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Notes for Symmetry and the Beautiful Universe, 

by Leon Lederman and Christopher Hill, 2008 

JG, winter 2013-4 

Developed incrementally in order of importance, as time permits. 

This color indicates pieces of definitions of symmetry and related terms.  I need to build this as I go 

along. 

Ch. 1-5 
p. 14-5:  Working definition of symmetry 

p. 39-43:  Time of supernova that created the solar system.  Natural uranium reactors at Oklo show that 

laws of physics have not changed in last 3 billion years.  Mentioned a few more times in book. 

p. 66-9:  math, physics, and models.  Some history. 

p. 73: intro to Noether’s theorem. 

p. 93:  somewhat different definition of global vs. local. 

Chapter 6, Inertia 
p. 118:  Symmetry of uniform states of motion.  Laws of physics don’t change for different values of 

uniform velocity. 

p. 130:  A symmetry is an equivalence of things.  Equivalence of all states of uniform motion for the laws 

of physics is almost a symmetry of nature.  Galilean invariance/relativity/symmetry. 

Diffuse:  NT is a general proof that a continuous symmetry implies a conserved quantity and vice versa.  

Therefore, by NT, symmetry of translation in space implies conservation of momentum.  It is mentioned 

that this can also be shown fairly simply just by manipulating the equations, without reference to NT.  

This can be seen as either a specific example of NT, or a proof of it for the specific case of momentum 

conservation. 

Chapter 7, Relativity 
The important things in this chapter: 

 Galilean relativity and Einsteinian (special) relativity are almost the same.  They both claim that 

all the laws of physics are the same, regardless of speed and direction of uniform motion. 

 Galileo assumed that everyone would see the same elapsed time between events, regardless of 

their motion.  In other words, universal time is a law physics. 
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 For various reasons, Einstein saw that this is wrong.  (It was shown experimentally to be false by 

the Michaelson-Morley experiment.)  Einstein’s alternative assumption was that everyone will 

see the same speed of light, regardless of their speed relative to its source.   

 The selection of invariant speed of light instead of invariant elapsed time to be considered a law 

of physics is a hypothesis that must be verified experimentally.  Einstein won, at least so far. 

 All the other surprising things about special relativity come directly from this small difference. 

p.150:  Galilean relativity – laws of physics are believed to be invariant under differences of uniform 

motion.  (Alt wording: differences of uniform motion can be described as translation in the velocity part 

of parameter space.  Does this matter?) 

p. 151-2:  Galilean relativity expects and depends on absoluteness of time intervals.  The validity of 

Galilean relativity as a symmetry of nature is something to determine experimentally (or refute logically 

from other experimental evidence, as Einstein did.)  It’s wrong, since no velocity may exceed that of 

light, and speed of light is found to be independent of various states of uniform motion. 

p. 153-4:  Einstein changed the description of the laws under boosts (changes of uniform motion) by 

assuming that the speed of light didn’t change and could not be exceeded.  This means that time 

intervals (Δt) are NOT invariant, but that  c2(Δt)2-(Δx)2  (“the interval”) is. 

p. 160:  If symmetry is the controlling principle, as Einstein believed, then all laws must be invariant 

under the relativistic boost transformation, and all laws must approach the Newtonian form as v -> 0 

(since those laws seem to be valid there).  This is a strong constraint on the form of possible laws. 

p. 162:  energy relations of special relativity. 

Chapter 8, Reflections 
The real meat of the book starts in this chapter.  It is about reflection symmetry.  There are many kinds 

of reflections.  The chapter starts out easy with mirror reflection.  It turns out in 3-space that is the same 

as moving all x values to –x (or along any other axis you might want).  That’s called parity inversion (P).  

You can do the same thing with time.  But, since time flows in a particular direction whether we like it or 

not, this feels different to us.  It looks much different to see a movie run backwards, but, other than 

that, it’s really very similar to reflection along a spatial direction.  This is called time reversal (T).  What 

other physical properties might be susceptible to some kind of reflection?  What has only two 

possibilities that might be reversed?  How about electric charge?  It’s either + or -.  What happens if you 

reverse them?  It turns out this is the difference between matter and antimatter.  This is called charge 

conjugation (C). 

Notice two things about the previous paragraph:  First, there is a terminology problem.  The concept of 

reflection has acquired three new names:  inversion, reversal, and conjugation.  Don’t let this obscure 

the common idea.  Second, nothing was said about the laws of physics.  Whether any of the C, P, or T 

reflections changes the laws of physics is an important question, and must ultimately be answered by 
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experiment.  For P, it superficially looks like the laws don’t change at all.  For T, it looks like time reversal 

makes a mess of the laws of physics.  But if you think about behavior of atoms on a microscopic scale, 

then T doesn’t seem to make any difference either.  For C, that doesn’t seem to change the laws either.  

Each of these kinds of reflection appears to leave the laws of physics unchanged. 

Chapter 8 is about defining these three reflections and exploring what effect they have on the laws of 

physics.  Superficially, they all look like nothing changes.  More detailed experiments show that each 

reflection does in fact change something about how the laws work.  In all three cases, the difference 

involves the weak interaction.  Importantly, there is a theorem that if you simultaneously reverse C, P, 

and T, the laws are NOT changed.  However, nature is not obliged to respect theorems, so even this is a 

matter to be determined by experiment.   

p. 166:  Reflection in a mirror is a discrete binary symmetry.  You can’t do it part way (discrete), and if 

you do it twice, you get back where you started (binary).  If you only do it once, does that affect the way 

the laws of physics work? 

Noether’s theorem (NT) only applies to continuous symmetries.  However, discrete symmetries can also 

be associated with conservation laws.  These can be very important in quantum theory. 

p. 168-9:  Consider some physical object.  What happens if you reflect it in space?  If we think of it as 

“symmetrical”, it will be unchanged.  If it is “asymmetrical”, it will be different, but if you reflect it again, 

it changes back.  The first is called a “singlet”, because there is only one state it can be in with regard to 

this transformation (reflection).  The other is a “doublet”, because under reflection, it has two possible 

states.  “Invariant under reflection” means the first case, a singlet.  Due to the inherently binary nature 

of reflection, these are the only two possibilities.  (Actually, this and other symmetries can be partial.  

Consider the human body.  It is invariant under reflection if you only look at the outside.  On the inside, 

the organs are arranged unequally, so if you are interested in that, the body is a doublet.  Often it is 

necessary to identify which properties you expect to be preserved, and which you do not.) 

p.172-3:  This situation is of interest to physics because the “object” being reflected can be any physical 

situation and the laws that describe it.  The reason for the interest is to see if all situations behave the 

same when reversed, or not.  If so, then reflection symmetry (P, parity symmetry) is a “symmetry of 

nature”. 

p. 173-81:  In most experiments it appears that everything (i.e. the laws of physics) is invariant under 

parity inversion, or spatial reflection.  How can we be sure?  Do more experiments.  P. 176-81 describe 

early experiments that show that the laws of the weak interaction are different when reflected. 

p. 181-4:  Time reversal is another similar type of reflection.  Most superficially, this changes everything, 

and is nowhere near a symmetry.  But when we look on the scale of individual atoms and consider 

entropy, we see that time reversal also seems to leave physical situations and laws unaltered.  But is it 

really a true symmetry of nature?  (In changing all values of the time coordinate with –t, we are not 

saying that time is running backwards.  It just means that if we substitute –t for t in every physical law, 
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they are still valid.  Whether time actually has a predetermined direction, determined by something 

other than increasing entropy is perhaps unknowable.) 

p. 184-6:  I don’t understand exactly why, but the discussion abruptly turns to antimatter and the C 

symmetry.  Maybe that is because the experiment(s) that show the failure of T also involve antimatter 

(which involves C).  Anyway, this section is about experiments that show that CP is not a symmetry of 

nature, in the case of the weak interaction.  This means that simultaneously reversing all charges (C) and 

reflecting in space (P) changes the behavior of the weak interaction.  (This incompleteness of the CP 

symmetry is apparently needed to allow a small difference in original matter and antimatter quantities 

so that there is a little matter left over.  How this happens is an important theoretical frontier.) 

It isn’t explained here, but the final situation on C, P, and T is that each reflection alone, or any pair done 

together, does not give a symmetry of nature. 

p. 187-8:  In quantum mechanics as well as in other situations, we would really like it if the sum of the 

probabilities of all possible outcomes must always be exactly 1.  From this (very well supported) 

assumption, it has been proven theoretically that the combined CPT symmetry (reflecting all 3 

simultaneously) must be an exact symmetry of nature.  But the sum of probabilities is a human 

postulate that nature might possibly ignore.  Again, experimental verification is needed.  So far it looks 

good. 

Chapter 9, Broken Symmetry 
p. 189-90:  First, an attempt to clarify terminology.  I think “broken symmetry” and “hidden symmetry” 

refer to the same thing from different perspectives.  When a symmetry breaks, something that could be 

any of a number of different ways gets locked into one of them.  After the symmetry breaking event, if 

you observe it in the state that resulted arbitrarily, you may not realize that it had previously been 

unbroken (i.e. capable of being other ways), so the symmetry is hidden. 

P. 191-2:  In physics, the unbroken state of a symmetrical object is often higher energy than the states 

that may result after the symmetry is broken.  It may be kept in the symmetrical state because there is a 

lot of energy around, such as in the high temperature after the big bang.  These symmetrical states may 

break when the universe cools.  Much insight into physics has come from noticing that some particle has 

some similarity to others, and trying to figure out why and if they are different outcomes of the same 

broken symmetry. 

P. 192-7:  Magnetism is an illustration of the concept of symmetry.  Enough said. 

p. 198:  The whole concept of the Mexican hat potential and the symmetry breaking of rolling off the 

peak was originally conceived to explain something about the Higgs field, and is often called the “Higgs 

mechanism”.  The idea is that the potential energy is higher at the peak than the brim, so eventually, 

things will change (the symmetry breaks, maybe because the universe cools) and the state of the system 

changes to a lower energy one in the brim.  Because the unbroken situation was inherently unstable, 

this is called spontaneous symmetry breaking. 
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p. 200:  A particularly interesting problem of modern physics is inflation.  One hypothesis about inflation 

is that it is associated with the breaking of a symmetry of the inflaton field.  In this hypothesis, the 

inflaton field has a higher energy in its initial state (the peak of the “Mexican hat”) than a later state (the 

brim).  The process of rolling off the peak into the brim could be seen as a spontaneous breaking of a 

symmetry of the inflaton field.  Because the brim has lower energy, the energy previously stored in the 

field becomes available for other things.  In the case of inflation, that sudden release of energy becomes 

the big bang.  There are lots of variations on this idea. 

Chapter 10 Quantum Mechanics 
P. 215-6 and note 5:  The Heisenberg uncertainty principle.  He doesn’t say it, but this is not obscure 

magic performed by nature.  This is just a normal mathematical consequence of the use of complex 

exponentials (sinusoids) to model wave functions.  See 

http://en.wikipedia.org/wiki/Uncertainty_principle#Introduction, which contains  

Mathematically, in wave mechanics, the uncertainty relation between position and momentum arises 

because the expressions of the wavefunction in the two corresponding bases are Fourier transforms of 

one another (i.e., position and momentum are conjugate variables). A nonzero function and its Fourier 

transform cannot both be sharply localized. 

The fact that nature actually behaves that way lends credence to the model, and perhaps to the 

ultimate affinity of nature and mathematics. 

P. 216-226 presents a clear overview of the nature of the quantum mechanical wave equation (WF, see 

note 1) and its behavior in bound particle states, and quantization of angular momentum.  P. 218-20:  

Born’s interpretation of the magnitude squared of the wave function as the probability density of a 

particle’s presence allows the idea that the wave function can have non-zero values in different places 

while the electron can only actually be found in one.  P.220-4:  A bound state means that the physical 

location of a particle is restricted.  Bound states give rise to quantized energy states.  By the uncertainty 

principle, the more narrow the restriction (less uncertainty of position), the greater the uncertainty in its 

momentum (which means its momentum can be larger, to accommodate the uncertainty).  P.226:  

Bosons and fermions, odd or even multiples of hbar/2, etc.  Not explicitly stated (almost, on p.230) is 

that any atom with an even number of N+P+e (all spin +- ½) must be a boson, because the sum of an 

even number of +- ½ must be an integer.  Likewise, odd => fermion. 

P. 227-31:  Symmetry of identical particles allows both + and – amplitude solutions for any two identical 

particle wave equation because only the squared magnitude (probability density and all other 

observables) must be the same when swapping them.  He doesn’t say why, but boson wave functions 

have same sign when swapping identical particles, and fermions have opposite sign.  Since the only way 

to have opposite sign amplitude and same mag squared is for magnitude = 0, (identical) fermions must 

have zero probability to occupy the same space, which is the Pauli exclusion principle.  Since boson WFs 

can have non-zero amplitude for identical particles in the same place, they can pile up to make super 

fluids and lasers. 

http://en.wikipedia.org/wiki/Uncertainty_principle%23Introduction
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P. 233-6:  Similarly, + and – energy solutions to the electron WF are allowed.  Dirac’s insight and 

unconventional interpretation of this odd fact allowed him to predict antimatter.   

Chapter 11The Hidden Symmetry of Light 
This chapter again becomes confusing, at least in part because of insufficient specificity.  I’ll try to parse 

it as well as I can. 

P. 237-9:  Charge conservation is absolute, therefore there must be a continuous symmetry associated 

with it.  What might that be? 

P. 239-40:  The concept of a gauge field is introduced quite vaguely.  The example used (apparently the 

same one to be used later as the photon field?) is a field that determines the electromagnetic field, but 

an unspecified infinite family of gauge fields (related by some continuous transformation) produce the 

same EM field.  Thus, the combined EM/gauge field has a symmetry in that various forms of the gauge 

field produce the same EM field, and therefore the same observable situation.  The gauge field is not 

independently observable.  So if we take this to be a hidden symmetry, we need a conserved quantity to 

go with it.  Charge is nominated, for no apparent reason.  This concept is called gauge invariance, gauge 

symmetry, etc. 

So now we have two unobservable features (symmetries) in electromagnetism:  The phase part of 

electron wave function, and the gauge field discussed above.  Can these be combined? 

P. 241-2:  The concept of electron phase is rather laboriously introduced.  Both the momentum and 

energy of an electron are encoded by its phase behavior.  Energy is determined by frequency, which is 

rate of change of phase vs. time; momentum by wavelength, which is rate of change of phase vs. 

distance.  However, phase itself is unobservable.  If we change the phase of an electron by the same 

amount everywhere, its behavior is unchanged.  This is global phase symmetry.  But if we want to allow 

phase to change randomly in space and time (p. 242 bottom, see also note 3), a local phase 

transformation, we have also applied changes to the electron’s energy and momentum, so this is not a 

valid symmetry.   

P. 243-6:  To make this local transformation into a local symmetry, we need to introduce something else.  

That is our gauge field.  It’s job is to “compensate” the energy and momentum changes caused by the 

local variations in phase (as well as whatever else is needed – see note 4).  It turns out that this new 

gauge field describes the photon.  (Is the electron phase part of the variable part of the gauge field?  The 

idea that the electron/photon/gauge fields are to be thought of as a single entity is new to me.  Maybe a 

review of Schumm would help here, or another QFT book.) 

P. 254-5:  All known forces are based on gauge symmetry theories.  (Is the coordinate system invariance 

of GR a gauge symmetry?  How?)  The other 3 are Yang-Mills theories.  What is the core idea of that? 

http://en.wikipedia.org/wiki/Gauge_theory 

http://en.wikipedia.org/wiki/Yang%E2%80%93Mills_theory 

http://en.wikipedia.org/wiki/Gauge_theory
http://en.wikipedia.org/wiki/Yang%E2%80%93Mills_theory
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http://en.wikipedia.org/wiki/Lagrangian 

Chapter 12 Quarks and Leptons 
P. 262: The “particle zoo” of the 1950s, now known to be various kinds of baryons (3 quarks) and 

mesons (2 quarks).  Very confusing, but with patterns of similarity among them.  Gell-Mann was able to 

classify them by finding symmetries in the patterns of their properties.  His symmetries may not be 

terribly useful now, but the breakthrough was in showing that finding symmetries was the doorway to 

understanding the nature of the new particles. 

P. 263-9:  A pretty good sketch of the standard model, at a level appropriate to the subject of symmetry.  

Be sure to read notes 5-8.  P. 267-8:  The three generations of particles.  The first is the lightest; there is 

nothing lighter for them to decay into, so they are what make up ordinary matter.  Apparently 3 are 

needed to allow an excess of matter over antimatter (note 6).  It looks like there may be no more than 3, 

because the top quark mass is almost the same as the “Fermi scale” mass (so coupling constant is near 

1, p. 282), and possibly that’s the largest possible mass. 

P. 270-6:  The symmetry of the strong interaction and quark colors.  The properties of the new particles 

require a symmetry of 3 “colors” of quarks.  This can be modeled as a 3-complex-dimensional space for 

the quark wave function where the wave function is a vector pointing in any direction in that space.  Just 

as the electron phase symmetry is a (part of a?) gauge symmetry that requires the existence of the 

photon field, this higher dimensional symmetry of quarks is a gauge symmetry that requires new 

particles to make sense.  In this case, 8 gluons are needed, and QCD is born.  In addition to exchanging 

quark colors, gluons also transfer energy and momentum.  Quark confinement, quark jets. 

P. 276-80:  The gauge symmetry of the (electro)weak force.  Here, we have a symmetry between the 

upper and lower members of a weak doublet, e.g. electron/electron-neutrino, up/down quark, etc.  This 

is represented by a wave function vector in complex 2-space.  As before, to preserve the symmetry of 

this direction, more fields/particles are needed, in this case W+- and Z.  Because these are closely 

related to the photon, we ultimately find that the electromagnetic and weak forces are unified, and 

there is a symmetry among all four gauge bosons.  The W and Z are very heavy, therefore unlikely to 

appear spontaneously from the vacuum, or persist for long, so the weak force is weak and short-ranged.  

The photon is massless, so the EM force is long-ranged.  So how can there be a symmetry among such 

different particles? 

P. 280-3:  Very sketchy.  The symmetry is broken by the breaking of the Higgs field symmetry, which 

happens because the field has non-zero value at its lowest energy state (p. 201).  The W and Z interact 

with this non-zero Higgs field, but the photon does not, so their symmetry is broken.  Mass apparently 

arises from the coupling strength to this field, with a coupling constant for each particle that scales 

down its mass from the Fermi scale mass.  For the top quark, this constant is nearly 1, which suggests 

that it may be the most massive particle. 

There may be a subtle difference in how the Higgs field gives mass to W and Z and the other particles, 

but it is not mentioned.  Compare, from three successive paragraphs on p. 282-3:  “…no theory for the 

http://en.wikipedia.org/wiki/Lagrangian
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origin of the coupling constants…”, “…precisely predicted the coupling strength…”, and “…completely 

controls the mass generation…”.  Maybe he means that the masses of W and Z are predicted by theory, 

other particles are not.  I think there’s something left out. 

P. 284-7:  Here we have some disciplined speculation about future theoretical developments.  At the 

very least, gravity is unaccounted for in the standard model.  We also need an explanation for dark 

matter and dark energy.  The present expectation is that the standard model is part of a larger structure, 

which includes the Higgs boson and gravity.  Experiment presently only shows one Higgs boson, 

although various theories suggest there are more.  Extra dimensions that make some sense in Einstein’s 

equation for gravity support the same idea in string theory.  Supersymmetry (AKA supersymmetric string 

theory) draws on that, plus the idea that each known particle has a supersymmetric partner (fermions to 

bosons and vice versa).  This could again be a gauge symmetry.  It may be associated with the Fermi 

scale energy.  (175 GeV?  Wikipedia says 246 GeV is the value of the Higgs vacuum expectation value.  

This seems to be the same thing, defined differently by sqrt(2).  See 

http://en.wikipedia.org/wiki/Top_quark#Mass_and_coupling_to_the_Higgs_boson.  mt is mass of top 

quark.)  In that case, we may be close to able to observe it.  The lightest supersymmetrical particle(s) 

might be stable, and make up dark matter.  String theory may explain gravity, since the lowest string 

vibration mode looks like a graviton. 

Appendix 
P. 295-306:  An introduction to discrete groups, with brief discussion of commutativity.  Not bad, but we 

are mainly interested in continuous groups. 

P. 306-12:  A simple example of how symmetry can be used in physical reasoning.  Mostly discrete 

symmetry, but the last paragraph shows that the same kind of reasoning can apply to continuous 

symmetries. 

P. 312-6:  An incomplete grab bag of concepts about continuous groups.  Some of this is useful for us, 

some not. 

http://en.wikipedia.org/wiki/Top_quark%23Mass_and_coupling_to_the_Higgs_boson

