well, it is not obvious at all! It is one possible
explanation, which is far from being unproblematic (see Section 8). It is true
that physicists call this phenomenon ‘interference’, but the meaning of this
term is precisely what is at stake.

In order to compare the above analysis with ‘textbook’ approaches, consider
the following dialogue between a physics professor and her student:
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Teacher: This is the core of the quantum puzzle, the particle-wave duality.
When one slit is opened we see the impact of scattered particles. The pattern is
more or less the one we would expect from classical particles. When both slits
are opened we would have expected picture (b) and (c) to be simply super
imposed. Instead we get the interference pattern in (d). The matter waves,
emerging from both holes interfere, and that’s what we get.

Student: I do not quite understand this explanation, for two reasons. First, in all
cases we see dots on the screen. These dots, if anything, appear as an impact of
particles. This is true in pictures (b), (c), and (d). But this is really not my main
concern. Second, very often in science we obtain results which are unexpected,
which seem to defy common sense. This is true in classical physics too. I don’t
quite see why this particular experiment is any different, what is so
revolutionary about it?

Teacher: Can’t you see? We get an interference here.

Student: What do you mean by ‘interference’?

Teacher: The pattern of dots in picture (d) is called ‘interference’.

Student: 0.K., but then again, what is so peculiar about it?

Teacher: It’s the number of dots, you see? Here, in region A, we simply have far
too many of them.

The discovery of puzzling microphysical phenomena, and the development
of quantum theory, occurred at roughly the same time. It is thus only natural
that the language of q.m. is being used to depict the phenomena. ‘Matter
waves’, ‘state functions’, ‘collapse’, ‘commutation relations’, and ‘inter-
ference’ are highly theoretical terms. If we are to understand the revolutionary
character of .m. we should try as much as possible to avoid those terms when
we describe the phenomena themselves. For otherwise we simply beg the
question. Indeed, the puzzling aspects of microphysics reside in the phenomena
themselves, and not just in their theoretical explanations.

5 QUANTUM THEORY

How does the formalism of q.m. incorporate these facts? One of the major
purposes of g.m. is to organize and predict the relative frequencies of events
observable in various experiments—in particular the cases where Boole's
conditions are violated. For that purpose a mathematical formalism has been
invented which is essentially a new kind of probability theory. It uses no
concept of ‘population’ but rather a primitive concept of ‘event’ or more
generally ‘observable’ (which is the equivalent of the classical ‘random
variable’). In addition, to every particular physical system (which can be one
‘thing’—an electron, for example—or consists of a few ‘things’) the theory
assigns a state. The state determines the probabilities for the events or, more
generally, the expectations of the observables. What this means operationally
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is that if we have a source of physical systems, all in the same state, then the
relative frequency of a given event will approach the value of the probability,
which is theoretically determined by the state.

For certain families of events the theory stipulates that they are commeasur-
able. This means that, in every state, the relative frequencies of all these events
can be measured on one single sample. For such families of events, the rules
of classical probability—Boole’s conditions in particular—are valid. Other
families of events are not commeasurable, so their frequencies must be
measured in more than one sample. The events in such families nevertheless
exhibit logical relations (given, usually, in terms of albebraic relations among
observables). But for some states, the probabilities assigned to the events
violate one or more of Boole's conditions associated with those logical
relations.'®

It is also important to note what quantum theory does not say. It does not
stipulate any physical cause for the violation of Boole’s conditions, it only
predicts that it will occur. In particular g.m. does not provide any dynamic
mechanism of measurement biases which might have explained the violation
of Boole’s conditions. This is the notorious ‘collapse of the wave packet’ or
‘measurement problem’. These expressions are used by physicists to indicate
that the results of measurements are not determined, not even probabilistically
determined, by any dynamic theory of measurements. Measurements, in other
words, are not depicted in g.m. as processes that take a finite positive amount of
time.

It goes without saying that q.m. does much more than indicated above. Most
notably, it incorporates physical symmetries in a much more profound way
than classical theories do. Very often, the symmetries form the basis for the
prediction of the probabilities.

6 ON THE EDGE OF A LOGICAL CONTRADICTION

Why is it that relative frequencies of microscopic events behave in the peculiar
way they do? Similar questions asked in different contexts seem to be devoid of
physical content. Why is it that the velocity of light is constant in every inertial
reference frame? It is not clear what kind of answer can qualify as a reasonable
one, nor is it clear that the question is at all meaningful. The principle of
relativity—as with many other physical principles—is taken as a basic
assumption which requires no further deliberation. There always comes a
point where the question ‘why are things the way they are?’ stops being a
question in physics. ‘That’s the way God made it, that’s the way He wants it to
be’; what else can we say?

18 1t is interesting to determine which of Boole's conditions can be (theoretically at least) violated,

and what then is the extent of violation. It turns out that all but very few of the simplest
conditions are vulnerable. See Pitowsky ([1989b], pp. 63-76).
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Perhaps this is also the point to stop asking questions about quantun
phenomena. We have a theory which accurately predicts a large variety of
empirical facts. Some of these facts do not conform to our traditional analytic
conception of probability. This state of affairs should be taken as a fact of life,
which is perhaps not entailed from any deeper law of nature.

From an empiricist point of view there is much to be said in favour of this
minimalist position. The empiricist, who suspects scientific explanations in
general,!® has a good case here. For years, scientists have attempted to derive
the predictions of quantum mechanics from principles which appeared to them
to be more basic and intuitive. These theories were often ad hoc, and in any case
never resulted in a genuine empirical extension. At best, these theories
reproduced the predictions of q.m., never more, and in a much more
cumbersome fashion. As long as this is the case, why should we go further?

A more moderate empiricist may accept the wHY question as legitimate for
instrumental reasons. In spite of the continuous failure to ‘solve’ the quantum
puzzle, the effort may be worthwhile. In the future it may result in some
genuinely new physics. At any rate, the dispute between the moderate and
extreme empiricists is about empirical judgements, whether the wHY question
will turn up to be a fruitful scientific research problem.

I believe, that in the case of q.m., there is a philosophical interest in the wHY
question, quite independently of its scientific merits. Physics is not an isolated
enterprise, detached from other fields of knowledge. If epistemology is to
become a unified coherent pursuit, physical facts should be made consistent
with the rest of our beliefs. Here, and I think only here, lies the philosophical
importance of the quantum revolution.

A violation of Boole’s conditions of possible experience cannot be encoun-
tered when all the frequencies concerned have been measured on a single
sample. Such a violation simply entails a logical contradiction; ‘observing’ it
would be like ‘observing’ a round square. We expect Boole's conditions to hold
even when the frequencies are measured on distinct large random samples.
But they are systematically violated, and there is no easy way out (see below).
We thus live ‘on the edge of a logical contradiction’. An interpretation of q.m.,
an attempt to answer the wHY question, is thus an effort to save logic.2° Not to
‘save the phenomena’, as the moderate empiricist might believe, but to save
logic. We simply attempt to incorporate microphysical phenomena to the rest
of our knowledge, to form a coherent picture. Physics may very well get along
without such an effort, science without philosophy may not be so blind after

!9 This empiricist position is most forcefully argued in van Fraassen [1980].

20 Some may even go as far as giving up logic, as Birkhoff and von Neumann [1936] did.
Although the motivation behind quantum logic can be clearly seen from the above analysis, I
still think it is an indefensible position. It encounters physical as well as philosophical problems.
See Pitowsky [1989b], Chapter 4.
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all. But the position of physics vis a vis epistemology will then remain on a
shaky ground.

In this respect q.m. is different from relativity. The latter posed a threat to
some basic physical intuitions, notably those concerning space and time. Such
a threat is more easily contained within physics itself. Quantum mechanics, by
contrast, appears to question intuitions whose range of validity lie beyond
physics, in fact beyond any one specific domain of inquiry. The interpretation
of g.m. is supposed to provide an explanation as to why this is only an
appearance, why there really is no threat to our logical conception, only an
illusion of one. There are various of such possible interpretations, each with its
own weaknesses. They more or less follow the cases compiled in Section 3 and
I shall discuss them in turn. I do not by that pretend to exhaust all the
possibilities suggested in the literature, only those which seem to me to be
reasonable, at least to some extent.

7 PRISM MODELS, THE FAILURE OF RANDOMNESS

The violation of Boole’s conditions by the relative frequencies of microphysical
events persists and stabilizes over very large samples. Moreover, each sample
can be tested for its intrinsic randomness and in that respect the samples are as
random as one can get. Therefore, it seems quite unreasonable to attribute the
violation of Boole's conditions to a failure of randomness. This would seem like
a grand conspiracy of Nature. Conspiracy, that is, against human scientists.

Indeed, there is one version of the ‘failure of randomness’ approach, which is
outlandish. According to that version, the particular experimental set-up
‘conspires’ with the source to choose a non-representative sample so as to
accommodate the predictions of q.m. One may go even further and claim that
the will of the scientist, to perform this or that experiment, somehow selects the
appropriate ensemble. Ideas like that are not just unreasonable, they are empty
in the sense that they lack any explanatory (let alone predictive) power.

A more reasonable approach in that direction is represented by the prism
models due to Fine [1982b]. A typical experimental set-up in microphysics
consists of three parts. There is a source from which ‘things’ emerge, a testing
device in which ‘things’ are manipulated, and finally a detector in which the
results are recorded. (In the two slit experiment these parts are the source,
screen, and photographic plate respectively.) Fine notes:

Every real experiment loses track of some of its population. . . . Some wander off
after reaching the mansion, some get lost in their wing, some will stubbornly
refuse to respond to certain tests or will respond in an unintelligible way, some
responses will be lost before they are recorded—or recorded incorrectly or illegibly.

In other words, in any real experiment some of the original population fails
to be detected for some reason or other. In many cases, in particular in some
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crucial experiments (such as the Einstein—-Podolsky-Rosen experiment, see
next section), it is known that the detectors themselves have low efficiency.
The results recorded in all these experiments conform to the predictions of g.m.
provided that we assume that the failure to detect is random, that is,
independent of the test performed between source and detector. This is a very
reasonable assumption indeed.

If, however, we assume that the percentage of undetected incidents is
correlated with the state of the testing device, we can arrange the numbers in
such a way so as to conform to Boole’s conditions.?!

Consider, for example, the two slit experiment. Many of the ‘things’ that
emerge from the source get lost cn the way to the photographic plate, and thus
do not leave black dots on it. If we assume that the percentage of undetected
incidents depends, in a complex way, on whether one or two slits are opened,
we can ‘explain away’ the interference effect. In other words, if we can
somehow increase detection efficiency, the interference will disappear.

The prism models are thus also based on a conspiracy—this time a
conspiracy between the experimental set-up and the detector. Their advantage
is that they are testable in principle. More efficient detectors should lead to
weaker interference, that is, smaller violation of Boole's conditions. I think it is
fair to say that no one really believes this will happen.

8 MEASUREMENT BIASES: THE FAILURE OF LOCALITY

The most straightforward way to explain the deviations from Boole's
constraints is to attribute them to measurement biases. As noted in the third
section, the specific design of an experiment and the conditions present at the
time of measurement may shift the ‘real’ value of a parameter, with the result
that one or more of Boole’s conditions is violated. Moreover, it may be the case
that such a bias is built into our equipment and cannot be removed by
improved technology. Indeed q.m., at least its non-relativistic version, can be
consistently interpreted in this manner.

Theories which incorporate measurement biases, and explain the statistical
outcomes of microphysical experiments by reference to a dynamic picture of
the measurement processes, are usually called ‘hidden variable theories’. The
reason is that such theories include physical parameters, which are not defined
in q.m. itself, and whose dynamic changes during the measurement processes
are responsible for the statistical peculiarities. The most elaborate theory of
thatkind is due to Bohm [1952]. This is a deterministic theory, which assumes
only the principles of Newtonian physics. It is thus a theory of particles, where
each particle has a definite position and momentum at all times. In addition to

21 1t is important to note that one can construct local prism models for the Einstein-Podolsky
Rosen experiment (see next section). Fine [1982c].
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the usual forces of nature, the particles are also influenced by a quantum force.
The effect of this force is to shift the trajectory of the particles, so that their final
destination conforms to the one encountered in the laboratory. The quantum
force, or the quantum potential from which it is derived, is extremely sensitive
to very slight changes in the boundary conditions. For example, the opening of
the second slit, in the double slit experiment, changes the spatial form of the
quantum potential dramatically, with the result that particles move in
trajectories utterly different from those encountered in the single slit case.??

This extreme sensitivity of the quantum potential is also responsible for the
uncertainty relations. Particles possess definite position and momentum at
each moment but we are unable to determine their values simultaneously. The
reason is that the conditions present during a momentum measurement
change the value of the quantum potential which have existed prior to the
action of measurement, with the result that the position is shifting. The
statistical average of such biases agree with the uncertainty relations. In fact,
all the predictions of Bohm's theory agree with (non-relativistic) q.m.

I agree with the view expressed by Bell [1987] that Bohm'’s theory
represents an important alternative interpretation of q.m. and that it is
regrettable that it is not routinely taught in physics courses.

If everything is so perfectly nice, you may ask, why should we go further?
But Bohm'’s theory, in fact all theories which incorporate measurement biases
in an attempt to solve the quantum puzzle, suffer from a serious physical
disadvantage. They seem to be incompatible with special relativity, at least
with the spirit of this theory. It turns out that in order to explain the results of
some experiments, we have to assume that a measurement performed in
Jerusalem induces an instantaneous significant bias in a simultaneous
measurement performed in New York (in the case of Bohm's theory, this
means that the quantum potential changes its value instantaneously all over
space, in utter contradiction to the relativity principle).

This amazing fact was discovered by Bell [1964] and a detailed version of the
argument is reproduced in Appendix 3. In this case, again, we face a violation
of some of Boole's conditions of possible experience, associated with the events
which occur in the Einstein—Podolsky—Rosen (E.P.R.) experiment. Boole’s
conditions for that particular case are called Bell inequalities (or Clauser—
Horne inequalities in a slightly different version, see Appendix 2). At least one
of these inequalities is violated by the observed frequencies. If we attempt to
attribute this effect to a measurement bias, we must assume that the bias takes
a very peculiar form: it propagates instantaneously across space, and remains
at the same significant level at all distances.

Bell's remarkable discovery casts great doubt on the idea of measurement
biases, for the following reasons:

22 A graphic representation of quantum potentials and the associated particle trajectories in
various situations is provided in Dewdney and Hilley [1982].
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(a) As noted before, all theories which incorporate measurement biases,
Bohm'’s theory included, do not predict anything which is not already
predicted by q.m.

(b) There is no independent evidence that systematic unremovable measure-
ment biases exist in any experiment, E.P.R. in particular. The only evidence
for a bias is the violation of Boole’s condition itself. Thus, for example, in
the E.P.R. case, we cannot manipulate the ‘bias’ to achieve faster-than-
light signalling.

(c) In spite of this fact, the idea that a real measurement bias occurs is
incompatible with relativity. In Bohm’s theory, in particular, this means
that the quantum potential is not Lorentz-invariant, even though the
probabilities (statistical averages) are. Hence the measurement bias idea
reduces special relativity to the status of a statistical rather than a principal
theory of space and time.

The conjunction of these facts means that it is doubtful whether measure-
ment biases exist in the first place. It does not preclude the possibility
altogether—I do not believe that any argument can eliminate the idea
completely—but it casts great doubt on the hidden variables interpretation.

The situation is somewhat analogous to the case of the ether. It is often
maintained that Einstein’s special relativity eliminated the ether from physics.
This is true in the sense that very few people still believe the idea. But from a
logical point of view, the old theory due to Lorentz, which attributes the
relativistic effects to the strange dynamic properties of the ether, is not
necessarily false. It is simply highly implausible. It is really Ockham’s razor at
work here; why should we assume the existence of strange dynamic effects,
when everything follows from a simple consistent kinematic picture?

By analogy, q.m. assumes no dynamic picture of measurement processes
and biases, and still gets the correct results. All attempts to incorporate a
dynamic picture take a highly undesirable theoretical form, while yielding no
new predictions. It seems to be just the occasion to apply Ockham’s razor once
more.

Yet the wHY question still persists, for the reasons indicated in Section 6. We
must therefore consider other, more radical, possibilities.

9 NO DISTRIBUTION: THE FAILURE OF CAUSALITY

When we are faced with statistical data, in the form of frequencies, averages,
cross-sections and the like, we automatically tend to interpret the results in
terms of a distribution of properties in some hypothetical population. As
already noted, this tendency is a special case of the human habit to look for
causal explanations, even in cases when only the effects are present. Given the
violation of Boole’s conditions, and the problematic character of the hidden
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variables approach, we may consider the possibility that the hypothetical
distribution simply does not exist.?3 All that exist are the phenomena
themselves and the correlations among them.

This brings us to the tricky question of realism. It is often maintained that
quantum mechanics forces us to choose between ‘locality’ and ‘realism’. Apart
from the fact that, logically speaking, this is not a case of an excluded middle
(see next section), the term ‘realism’ is used here in a restricted and,
philosophically speaking, quite peculiar sense. When we deny that some
properties exist (independently of observation), and are distributed in a certain
way, we do not necessarily reject ‘realism’ as a metaphysical position.?* After
all, the peculiarities of quantum statistics are associated with certain
observables—but not all. There are observables, such as electric charge, rest
mass, baryon number, and the like, which are not ‘complementary’ to any
other observable, and thus are not involved in difficulties of the kind discussed
above. These observables allow us to define the identity of particles in the first
place. There are no logically compelling reasons to take an antirealistic position
with respect to those (though there may exist philosophical reasons to argue
against physical realism in general, but this is not my concern here). In other
words, the assumption that particles (or ‘things’) exist together with some of
their properties is compatible with experience, and no further assumption
(such as the existence of measurement biases) is required to make it consistent.
For this reason, I believe that ‘realism’ is not the issue here.

What is at stake is the idea of causality. The ‘no distribution’ approach takes
the view that certain phenomena, or more precisely, certain aspects of certain
phenomena, have no causal explanation. They simply occur and that is it. There
is no ‘deeper reality’ which causes them to occur; the phenomena themselves
are their deepest explanation.

There are some similarities between this view and the empiricist view
discussed in Section 6, but there are also important differences. The empiricists
suspect the idea of ‘scientific explanations’ and causal explanations in
particular. In their view, the function of theories is to save the phenomena,
that is, to organize data and predict (via logical deduction) new phenomena.
The idea that theories really provide us with causal explanations is an illusion
(even in the case of classical science).

The view discussed here is more limited in scope. One may take a less
skeptical position with respect to scientific explanations in general, and still
deny the existence of causes in some special cases. One may argue that as far as
certain aspects of microphysical phenomena are concerned, the denial of
casual explanations is forced upon one, or is at least compelling. This is not a
matter of empiricist ideology but rather a matter of contingency.

3 An argument to that effect which is based on the E.P.R. correlations is in van Frassen [1982].
24 This point is argued in detail in Ben-Menachem [1988].
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I0 MATHEMATICAL ODDITIES REVISITED

For whatever its worth, we can provide an ‘explanation’ of microphysical
peculiarities along the lines discussed at end of Section 3.2° This means that it is
logically consistent to maintain both causality and at the same time to deny
the existence of measurement biases. The price, however, is quite heavy; we
apply abstruse mathematics to prove the existence of certain non-measurable
‘distributions’, whose only function is to ‘solve’ a logical puzzle. Ockham’s
razor can be equally (or even more fiercely) applied to this case.

II CONCLUSION

Human beings are often incapable of distinguishing truth from falsity.
Recognizing that a given statement, say a hypothetical ‘law of nature’, is true
requires a special relation between humans and the external world, a relation
which apparently does not exist. Identifying the truth value of certain
mathematical statements (e.g. the continuum hypothesis) requires an even
more mysterious relation, that of human beings to the realm of ideas, which,
again, seems not to exist. But recognizing consistency or, more precisely, an
inconsistency, a paradox requires no relation to anything external, only the
internal powers of computation, which we do seem to possess to a certain
extent. This observation is the core of the formalist approach, due essentially to
Hilbert [1918]: consistency, or rather the avoidance of a contradiction, is
ultimately the only safeguard in the pursuit of knowledge.?® We would have
liked to do better for sure, but we have very little choice in the matter.

The presence of a paradox and the attempt to avoid it have been the themes
of this paper. I think that it is significant that the paradoxical aspects of
microphysics are directly associated with the historical origins of modern
logic—the work of George Boole. We are close to witnessing what, in Boole’s
terms, amounts to ‘an impossible experience’. Of course we cannot quite
witness a logical contradiction with our own eyes, but this is as close as we can
get. There are no easy ways out, all explanations seem ultimately like excuses;
at least this is how I feel.

Perhaps this is so because we do not understand completely the nature of
the phenomena involved, and future developments in science will lead us
to the answer. This may very well be the case, but judging from the experience
of the past seventy-five years, I suspect that it is not. Perhaps it is all a
psychological delusion, we simply have to get used to the facts, and the

25 A detailed model for the E.P.R. case, constructed along similar lines, is in Pitowsky [1983].

26 Hilbert erroneously thought that the power of computation is sufficient to recognize
consistency. He was right, however, with respect to inconsistency. Note that Popper’s
falsificationist strategy is a special case of the formalist approach. We cannot recognize a theory
as true (the problem of induction), but we can attempt to falsify it. For all falsification requires is
the ability to recognize a contradiction (between a theory and a particular observation).
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questions will somehow disappear. All scientific revolutions are hard to grasp
at the outset. But I do not believe that this is the case either. We are not at the
beginning of a process in its pre-analytic stage. If anything, the discoveries of
the last thirty years have deepened the paradox, and caused more and more
scientists and philosophers to raise the question. In that respect q.m. is the
greatest scientific revolution of all, for there is still something about it which
we do not understand, and perhaps never will.

Department of Philosophy
The Hebrew University

APPENDIX I AN ALGORITHM FOR BOOLE'S CONDITIONS

We shall consider first a special case. We are given the probabilities p1, py, . . ., pn
of n events E;, E, . . ., E,, and the probabilities p; of some, not necessarily all,
their pair conjunctions E;nE;, where {i,j} range over some set of pairs S.

In order to drive Boole’s conditions for p1, . . ., py . . . p; . . ., we take n
propositions ay, . . ., a, and consider the truth table for these propositions and
the joints a; & a; where {i,j} € S. A typical row in the truth table has the form:

a; a, an a; & a;
&1 &2 NN &n e &igj
where ¢, €, . . ., &, are either zero or one. There are 2" such rows each with

n+ |S| entries, where |S| is the cardinality of S. Consider each row as a vector in
an n+ |S| dimensional real space. The convex hull of the 2" vectors is a (full
dimensional) polytope, called a correlation polytope, and denoted by c¢(n,S).
The facet inequalities of ¢(n,S) are just Boole’s conditions of possible experience
for n events and their joints in the set S. This is the case because the following
theorem obtains:2”

Theorem 1: let (py, . . .. Pur - - .. Dy - - .) be an n+ S| dimensional real vector. This
vector is an element of c¢(n,S) if and only if there exists some probability space
(X,X,1) and some events E;, . . ., E,eX such that p;=u(E;),1<i<n and

pi=u(EinE)), {ij}€S.

In order to determine Boole’s conditions for this case we have to determine
the facets. First we note that since all vertices of ¢(n,S) are zero-one vectors the
coefficients of the facet inequalities are bounded. The bound (which depends
on n) can be quite easily estimated. Next we guess n+|S|+1 positive or
negative natural numbers, within this bound: by, by, . . ., bn, . . . by . ..
Subsequently we check whether the inequality

27 For a proof see Pitowsky ([1989b], pp. 22-3).
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b+ Y.be+ > beg=0
i=1 {ij}eS
is satisfied for all zero-one sequences ¢, ¢, . . ., &, If it is, we finally establish
the affine dimensionality of the space of all n+ |S| dimensional vectors (e1, . . .,
& . . . &8 . . .) for which equality holds. If it is maximal then

bo+ Y bp+ Y bp; =0
i=1 lijfes
is one of Boole’s conditions.

This is a cumbersome and highly inefficient procedure. Unfortunately no
better method is known to exist, and it is highly probable that none exists. The
determination of Boole’s conditions for this case is directly related to the most
important open problems in the theory of computational complexity (Pitowsky
[1991]).

The general case follows the same pattern. Suppose that we are given the
probabilities g3, . . ., grof kevents A,, . . ., Ay where each 4;is a Boolean function
ofevents Ej, . . ., Ep: Aj=@;(E1, . . ., E,). This means that A; is given in terms of
a sequence of operations among intersection, union, and complementation
on E;, E,, . .. E,. We consider the truth table for the propositional formulas
¢i(a1, . . ..a,) where intersection means conjunction, union stands for
disjunction and complementation is negation. Each row in the table has k
entries, for the k propositions, and there are 2" rows. The convex hull of the
rows in the k dimensional space is a polytope. The inequalities and equalities
which describe it are Boole’s conditions for that case. This is so because
theorem 1 can be easily generalized to cover all possible logical relations.

APPENDIX 2 CLAUSER-HORNE INEQUALITIES

These are Boole’s conditions in the following case: we are given the
probabilities p1, p,, p3, ps of four events E;, E,, E;, E4 and the probabilities p; s,
P23, P14, P24 of four (out of the six possible) pair joints, namely E;NE3, E;NE3,
E1nEy4, E;nE,4. Again, we consider the truth table:

a a; as as a & a; a; &ay a> & a; a> & ay

&1 EoR) &3 &4 €183 €184 €283 €284

where ¢, ¢, €3, &4 are either zero or one. There are sixteen rows in the table

each with eight entries. The facet inequalities for the polytope which results
28

are:

pi=0, Di ZDij» Pj 2 bij» pi+pi—pi<1 i=1,2 j=34 (7)

?% Sufficiency was first proved by Fine [1982a]. See also Pitowsky ([1989b], pp. 27-30).
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—1<pi3+p1a+pra—pa3s—p1—ps<0
—1<pr3+paa+pra—p13—p2—ps<0
—1<piatpi3+p23—pra—p1—p3<0
—1<prs+pa3+pi3—p1a—p2—p3<0

(8)

The last eight inequalities are Clauser-Horne inequalities.

APPENDIX 3 THE E.P.R. EXPERIMENT

This experiment has been described in so many publications that I shall not
repeat the details, only the aspects which are revelant in the present context.
As usual we consider a source of electron pairs (or ‘things’) whose presence
can be detected by apparrata located on both sides of the source, ‘left’ and
‘right’. We can choose to perform a polarization experiment, by a Stern
Gerlach (S.G.) magnet, on one of the electrons, in a given direction, or polarize
them both in identical, or distinct directions. Let x, y, z, w be four directions in
physical space. The following table provides the results of eight such possible
experiments. (Needless to say, the frequencies are measured on distinct

samples.)

Event

Eq-left electron
up x-direction
E>-left electron
up y-direction
E;-right electron
up z-direction
E4-right electron
up w-direction

Ei1nE;-left

electron up x and
right electron up z

E\NE,-left

electron up x and
right electron up w

Experiment
S.G. magnet x direction
left, no magnet on right

S.G. magnet y left
no magnet on right

no magnet on left
S.G. magnet z right

no magnet on left
S.G. magnet w right

S.G. magnet x left
S.G. magnet z right

S.G. magnet x left
S.G. magnet w right

Relative frequency

1
=z
1
p>=z
|
p3=z
ps=*%
A
i 2 (X2
p13=3 sin’(3)
L2 (W
pra=7zsin” ()
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E>NE;-left S.G. magnet y left N
electron up y and S.G. magnet z right pr3=1% sin? (%)
right electron up z )
E>NEg-left S.G. magnet y left .
electron up y and S.G. magnet w right p2a=7%sin? (¥¥)

(v|

right electron up w

For some choices of directions x, y, z, w, the relative frequencies violate one
of Boole’s conditions for that case namely, a Clauser-Horne inequality (8). For
example, if we choose x, y, w, to be coplanar and 120° apart, and y =z we have:

Pi3s+pPiatpaa—pri—p1i—pi=5+3+35—0—3—3=>0.

In itself, this is just another case of a violation of Boole’s conditions by
quantum frequencies. We have seen that this occurs often, and in a diversity of
experimental situations. If, however, we attempt to explain the outcome by
reference to ‘measurement biases’, the result is quite peculiar. I shall not
attempt any formal proof here, but proceed along an informal line of
reasoning.

First note that the distance between the magnets (or magnets and source)
can be made very large while the violation of Boole's condition remains at the
same constant level, independent of the distance. Next, note that the relative
frequencies of the events measured on one side (the first four events) is
constant 3, and is independent of the direction. Now, the frequency of at least
one of the joint events, say E;NEj3, is simply too large to conform to Boole’s
conditions. Suppose that this has occurred because of a measurement bias. The
only kind of bias that one can think of is the following: the presence of the
magnet in the z-direction on the right had caused some of the left ‘things’, that
would have otherwise gone down, to go up in the x-direction.

To illustrate this point more clearly suppose that in the fifth experiment,
E1nEj3, we use a sample of 160 pairs. Suppose moreover that this is the only
experiment among the eight in which a measurement bias occurs. (This is not
a realistic assumption but any other assumption leads to identical conclu-
sions.) Hence, if no measurement bias had occurred, and Boole’s conditions
had been satisfied we would have had measured a frequency q,3 <3 for the
event E;NEs. In fact we get p;3=43. This means that our experiment had
wrongly reported the state of at least 20 pairs. But the marginals, the
probabilities of E, alone, and E; alone, remain constant 3. How can this be?

We can easily think of an answer. The distribution without bias is e.g.:

event: E]ﬁEZ E1GE3 E]('\E; ElﬁEg E1 E3

probability: i 1 1 1 1 1
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while the bias causes us to observe:

event: ElﬂEg E('\E; ElﬁEg E]ﬂE; El E3

o|w

1 1
2 2

|

relative frequency: 3 %

Hence the presence of the S.G. magnet in the z-direction on the right had
caused twenty of the left ‘things’, that would have otherwise gone down, to go
up in the x-direction.

But the distance between the magnets is arbitrarily large. We can introduce
the magnet instantly and thus induce an instantaneous change in the physical
state of some ‘thing’ far away. Of course we do not know that this is really the
case, because the marginals remain constant 4. Therefore, we cannot transmit
messages in this way, nor can we directly verify that a bias really occurs.
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