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Introduction
In their paper, EPR explored the subtle consequences of entanglement between a pair of particles that are
allowed to interact and then move a considerable distance apart.  EPR pointed out that measurements on one
particle can instantly provide information about the other, unmeasured, particle. Since special relativity forbids
superluminal infirmation transfer, they concluded that there must be some, as yet unknown, aspect of quantum
mechanics that connected the two measurements - a so called “hidden variable.” This process of extracting
information about an unmeasured part of a system via measurements on another part has come to be called
“counter-factual definiteness.”  Most physicists accept that the results of such implied “measurements” are just
as real as actual measurements, but some do not.

EPR raised their objections in 1935, but it wasn’t until 1964 that Bell was able to shed some light on the
paradox.  Bell’s theorem says that any physical theory that assumes local realism (as EPR did) cannot also
predict all of the results of quantum mechanics.  Local hidden variable theories and quantum mechanics are
fundamentally incompatible.

EPR envisioned an experiment involving entangled photons whose polarizations must be perpendicular.  This
is the example worked out in Basic Concepts in Physics §6.17.3-6.  I find that treatment to be very confusing
due to complexities involved in polarization that are unnecessary to the argument.  In this case I find, as I often
do, that the clearest explanation of an idea is in the original paper[1] .  I propose we consider Bell’s own, much
simpler, version.  I’ll outline his argument, using his notation.

Bell’s inequality
Bell considers “a pair of spin one-half particles formed somehow in the singlet spin state and moving freely in
opposite directions.” Simply for the sake of concreteness, I’ll suppose they are an electron/positron pair pro-
duced by the decay of a Π0  meson.  In the rest frame of the meson, the e- and e+ travel in opposite directions
(by conservation of momentum). Since the Π0  has no spin, the spin of the e-  must be opposite that of the e+

(because they are in the singlet state). We can’t predict the outcome of an individual spin measurement, but, if
the detectors used to measure the spins of the two particles are oriented in the same direction, we can predict
that we will always measure opposite spins: if the e- is spin up (­), the e+ will be spin down (¯) and vice versa.

The measurements of the e-  and e+  are made at locations A and B, a considerable distance apart, using spin
detectors oriented at angles a and b to some arbitrary reference direction.  The a = b configuration (detectors
aligned) is the only one considered by EPR and we know that, while the spin orientation of any specific mea-
surement at A is unpredictable (either ­ or ¯), every ­ measurement at A will necessarily entail a ¯ measure-
ment at B.  The measurements at A and B are said to be perfectly “anti-correlated” or, said another way, they
exhibit a -1 correlation.

Bell’s breakthrough came from the idea of  analyzing the situation when the spin detectors are differently
oriented. If the detectors are not oriented in the same way (a ¹ b), the measurements at A and B will still be
correlated, but no longer perfectly so.  Averaging over many measurements, we will find a correlation between
measurements at A and B somewhere between +1 and -1.  A perfect, +1 correlation would mean that a measure-
ment of ­ at A would always be paired with an ­ measurement at B, while a -1 correlation is the EPR case
when an ­ spin at A always implies a ¯ measurement at B.

Assume that there exists a local theory with hidden variable(s), Λ. This Λ could be anything - real or complex
number(s), vector(s), spinor(s), tensor(s), ..., and it could be discrete or continuous. It varies in some unknown
way from one meson decay to the next. Next, define a discrete function AHa, ΛL = ±1 that represents the spin
measurement at A H Þ AHa, ΛL = +1, Þ AHa, ΛL = -1). A similar function BHb, ΛL = ±1 expresses the spin measure-
ment at B. As we have seen, EPR pointed out that, for a = b:

AHa, ΛL = -BHa, ΛL. (1)

or equivalently,

AHa, ΛL BHa, ΛL = -1. (2)
 
With arbitrary  detector orientations, the product of these measurement functions will be ±1, depending on
whether the spin measurement results are parallel or anti-parallel:

AHa, ΛL BHb, ΛL = ±1. (3)

The average value of this product over many Π-meson decays is given by:

PHa, bL = Ù â Λ ΡHΛL AHa, ΛL BHb, ΛL, (4)

where Ρ(Λ)  is the unknown probability density of the hidden variable,  Λ.  Even though we don’t know the
details of how Ρ varies with Λ, the simple fact that it is a probability density requires that,

0 £ ΡHΛL £ 1 and Ù â Λ ΡHΛL = 1. (5)

Note that PHa, bL is a continuous function (unlike the discrete AHa, ΛL and BHb, ΛL) with:

-1 £ PHa, bL £ +1. (6)

In fact, PHa, bL  is the “expectation value” of the product of the two measurements. (In quantum mechanics this
poorly named quantity is not the “most likely outcome,” as its name would seem to imply, but is instead the
measured value of the quantity averaged over many trials.)

By equation (1), substituting b for a, we can eliminate function B: 

PHa, bL = -Ù â Λ ΡHΛL AHa, ΛL AHb, ΛL. (7)

Now, suppose detector B is rotated to a new angle, c, and we cauculate the difference between the expectation
values PHa, bL  and PHa, cL at the two different B detector settings:

PHa, bL - PHa, cL = -Ù â Λ ΡHΛL@AHa, ΛL AHb, ΛL - AHa, ΛL AHc, ΛLD. (8)

Since, HAHb, ΛLL2 = 1,  we can rewrite equation (8) as:
 
PHa, bL - PHa, cL = -Ù â Λ ΡHΛL@1 - AHb, ΛL AHc, ΛLD AHa, ΛL AHb, ΛL (9)

 
or,
 

PHa, bL - PHa, cL = -Ù â Λ ΡHΛL@1 - AHb, ΛL AHc, ΛLD � Ù â Λ ΡHΛL AHa, ΛL AHb, ΛL. (10)

 
By (7) and (6), the absolute value of the second integral must be £ 1, so:
 
 PHa, bL - PHa, cL¤ £ Ù â Λ ΡHΛL@1 - AHb, ΛL AHc, ΛLD , (11)

  
and, by (5) and (7), substituting b for a and c for b, 
  
 PHa, bL - PHa, cL¤ £ 1 + PHb, cL . (12)
  
This is the famous Bell inequality.  The only assumption that went into its derivation was locality: that measure-
ments at A cannot instantaneously influence measurements at B. No assumptions were made about the nature
of the hidden variable Λ or its probability distribution Ρ(Λ).

Relation to quantum mechanics
For arbitrary orientations, a and b, of the detectors at A and B, quantum mechanics predicts,

PHa, bL = -a × b = -cos Θ, (13)

where Θ is the angle between a and b. (This derivation is beyond the scope of our discussion.)

Consider the case below.

a

b

c

45ë
45ë

PHa, bL = -cos 90ë = 0 PHa, cL = PHb, cL = -cos 45ë = -0.707.

Inserting these expectation values into Bell’s inequality gives,

 PHa, bL - PHa, cL¤ =  0 + 0.707¤ = 0.707 h 1 + PHb, cL = 1 - 0.707 = 0.293 .

Having made no assumptions about Λ and having shown that Bell’s inequality fails for one set of orientations
is enough to prove that no local hidden variable theory can reproduce this quantum mechanical prediction.
(Actually, the inequality fails for almost all Θ, but this one instance is sufficient for the proof.)

Implications
Bell’s Theorem showed that EPR’s paradox is far more fundamental that its originators had understood. There
are only two ways out of the grip of Bell’s inequality.  Either,

1) quantum mechanics is not only incomplete, as EPR claimed, it’s flat out wrong, or
2) the universe is fundamentally nonlocal and no hidden variable theory can save the day.

Subsequent experiments by Clauser, Aspect and others have shown to the satisfaction of all but a few physi-
cists that conclusion 2) is the correct choice.

Much has been made in the popular literature about the nonlocality of nature, and many people have drawn
wildly incorrect implications from it. Let’s consider what Bell’s theorem actually tells us about nonlocality.

Does the measurement at A influence the measurement at B? Surely it must, or else how can we account for
the correlation between them? But, does one measurement cause  the result observed at the other location?
Certainly not. The fundamental principle of Bell’s theory is that the observer at A cannot use his measurement
to send a signal to B, since the result of his measurement is a priori unknown. Observer A cannot force his
measurement to come out in a particular spin direction. If he could, he could send a message to B. But, the
only thing observer A can control is whether or not he makes a measurement at all. This exercise of “free will”
has no effect on measurements made at B, though, since the lists of spin measurement results at both locations
will be purely random in either case. It’s only when the lists are compared (which can only take place at light
speed or less) that the correlations are seen. Nonlocality, then, only applies to influences of a very subtle
nature - those that do not involve the exchange of energy or information, and for which the evidence only
becomes apparent when the results of distant experiments are compared.

Bell’s theorem completely ruled out local hidden variable theories, but it does not eliminate the possibility of
nonlocal ones. A 2007 experiment[2]  excluded a large class of such nonlocal theories, but there remains room
for certain nonlocal hidden variable theories to be possible models of nature. In fact,  in the 1950s, David
Bohm resurrected one such model originally proposed by de Broglie that is exactly such an allowed theory.
The transactional interpretation of quantum mechanics, first introduced in 1986 by John Cramer, is another
candidate.

Still other physicists believe that Bell’s inequality can be circumvented by rejecting counterfactual definiteness
or by embracing the many worlds model of quantum mechanics.  All of this is very speculative and probably
not worth our attention.
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Bohm resurrected one such model originally proposed by de Broglie that is exactly such an allowed theory.
The transactional interpretation of quantum mechanics, first introduced in 1986 by John Cramer, is another
candidate.

Still other physicists believe that Bell’s inequality can be circumvented by rejecting counterfactual definiteness
or by embracing the many worlds model of quantum mechanics.  All of this is very speculative and probably
not worth our attention.
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Introduction
In their paper, EPR explored the subtle consequences of entanglement between a pair of particles that are
allowed to interact and then move a considerable distance apart.  EPR pointed out that measurements on one
particle can instantly provide information about the other, unmeasured, particle. Since special relativity forbids
superluminal infirmation transfer, they concluded that there must be some, as yet unknown, aspect of quantum
mechanics that connected the two measurements - a so called “hidden variable.” This process of extracting
information about an unmeasured part of a system via measurements on another part has come to be called
“counter-factual definiteness.”  Most physicists accept that the results of such implied “measurements” are just
as real as actual measurements, but some do not.

EPR raised their objections in 1935, but it wasn’t until 1964 that Bell was able to shed some light on the
paradox.  Bell’s theorem says that any physical theory that assumes local realism (as EPR did) cannot also
predict all of the results of quantum mechanics.  Local hidden variable theories and quantum mechanics are
fundamentally incompatible.

EPR envisioned an experiment involving entangled photons whose polarizations must be perpendicular.  This
is the example worked out in Basic Concepts in Physics §6.17.3-6.  I find that treatment to be very confusing
due to complexities involved in polarization that are unnecessary to the argument.  In this case I find, as I often
do, that the clearest explanation of an idea is in the original paper[1] .  I propose we consider Bell’s own, much
simpler, version.  I’ll outline his argument, using his notation.

Bell’s inequality
Bell considers “a pair of spin one-half particles formed somehow in the singlet spin state and moving freely in
opposite directions.” Simply for the sake of concreteness, I’ll suppose they are an electron/positron pair pro-
duced by the decay of a Π0  meson.  In the rest frame of the meson, the e- and e+ travel in opposite directions
(by conservation of momentum). Since the Π0  has no spin, the spin of the e-  must be opposite that of the e+

(because they are in the singlet state). We can’t predict the outcome of an individual spin measurement, but, if
the detectors used to measure the spins of the two particles are oriented in the same direction, we can predict
that we will always measure opposite spins: if the e- is spin up (­), the e+ will be spin down (¯) and vice versa.

The measurements of the e-  and e+  are made at locations A and B, a considerable distance apart, using spin
detectors oriented at angles a and b to some arbitrary reference direction.  The a = b configuration (detectors
aligned) is the only one considered by EPR and we know that, while the spin orientation of any specific mea-
surement at A is unpredictable (either ­ or ¯), every ­ measurement at A will necessarily entail a ¯ measure-
ment at B.  The measurements at A and B are said to be perfectly “anti-correlated” or, said another way, they
exhibit a -1 correlation.

Bell’s breakthrough came from the idea of  analyzing the situation when the spin detectors are differently
oriented. If the detectors are not oriented in the same way (a ¹ b), the measurements at A and B will still be
correlated, but no longer perfectly so.  Averaging over many measurements, we will find a correlation between
measurements at A and B somewhere between +1 and -1.  A perfect, +1 correlation would mean that a measure-
ment of ­ at A would always be paired with an ­ measurement at B, while a -1 correlation is the EPR case
when an ­ spin at A always implies a ¯ measurement at B.

Assume that there exists a local theory with hidden variable(s), Λ. This Λ could be anything - real or complex
number(s), vector(s), spinor(s), tensor(s), ..., and it could be discrete or continuous. It varies in some unknown
way from one meson decay to the next. Next, define a discrete function AHa, ΛL = ±1 that represents the spin
measurement at A H Þ AHa, ΛL = +1, Þ AHa, ΛL = -1). A similar function BHb, ΛL = ±1 expresses the spin measure-
ment at B. As we have seen, EPR pointed out that, for a = b:

AHa, ΛL = -BHa, ΛL. (1)

or equivalently,

AHa, ΛL BHa, ΛL = -1. (2)
 
With arbitrary  detector orientations, the product of these measurement functions will be ±1, depending on
whether the spin measurement results are parallel or anti-parallel:

AHa, ΛL BHb, ΛL = ±1. (3)

The average value of this product over many Π-meson decays is given by:

PHa, bL = Ù â Λ ΡHΛL AHa, ΛL BHb, ΛL, (4)

where Ρ(Λ)  is the unknown probability density of the hidden variable,  Λ.  Even though we don’t know the
details of how Ρ varies with Λ, the simple fact that it is a probability density requires that,

0 £ ΡHΛL £ 1 and Ù â Λ ΡHΛL = 1. (5)

Note that PHa, bL is a continuous function (unlike the discrete AHa, ΛL and BHb, ΛL) with:

-1 £ PHa, bL £ +1. (6)

In fact, PHa, bL  is the “expectation value” of the product of the two measurements. (In quantum mechanics this
poorly named quantity is not the “most likely outcome,” as its name would seem to imply, but is instead the
measured value of the quantity averaged over many trials.)

By equation (1), substituting b for a, we can eliminate function B: 

PHa, bL = -Ù â Λ ΡHΛL AHa, ΛL AHb, ΛL. (7)

Now, suppose detector B is rotated to a new angle, c, and we cauculate the difference between the expectation
values PHa, bL  and PHa, cL at the two different B detector settings:

PHa, bL - PHa, cL = -Ù â Λ ΡHΛL@AHa, ΛL AHb, ΛL - AHa, ΛL AHc, ΛLD. (8)

Since, HAHb, ΛLL2 = 1,  we can rewrite equation (8) as:
 
PHa, bL - PHa, cL = -Ù â Λ ΡHΛL@1 - AHb, ΛL AHc, ΛLD AHa, ΛL AHb, ΛL (9)

 
or,
 

PHa, bL - PHa, cL = -Ù â Λ ΡHΛL@1 - AHb, ΛL AHc, ΛLD � Ù â Λ ΡHΛL AHa, ΛL AHb, ΛL. (10)

 
By (7) and (6), the absolute value of the second integral must be £ 1, so:
 
 PHa, bL - PHa, cL¤ £ Ù â Λ ΡHΛL@1 - AHb, ΛL AHc, ΛLD , (11)

  
and, by (5) and (7), substituting b for a and c for b, 
  
 PHa, bL - PHa, cL¤ £ 1 + PHb, cL . (12)
  
This is the famous Bell inequality.  The only assumption that went into its derivation was locality: that measure-
ments at A cannot instantaneously influence measurements at B. No assumptions were made about the nature
of the hidden variable Λ or its probability distribution Ρ(Λ).

Relation to quantum mechanics
For arbitrary orientations, a and b, of the detectors at A and B, quantum mechanics predicts,

PHa, bL = -a × b = -cos Θ, (13)

where Θ is the angle between a and b. (This derivation is beyond the scope of our discussion.)

Consider the case below.

a

b

c

45ë
45ë

PHa, bL = -cos 90ë = 0 PHa, cL = PHb, cL = -cos 45ë = -0.707.

Inserting these expectation values into Bell’s inequality gives,

 PHa, bL - PHa, cL¤ =  0 + 0.707¤ = 0.707 h 1 + PHb, cL = 1 - 0.707 = 0.293 .

Having made no assumptions about Λ and having shown that Bell’s inequality fails for one set of orientations
is enough to prove that no local hidden variable theory can reproduce this quantum mechanical prediction.
(Actually, the inequality fails for almost all Θ, but this one instance is sufficient for the proof.)

 

1) quantum mechanics is not only incomplete, as EPR claimed, it’s flat out wrong, or
2) the universe is fundamentally nonlocal and no hidden variable theory can save the day.

Subsequent experiments by Clauser, Aspect and others have shown to the satisfaction of all but a few physi-
cists that conclusion 2) is the correct choice.

Much has been made in the popular literature about the nonlocality of nature, and many people have drawn
wildly incorrect implications from it. Let’s consider what Bell’s theorem actually tells us about nonlocality.

Does the measurement at A influence the measurement at B? Surely it must, or else how can we account for
the correlation between them? But, does one measurement cause  the result observed at the other location?
Certainly not. The fundamental principle of Bell’s theory is that the observer at A cannot use his measurement
to send a signal to B, since the result of his measurement is a priori unknown. Observer A cannot force his
measurement to come out in a particular spin direction. If he could, he could send a message to B. But, the
only thing observer A can control is whether or not he makes a measurement at all. This exercise of “free will”
has no effect on measurements made at B, though, since the lists of spin measurement results at both locations
will be purely random in either case. It’s only when the lists are compared (which can only take place at light
speed or less) that the correlations are seen. Nonlocality, then, only applies to influences of a very subtle
nature - those that do not involve the exchange of energy or information, and for which the evidence only
becomes apparent when the results of distant experiments are compared.

Bell’s theorem completely ruled out local hidden variable theories, but it does not eliminate the possibility of
nonlocal ones. A 2007 experiment[2]  excluded a large class of such nonlocal theories, but there remains room
for certain nonlocal hidden variable theories to be possible models of nature. In fact,  in the 1950s, David
Bohm resurrected one such model originally proposed by de Broglie that is exactly such an allowed theory.
The transactional interpretation of quantum mechanics, first introduced in 1986 by John Cramer, is another
candidate.

Still other physicists believe that Bell’s inequality can be circumvented by rejecting counterfactual definiteness
or by embracing the many worlds model of quantum mechanics.  All of this is very speculative and probably
not worth our attention.

1. 1964: Bell, J. S., "On the Einstein Podolski Rosen Paradox," Physics, 1 (3): pp.195-200, Reprinted in J. S. Bell, 
Speakable and unspeakable in quantum mechanics, 1993, Cambridge University Press, pp.14-21.

2. Gröblacher, Simon, et.al. (2007). "An experimental test of non-local realism". Nature. 446 (7138): 871–5. 
arXiv:0704.2529. 

4   Bell' Theorem.nb

Implications
Bell’s Theorem showed that EPR’s paradox is far more fundamental than its originators had understood. There 
are only two ways out of the grip of Bell’s inequality. Either,


