
Emmy Noether 

Symmetry in Physics: 
Introduction 

Symmetry is a crucial concept in mathematics, chemistry, and biology. Its definition is also applicable to
art, music, architecture and the innumerable patterns designed by nature, in both animate and inanimate
forms. In modern physics, however, symmetry may be the most crucial concept of all. Fundamental
symmetry principles dictate the basic laws of physics, control stucture of matter, and define the
fundamental forces in nature.

Some of the most famous mathematicians and physicists had this to say about symmetry:

"I aim at two things: On the one hand to clarify, step by step, the philosophic-mathematical significance
of the idea of symmetry and, on the other, to display the great variety of applications of symmetry in the
arts, in inorganic and organic nature." 

Hermann Weyl (in his book "Symmetry")

"Special relativity emphasizes, in fact is built on, Lorentz symmetry or Lorentz invariance, which is one
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of the most crucial concepts in 20th Century Physics." 

C. N. Yang (Nobel Laureate in Physics)

"Look at the symmetry of the laws, i.e., look at the way the laws can be transformed, and leave their
form unchanged...." and, " Symmetry is fascinating to the human mind; everyone likes objects of
patterns that are in some way symmetrical.... but we are most interested in the symmetries that exist in
the basic laws themselves." 

Richard P. Feynman (Nobel Laureate in Physics; in his "Lectures on Physics")

"I heave the basketball; I know it sails in a parabola, exhibiting perfect symmetry, which is interrupted
by the basket. Its funny, but it is always interrupted by the basket." 

Michael Jordan (former Chicago Bull)

The most powerful microscopes humans have built are the great particle accelerators, such as the 
Tevatron at Fermilab, in Batavia, Illinois. The Tevatron accelerates protons and antiprotons in opposite 
directions in a great circle, to energies of one trillion electron volts (as though you had a one trillion volt 
battery hooked up to a vacuum tube). These particles then collide head-on. The quarks and antiquarks, 
inside of the protons and anti-protons, themselves collide. By reconstructing the debris from a collision 
of this kind physicists get a kind-of "photograph" of the structure of matter at the shortest distance 
scales ever seen. These distances are as small in comparison to an atom as the atom is small in 
comparison to Michael Jordan's basketball. 

By studying physics at these tiny distance scales we can see that the forces of nature begin to share a 
common property, which is unseen at lower "magnification," at the larger distant scales. Today we 
understand that all of the fundamental forces in nature are unified, in a sense, by one elegant symmetry 
principle. This principle is subtle, and therefore it has a fancy name: it is called "local gauge invariance." 
Eventually we'll try to explain "local gauge invariance" to a wide audience, perhaps in this website, but for 
now please accept this as a statement of fact. 

The discovery of this unifying symmetry principle has allowed us to leap conceptually to distance scales 
one-thousand-trillion times smaller than can be seen with our most powerful microscopes (particle 
accelerators). This has allowed us to conceive of what the Universe was like in the first one billionth of 
one billionth of one billionth of one billionth of a second! At such short distances quantum gravity is 
active and forbids our normal notions of space and time. There we must use the symmetry principles
(and related topological ideas) to imagine theoretically the complete unification of all forces. This leads to 
a new ideas, to something called the "superstring'', and an arcane mathematical system called
M-theory that no one yet understands (we really don't even know what "M" stands for). Nevertheless, 
this is, perhaps, the most symmetry-pregnant logical system ever conceived by the human mind.

Indeed, we revere the fundamental symmetries of nature and we have come to intimately appreciate their 
subtle consequences. For example, we learn from Emmy Noether that to succumb to a crack-pot's 
invention requiring us to give up the law of energy conservation would be to give up the notion that time 
flows symmetrically, with no change in the laws of physics. To give up the notion that the speed of light 
is a fundamental limitation on the propagation of signals would be to give up the fundamental symmetry 
of Special Relativity, i.e., Lorentz invariance, and its consequences, such as the equivalence of matter and 
anti-matter, etc. Symmetry controls physics in a most profound way, and this was the ultimate lesson of
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the 20th century.

Yet, a sampling of the crucial role of symmetry in physics for the beginning students is at odds with the
practice of the complete omission of this beautiful and fundamental topic. Not only is it missing in the
high school curriculum, but also in the standard first year college calculus-based physics course. It does
not appear in the Standards. The profound relevance of symmetry principles in our understanding of
nature is largely a 20th century revelation, beginning with Einstein's view of physics.

 The absence of symmetry discourse in our teaching of physics today represents
a throw-back to a nineteenth century perspective which seems to permeate the curriculum.

We believe that students are attracted to and motivated by the modern and "sexy", highly visible end 
products of modern physics, e.g., semiconductors, lasers, nuclear and atomic processes, superconductors, 
superfluids, Bose-Einstein condensation, the formation of galaxies and black holes, the Big-Bang, quarks 
and strings. The process of learning about these things in detail takes some six to eight years of 
undergraduate and graduate physics courses. Only then, if the student chooses a very abstract field of 
specialization, such as theoretical elementary particle physics, will she begin to see the fundamental role 
of symmetry in the basic laws of physics. Indeed, even today many practicing physicists have no idea 
about the concept of, e.g., local gauge invariance!!!

It is possible, nonetheless, to incorporate some of the introductory underlying ideas of symmetry and its 
relationship to nature into the beginning courses in physics (and mathematics), at the High School and 
early college level. It has worked successfully for us in countless "experiments," and it is a lot of fun for 
everyone. These ideas at the outset are really not that difficult. When the elementary courses are spiced 
with these symmetry ideas, they become enhanced and begin to take on some of the dimensions of a 
humanities or fine arts study: Symmetry is one of the most beautiful concepts, and its expression in 
nature is perhaps the most stunning aspect of our physical world. We believe that symmetry will prove 
to be a vehicle for maintaining and enhancing the student's interest in physics at the outset and 
connecting to the deeper aspects of our relationship and understanding of the physical world.

What follows is a description of a high school or early-college level module that introduces the key ideas 
of symmetry which, in many examples, tie physics to astrophysics, biology and chemistry. This involves 
no calculus, but a basic knowledge of geometry and high school junior algebra (with complex numbers, 
trig, etc.) is prerequisite. This also attempts to reveal some of the modern thinking in a conversational 
way. We are experimenting in the classroom, in Saturday Morning Physics Lectures at Fermilab, and 
elsewhere, in the implementation of this approach.

We will continually update this website as our educational experiment in Symmetry proceeds (indeed, as 
you can see, it isn't finished yet). And don't hesitate to send us suggestions, comments, and even kindly 
worded complaints.
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Emmy Noether 

Symmetry in Physics: 
What is Symmetry? 

When a group of students is asked to define "symmetry" the answers they give are generally all correct. 
For example, to the question "What is Symmetry?'' we hear some of the following: 

"its like when the sides of an equilateral triangle are all the same, or when the angles are all the 
same..." 

"things are in the same proportion to each other... " 

"things that look the same when you see them from different points of view ... " 

"its the same thing before and after you do something to it... " 

A system is said to possess a symmetry if one can make a change in the system such that, after the 
change, the system appears exactly the same as before. 

Symmetry begins as a visceral human concept. We can see it with our eyes, and hear it with our ears, and 
feel it with the right sides of our brains. It is often equated to perfection. The ancient architects embodied
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symmetry into their designs. An ancient Greek temple, a Pharoah's tomb, medieval cathedral, all attempt 
to reflect the kind of home that a God would choose to live in. The anatomical features of living 
organisms embody symmetries. The sun and moon appear as perfect spheres. Thus symmetry is 
invoked to viscerally touch and nurture our needs for a divinity, a perfect order and harmony. Through 
symmetry we feel something of a spiritual world, beyond our limited and frail human plight. The arts and 
music have turned in the past century upon thematic issues involving symmetry, indeed often adopting 
"anti-symmetry" as a thematic element (e.g., the elimination of the tone-center in 12-tonal musical is a 
movement away from a center of reflection symmetry, yet it remarkably moves toward the symmetry of 
"translational invariance" which we see in space and time). 

Yet, it is the remarkable achievement of the past century that symmetry has become understood as the 
fundamental ingredient to the formulation of the laws of physics. 

Reflections: 

In the photograph to the right we see the interior view of the majestic
gothic cathedral at Amiens, France. We can use the photograph of the
cathedral to illustrate the concept of one kind of symmetry, known as
reflection. In the second photograph we have produced a mirror image
of the original by reflecting each point on the right into a point of the
left. This is the picture the camera would have taken if instead of
viewing the cathedral directly, we had placed a mirror at a 45o angle 
from the viewing direction, and then photographed the view in the
mirror. This reflection reverses left and right. We can say that any point
on the left of the symmetry axis of the cathedral has been mapped into
an equivalent point on the right, and vice-versa. Physically the cathedral
is symmetrical under this transformation (but the image shadows, and
the details of the stained glass windows are not). 

Reflection symmetry can be found throughout nature. The human body,
indeed the human brain, to a good approximation, are bilaterally 
symmetric. The left-brain and right-brain typically function differently
as behavior evolves in an organism, but shape-wise and structure-wise
(morphologically) they are the same. Many molecules come in left (levo-) and right (dextro-) forms that 
differ only by reflection. A mathematical statement of the operation of reflection in a mirror is simply to 
set up a coordinate system (x,y,z), and describe all of the objects by their
coordinates. To reflect the system in a mirror that lies in the xy plane
and which passes through the origin, simply replace every z coordinate
for every object in the system by its negative, -z. We say that z -> -z is a
"reflection in the xy plane." 

Rotations: 

A sphere (or a spherical system) can be rotated about any axis that 
passes through the center of the sphere. A cylinder may be rotated 
through any angle, but only about the special axis of symmetry of the 
cylinder. A cylinder has the same symmetry as a circle. We can rotate a 
circle about its diameter, and this is a symmetry operation. The rotation
angles we choose can be anything we want, for example, 63o. After this 
rotation (often called an "operation" or "transformation") the 
appearance of the sphere or circle is not changed. We say that the 
sphere or circle is "invariant" under the "transformation" of rotating it
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about the axis by 63o. Any mathematical description we use of the sphere will also be unchanged
(invariant) under this rotation. 

Clearly there are an infinite number of symmetry operations that we can perform upon the circle, or the 
sphere. Furthermore, there is no "smallest'' nonzero rotation that we can perform; we can perform
"infinitesimal'' rotations of the circle or on the sphere. We say that the symmetry of the circle or sphere 
is "continuous." 

From the many diverse ways of describing symmetry, one eventually gets to an appreciative agreement 
with the scientists' definition: 

"Symmetry is an invariance of an object or system to a set of 
changes (transformations)." 

We have thus encountered two distinct kinds of symmetries, 

I. Discrete Symmetries (e.g. Reflections)

II. Continuous Symmetries (e.g. Rotations)

From a mathematician's point of view these are remarkably different kinds of symmetries. 

Discrete symmetries are characterized by smallest units of operations, while continuous symmetries have no smallest 
operation, e.g., we can rotate the circle or sphere through an arbitrarily small rotation angle, or an infinitesimal angle. As 
such, we can use the powerful techniques of differential calculus to analyze continuous symmetries. This leads to an entire 
branch of mathematics (known as Lie Groups, after the famous mathematician, Sophus Lie who pioneered this technique). 
All possible continuous symmetries have been classified by the mathematicians. Discrete symmetries have unit "steps" 
which canot be subdivided; a half of a reflection operation is not a symmetry operation. The complete classification of 
discrete symmetries was a formidable problem, and has only recently been completed, using computers to prove 
enormously complicated theorems (See VII. Mathematics of Symmetry). 

Let us begin by considering space and time. Space and time contain symmetries, almost obvious yet 
subtle and even mysterious. Space and time form the stage upon which the dynamics of complicated 
physical systems is played out. Yet, in a profound way, the symmetries of space and time control the 
dynamics. This interrelationship between symmetry on the one hand, and dynamics on the other, is the 
content of the most important logical connection or "theorem" we have about nature and the laws of 
physics: it is called "Noether's Theorem." It is named for its discoverer, Emmy Noether, one of the 
greatest mathematicians (and, by the way, theoretical physicists) of the 20th century. 

What are the Symmetries of Space and Time?
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Emmy Noether 

Symmetry in Physics: 
Symmetries of Space and Time 

Translations in Space 

A physical system can simply be moved from one place to another place in space. This is called a
"spatial translation''.

Consider a classroom pointer. Usually it is a wooden stick of a fixed length, about 1 meter. We can 
translate the pointer freely in space. Do its physical properties change as we perform this translation?
Clearly they do not. The physical material, the atoms, the arrangement of atoms into molecules, into the 
fibrous material that is wood, etc., do not vary in any obvious way when we translate the pointer. This is a 
symmetry: it is a statement that the laws of physics themselves are symmetrical under translations of the 
system in space. Any equation we write describing the quarks, leptons, atoms, molecules, stresses and 
bulk moduli, electrical resistance, etc., of our pointer must itself be invariant under translation in space.

The pointer can be described by giving the locations of its endpoints in space in some coordinate system. 
We emphasize that the coordinate system is something that we humans cook up to describe things; 
nature does not come with any coordinate systems of its own. So, let us set up a 3-dimensional 
orthogonal coordinate system, called A, with an x-axis, a y-axis and a z-axis.

Emmy Noether Intro http://www.emmynoether.com/sym3.htm

1 of 6 6/16/03 9:45 AM



Now we can say that the end of the handle of our pointer is located at the coordinates: (x1, y1, z1). And,
the tip of the pointer is located at (x2, y2, z2). A second coordinate system, called B, can be constructed 
which is translated in space relative to A. The axes of B are parallel to the axes of A, but the origin of B 
is located at the point (a,b,c) in coordinate system A. Therefore, in B the handle of our pointer is located
at (x'1, y'1, z'1) and the tip at (x'2, y'2, z'2). and we have: 

x'i = xi + a 
y'i = yi + b 
z'i = zi + c 

Now consider the "physics '' of the pointer. The pointer has a physical parameter, which is its "length,'' R. 
Can we write an equation for the length of the pointer which gives the same answer in coordinate system 
A as in system B? In fact, it isn't hard. We say that in any coordinate system the formula for R is:

R2 = (x2 - x1)2 + (y2 - y1)2 + (z2 - z1)2

This formula is invariant, or symmetrical, under the translation in space, because we can immediately see 
that: 

R2 = (x2 + a - x1 - a)2 + (y2 + b - y1 - b)2 + (z2 + c - z1 - c)2 = (x'2 - x'1 )2 + (y'2 - y'1 )2 + (z'2 - z'1 )2

After performing the translation of the coordinate system we get the same identical formula for the length
of the pointer, where the original independent variables (xi, yi, zi) have now been replaced by (x'i, y'i, z'i). 
Therefore, our formula is valid in all coordinate systems that are translations in space relative to one 
another. We say that the physical observable, i.e., the length of our pointer, is invariant under translations 
in space.

While this is a simple example, the highly nontrivial fact about nature is that all correct equations in 
physics are translationally invariant! 

Translations in Time 

The physical world is actually a fabric of events. To describe events we need our 3-dimensional spatial 
coordinate system as described above, but we also need a 1-dimensional coordinate system for time. This 
is achieved by building a clock. The time t on the clock, together with the position (x,y,z) of something is 
called an "event'' (Note: we always assume that the clock is ideally located at the position of the event, so 
we don't get confused about how long it takes for light to propagate from the face of a distant clock to 
the location of the event, etc.).

Some examples of events: 

(i) We can say that there was the event of the firecracker explosion at (xf, yf, zf, tf);
(ii) The N.Y. Yankees' third baseman hits a fast pitch at (xH, yH, zH, tH);
(iii) Niel Armstrong's foot first touched the surface of the Moon at the event (xM, yM, zM, tM).

Now, we were actually somewhat sloppy in our discussion of the pointer above, because we treated the
ends of the pointer as being located at points in space (xi, yi, zi) but we didn't tell what time it was. I
might tell you to meet me at the point (xm, ym, zm), but I must always tell you what time to meet me as
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well, say tm. If you show up at (xm, ym, zm) and at any arbitrary time, t'm, then in all likelihood I will not
be at (xm, ym, zm), etc.

When we measure something like the length of the pointer we must specify an event at which that
measurement is made. 

For example, we can specify that the end of the handle of the pointer is measured at the event (x1, y1, z1, 
t1) and the tip of the pointer is measured at the event (x2, y2, z2, t2) Now, when you measure the length of
something, you do this at a common time for the events corresponding to the endpoints of the object you
are measuring (Think about it: you have a friend hold down one end of the measuring tape while you
position the other end and at the moment you read the marker on the tape the endpoint "events" are
simultaneous). So, we need t1 = t2 and we must slightly enhance our statement about the length of the
pointer. We say that the length of the pointer is determined by two formulae together: 

R2 = (x2 - x1)2 + (y2 - y1)2 + (z2 - z1)2

and: 

t1 = t2 

The second condition is critical. For example, if the pointer is moving in the +x direction with a velocity
v and we measure x2 - x1 when t1 is not equal to t2, then we will actually get an error of v(t1 - t2) in our 
measurement. Hence, we will get the wrong answer for the length of the pointer. To measure the length 
we require the endpoint locations to be measured simultaneously .

Now we see yet another important symmetry of physics: The laws of physics are invariant under
translations in time. That is, the length of the pointer can be measured now, or tomorrow, or ten seconds
ago, etc. If we haven't done anything to the pointer we should get the same answer.

This means that to every time coordinate ti for every event we are free to add an overall constant
representing a time translation, T, and use a new time coordinate t'i = ti + T. Or, we can say that all of our
clocks can be uniformly reset by a constant adjustment of T to the time they read. The laws of physics
are invariant under this translation in time. Hence, we see that for the length measurement of our pointer
t1 = t2; therefore, adding T to both sides we also have t1 + T = t2 + T. Therefore, our definition of the
length of the pointer is time translationally invariant: 

R2 = (x2 - x1)2 + (y2 - y1)2 + (z2 - z1)2

and: 

t'1 = t'2 

This means that the length of the pointer, as a parameter of an undisturbed (free, inertial) physical
system, is invariant under time translations.

The laws of physics, and thus all correct equations in physics, are invariant under translations in both
space and time. This is an experimental fact. Indeed, the constancy of the basic parameters of physics
over vast distances and times has been established in astronomical and geological observations to
approximately 10-8 precision.
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Rotations 

A sphere (or a spherical system) can be rotated about any axis that passes through the center of the
sphere. The rotation angle can be anything we want, so let's take it to be 63o. After this rotation (often 
called an "operation" or "transformation") the appearance of the sphere is not changed. We say that the
sphere is "invariant" under the "transformation" of rotating it about the axis by 63o. Any mathematical 
description we use of the sphere will also be unchanged (invariant) under this rotation. There are an 
infinite number of symmetry operations that we can perform upon the sphere. Furthermore, there is no 
"smallest" nonzero rotation that we can perform; we can perform "infinitesimal" rotations of the sphere. 
We say that the symmetry of the sphere is "continuous".

Consider again our classroom pointer. We can rotate the pointer freely in space. Do its physical 
properties change as we perform this rotation? Clearly they do not. This too is a symmetry: it is a 
statement that the laws of physics themselves are symmetrical under rotations in space.

Under rotations in free space the length R doesn't change. Suppose we measure the handle of the pointer 
at the event (0,0,0,0) (using space and time translation we can always choose the handle to be located at 
the origin of the coordinate system) and we measure the tip end of the pointer at (x,y,z,0) (note that we 
always choose a simultaneous event for the measurement of length, as described above). Then, in this 
particular coordinate system the physical length of the pointer is given by our general formula, and 
becomes: 

R2 = x2 + y2 + z2 

Now we perform a rotation of the coordinate system which takes (x,y,z,0) -> (x',y',z',0). Note that the 
rotation doesn't affect the time of any event; we are simply describing the pointer in a new coordinate 
system that is rotated relative to the old one at the time t=0. The invariance of the pointer's length under 
this rotation is the statement that: 

R2 = x'2 + y'2 + z'2 

An example of a rotation is one that lies in the xy plane through an angle of : 

x' =x cos  + y sin ; 
y' = -x sin  + y cos ; 
z'=z 

(You should convince yourself that the new x' axis, is the line y'= 0 and z'=0; this is rotated by + 
counterclockwise relative to the old x axis). Now we go ahead and substitute the expressions for x', y' 
and z' into our equation for R. We easily see that: 

R2 = x'2 + y'2 + z'2 = (x cos  + y sin )2 + (-x sin  + y cos )2 + z2 = x2 + y2 + z2 

(it's not that hard; the cos sin terms cancel, and remember that cos2  + sin2  = 1).

Hence, "observers" using the rotated (or primed) coordinate system write the same equation as the
"observers" using the unrotated system for the physical length of the pointer. The length of the pointer is 
invariant under rotations.

The laws of physics, and thus all correct equations in physics, are invariant under rotations in both 
space and time . This is, again, an experimental fact.
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Emmy Noether 

Symmetry in Physics: 
Special Relativity 

IV. Special Relativity

This section can be omitted on a first read of this text. You can skip it and go directly to Emmy Noether's 
Theorem and Conservation Laws.

Our physical world is a fabric of events, each event labelled by four coordinates, (x,y,z,t). (Remember:
Nature does not provide coordinate systems; only humans construct coordinate systems; it's a form of
accounting) 

In a given coordinate system let us consider two events, event1 at the coordinates, (x1, y1, z1, t1) and 
event2 at ( x2, y2, z2, t2). Now, recall from the previous section that rotational invariance is the statement
that the distance between two points is the same when we rotate our coordiante system. So, the distance
between the point1 at (x1, y1, z1) and the point2 at (x2, y2, z2) is 

R2 = (x2-x1)2 + (y2 -y1)2 + (z2-z1)2

R2 is the same as in the rotated coordinate system where the points are described by different (rotated)
coordinates: point1 becomes (x'1, y'1, z'1) and point2 becomes (x'2, y'2, z'2) and we have 
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R2 = (x'2-x'1)2 + (y'2 -y'1)2 + (z'2-z'1)2

Rotational symmetry says that R2 is the same, though the coordinates have changed by the rotation
(Remember: the length of the classroom pointer is the same irrespective of its orientation is space) We 
say the distance is the invariant quantity under rotations. It remains the same before and after the thing 
we do (rotate), even though the coordinates change under the rotation. Hence, we have a precise statement 
in mathematical terms of what rotational symmetry means. We also see that our formula for length is 
invariant under translations, as in the previous section.

Now: 

Einstein's Special Theory of Relativity is entirely based upon a symmetry principle that is
remarkably similar to that of rotations. 
(This is not the usual way that Relativity is introduced to beginning students, so we are taking some risk 
in explaining it this way. However, it is, in the end, the full content of Special Relativity. And we are 
using symmetry to try to explain things, so let's try it this novel way.)

The symmetry principle of Relativity states that, a thing very much like the "distance'' between the two 
events, something that is new, and is called the "proper time'' interval, is the same for all observers. The 
proper time involves the time separation between two events, as well as the space separation. We will 
denote by the Greek letter "tau,'' , the proper time . It is invariant for all observers, no matter how they 
are moving through space relative to one another (just like the length of the classroom pointer is invariant 
for all observers no matter how they are oriented in space). That is, , is the same for all inertial 
observers (we'll define inertial observers, and talk a lot about the principle of inertia below... bear in mind 
that we are never, never giving up the principle of inertia in Relativity; that is the most important law of 
physics ever discovered, and it really is the centerpiece of all of Relativity, both Special and General). The 
definition of the proper time for the two events (1) and (2) described above, the quantity , is given by: 

c2 2 = c2( t2 - t1)2 - (x2-x1)2 - (y2 -y1)2 - (z2-z1)2

Here c is the speed of light (and we haven't even mentioned light! c has more to do with physics than just 
light! c is a fundamental constant in all of the laws of physics; it essentially calibrates time relative to 
length in physics, i.e., if we use seconds for time and light-seconds for length measurements, then c = 
1.0). 

Now, a different observer moving with a constant velocity measures a different set of coordinate values
for the two events: event1 becomes: (x'1, y'1, z'1, t'1) and event2 becomes: ( x'2, y'2, z'2, t'2). But, the 
symmetry principle of Relativity states that  is the same for all observers: 

c2 2 = c2( t'2 - t'1)2 - (x'2-x'1)2 - (y'2 -y'1)2 - (z'2-z'1)2

This formula produces the same value of  in the primed coordinate system as in the unprimed 
coordinate system. This is the defining symmetry principle of Special Relativity (It's actually called 
Lorentz Invariance). Let us now note some very important implications of our new symmetry, the 
symmetry of Lorentz Invariance. 

Lorentz Invariance Contains Rotational Invariance: 
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Note that the formula for the proper time involves two pieces, a time piece: c2( t2 - t1)2, and a space piece:
-(x2-x1)2 -(y2 -y1)2 -(z2-z1)2 . We see that the space piece is just the (negative of) the squared distance
between the space coordinates of our event, i.e. -R2. Therefore, we can write c2 2 = c2( t2 - t1)2 - R2. 
So, if we just do a space rotation of our coordinates,  stays the same. Since Lorentz Invariance is the 
full symmetry that makes  the same for all observers, it follows, therefore, that rotations must be a part 
of Lorentz Invariance, the full symmetry of Relativity! 

The proper time is the actual time elapsed on an inertial clock relative to which the 
events occur at the same place in space: 

If the two events occur at the same point in space, then (x1, y1, z1) = ( x2, y2, z2). Then the distance
between the events becomes zero, or R2 becomes zero. The proper time then becomes: c2 2 = c2( t2 -
t1)2, or  = |t2 - t1|. Now, the keyword above is "inertial'' . We have to specify that our clock is moving 
inertially, or freely moving through space in the absence of forces, and is not accelerating. Then the time 
lapsed on the clock is the same as the coordinate time difference. One way to insure this is to say that the 
two events are occuring so close together in time that the clock can't be dragged around too much in the 
interim. 
However, the "clock'' may be attached to an electron (e.g., we may be measuring the electron spin, as if the electron had a 
little marker on it and we could try to count how many times it spins around per second bound in an orbit around a 
nucleus, and it may be difficult in practice to keep the motion inertial; this, by the way, is related to something wierd 
called Thomas precession of electrons in atoms). We'll get to the funny business that Relativity causes for time 
measurements elsewhere (or go to a good textbook until we update the website to include more about relativity, or wait 
until we finish our forthcoming book on the subject). Here we are just trying to motivate why we call it the "proper time.'' 

If Lorentz Invariance is the true symmetry of space and time and all of the laws of 
physics, then Newton and Galileo were wrong! 
Now we are finally getting somewhere. This is the big fuss that Einstein created in 1905 when he 
published his paper "On the Electrodynamics of Moving Bodies,'' the paper we now think of as the 
discovery of Special Relativity. What goes wrong with Newton's and Galileo's ideas about inertial 
obervers? 

Let us consider a "stationary'' observer (using unprimed coordinates) and a "moving'' observer (using
primed coordinates). The moving observer has a velocity vector, V = (vx, vy, vz). For the sake of
convenience let's specialize to the case of motion in the +x direction, where vx = v, and vy = vz = 0. Now,
according to Galileo and Newton, the coordinates of the eventi for the moving observer are related to the
coordinates of the eventi for the stationary observer by the following formulae: 

x'i = xi - vti 
y'i = yi 
z'i = yi 
t'i = ti 
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These formulae are called a Galilean transformation and they connect the coordinates used by two
different inertial observers. The are much like the connection between observers (primed) in a coordinate
system that is rotated relative to another one (unprimed). Notice, they are simple linear formulae. If the
moving observer had a velocity v in the +y direction, then we would have y' = y - vt. So, the affected
space coordinate depends upon the direction of motion. However, notice that time is unaffected by
motion in any direction! According to Galileo and Newton, time is universal , i.e., it is the same for all
inertial observers according to classical physics. 

We can now see, however, that 
the Galilean transformation is incompatible with the symmetry that requires proper
time to be the same for all observers! That is, Galilean transformations violate Lorentz
Invariance! 
We can easily see this by simply substituting these expressions into the formula for proper time: 

c2 2 = c2( t'2 - t'1)2 - (x'2-x'1)2 - (y'2 -y'1)2 - (z'2-z'1)2

= c2( t2 - t1)2 - (x2-x1 - vt2 + vt1 )2 - (y2 -y1)2 - (z2-z1)2

= c2( t2 - t1)2 - (x2-x1)2 +2v(t2 - t1)(x2-x1) - v2( t2 - t1)2 - (y2 -y1)2 - (z2-z1)2

= c2 2 +2v(t2 - t1)(x2-x1) - v2( t2 - t1)2

And so, we now see that under the Galilean transformation the proper time formula has changed in a
peculiar way. The only way Lorentz Invariance could hold would be if 

0 = 2v(t2 - t1)(x2-x1) - v2( t2 - t1)2

however, this is not generally the case for arbitrary pairs of events. What we see is that the (squared)
proper time changes under the Galilean transformation by an amount: 

2(v/c)(t2 - t1)(x2-x1) - (v/c)2( t2 - t1)2

This implies that, for any motion using the Galilean transformation relating the coordinate systems of
inertial observers, the symmetry of Lorentz Invariance does not hold. Maybe we can just ignore the
discrepancy and say that Lorentz Invariance is only approximately true? Indeed, from a practical
standpoint, in the era of Galileo and Newton, an era of horse-back and horse-carriage travel, the
discrepancies are very small, of order the ratio (v/c). A typical fast horse travels 10 m/sec, while the speed
of light is 3 x 108 m/sec, so this effect is only of order 3 x 10-8. No experimentalist (even Galileo
himself) could have possibly measured such a small effect in those days. For all practical purposes the
speed of light was infinite in the era of Galileo and Newton. And indeed, the relevant symmetry of the
Galilean transformation is that time intervals are the same for all observers, i.e. t'2 - t'1 = t2 - t1, and , of
course, we have rotational and translational invariance. However, proper time invariance is not a
symmetry of the Galilean transformation, and therefore, if Lorentz Invariance is to be exactly true then
the Galilean transformation must be wrong. 

If the Galilean transformation is wrong, then what is the correct transformation beween
inertial observers?
We saw above that the simple Galilean transformation is not the symmetry operation that preserves the
proper time to be the same for all observers, i.e., the transformation of the symmetry of Lorentz
Invariance. Then what is? Clearly we need something that mixes both space and time to cancel the
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offending terms. Moreover, we would pray to preserve linearity, because a nonlinear formula would 
cause us severe indigestion. Indeed, the actual symmetry transformation that relates the two inertial 
observers is just the solution to the problem: "Find the most general linear transformation connecting
(xi, yi, zi, ti) to (x'i, y'i, z'i, t'i)?'' We have already seen that spatial and temporal translations, and rotational 
transformations will work. However, now there is an additional transformation that relates relatively 
moving observers, called the "Lorentz Transformation'' (Heinrich Lorentz already sort-of had some of 
these ideas before Einstein, but it was Einstein who first fully appreciated this as a fundamental 
symmetry principle intertwined with the principle of inertia; in fact, Einstein largely invented our modern 
way of thinking about symmetry in physics).

The Lorentz transformation corresponding to motion of the primed observers relative to the unprimed 
ones in the x direction is: 

x'=  (x - vt) 
t' =  (t-(v/c2)x) 
y' =y 
z'=z 

where: 

 =1/(1-v2/c2)1/2 

To simplify the algebra, choose event1 at the coordinates, (0, 0, 0, 0) and event2 at (x, y, z, t). (We are 
always free to define one of the events to be at the origin of our coordinate system because of time and 
space translational symmetry.) Then the proper time between the events is 

c2 2 = c2 t2 - x2 - y2 - z2 

This formula must also hold in the primed coordinates. Thus, we substitute the above expressions for the 
primed coordinates: 

c2 2 = c2 t'2 - x'2 - y'2 - z'2 

and we can using the Lorentz transformation, with a little algebra (go ahead and do it yourself; its easy) 
verify that we recover: 

= c2 t2 - x2 - y2 - z2 = c2 2 

Hence the Lorentz transformation, indeed, preserves the invariance of the proper time. Lorentz 
transformations are correct. They replace the Galilean transformation as the correct symmetry 
transformation connecting inertial observers.

Note the mathematical similarity of the rotational invariance of the length of the pointer to the Lorentz 
Invariance of the proper time. The major difference is that the formula for the proper time has + signs in 
front of terms involving time, and - signs in front of the terms involving distance. This is like the length 
of the hypotenuse of a right triangle ala the Pythagorean formula, but for the funny sign differences 
between space and time. 

Why is the principle of Lorentz invariance true? 
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Well, that we cannot answer. We don't know why anything really is the way it is, but we can enlarge our 
understanding of what it means. 

We see that if an event at (0,0,0,0) describes the emission of light, say from an exploding firecracker, 
then any other event satisfying: 

0 = c2 t2 - x2 - y2 - z2 
will correspond to the position of the light front (the photons) coming from the firecracker explosion at 
time t > 0. We say that this is the equation of the light-front of photons coming from the source at the 
event (0,0,0,0). We see that the proper time interval between events connected by light signals is always 
zero! We call events connected by light signals, "light-like'' events. The proper time interval between 
light-like events is zero. 

Einstein's Special Theory of Relativity predicts the fact that all observers measure the same result for the 
speed of light, no matter how they are moving. 

Recall that Michelson and Moreley in 1887 had used the motion of the Earth to try to detect the change in the speed of 
light when one chases after it. The prediction of the Galilean transformations is that, if you chase after a photon with your 
velocity being v in the +x direction, where a stationbary observer sees the photon to be traveling at the speed c in the +x 
direction, then you should observe (c-v) in the +x direction. In principle, you should be able to travel at c and make the 
photon velocity 0! In principle you should be able to overtake the photon entirely! The Michelson-Moreley experiment 
produced the result for the speed of light to be c, no matter how much, or in what direction one chased after it. There were 
many whacky theories around to try to explain this. Someone should write a good book about the history of whacky 
theories; the later 1890's might be a good place to start.

By starting with the symmetry principle as the definition of Relativity, then the constancy of the speed of light for all 
observers is predicted. Usually one starts with the assumption that the speed of light is the same for all observers and 
derives the Lorentz transformation. Einstein started with the assumption that Maxwell's equations (the equations that 
describe electromagnetism, and therefore light) are the same for all observers and that the parameter c, which enters 
Maxwell's equations, is the same value for all observers. In a sense, this is the only natural way to think about Maxwell's 
equations, so Special Relativity is encoded into them. However, the truly fundamental point underlying all of this is the 
symmetry of Lorentz Invariance: the fact that proper time between any pair of events is the same for all observers. That is 
the true essence of it all. 

Hence, all observers must write down, in their respective coordinate systems, the same equation for the 
light-front, with the same universal velocity of light c. So, our moving observer must write, in her 
coordinate system: 

0 = c2 t'2 - x'2 - y'2 - z'2 

The fact that  is the same for all observers, under the Lorentz transformation that relates them, 
guarantees that this will also be a correct equation of motion for any moving inertial observer. All 
observers will agree on one universal constant speed of light. You will always observe the universal 
speed of light, c, for a photon no matter how you chase after it. Remarkably, Einstein replaced the 
universality of time by the universality of the speed of light! Time measurements are therefore observer 
dependent.

We see that as the velocity of the moving observer approaches the speed of light, i.e., when v -> c, the 
factor  blows up and the formulae of the Lorentz transformation break down. This is symptomatic of a 
general property of Relativity: things just can't go faster than the speed of light!!! We will see later how 
energy and momentum also become infinite in this limit. 
Many people have speculated about the possibility of objects, called tachyons, that hypothetically do travel faster than the 
speed of light. There is no convincing theory of these objects, and certainly no experimental evidence for them. In fact,
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tachyons are usually associated with an unstable vacuum in quantum theories, and though certain instabilities can produce 
apparent super-luminal things (like tidal waves of vacuum rearranging fields) no physical signals ever end up going faster 
than the speed of light. Moreover, all of this is tightly interwoven in the quantum theory to produce a remarkable new 
phenomenon called "anti-matter.'' Antimatter was actually predicted before it was discovered by Paul Dirac, who combined 
Relativity and Quantum Mechanics into one theory (called Relativistic Quantum Mechanics). Later, after Noether's 
theorem, we will explain this to you, as well. Take our word for it, anti-matter exists, it is real, and we make it and use it 
in physics laboratories like Fermilab every day (at least when we have the $$$ to run the machine, which isn't everyday 
these days). At present we don't know what good anti-matter is for the general economy, but we do know that one day the 
government will tax it.

We also see that the "proper time" in the limit c -> infinity, becomes just the time interval between events 
without any reference to space separation:  -> t. So, as c -> infinity, time becomes absolute and 
disconnected from space; all observers can use the same time coordinate for all events in this limit. Note, 
too, that if you take c -> infinity in the formulae for the Lorentz transformation we get back to the 
Galilean transformation: 

x' = x-vt 
t'=t, etc. 

Hence, there was Relativity in Galileo's day though few people back then really understood this in terms 
of symmetry. It should be noted that the Principle of Relativity is the "equivalence of all inertial frames 
(uniformly moving coordinate systems) for the formulation of laws of physics." Hence it really underlies 
the law of inertia. 

All of classical physics (pre-relativity, pre-quantum) is based upon Galilean Invariance. Relativity 
subsumes this into Lorentz Invariance. All of this begins with the idea of inertial observers . Inertial 
observers are non-accelerating, freely moving without any external forces acting upon them. Both the 
symmetry of Galilean and of Lorentz Invariance states that any two inertial observers will find that the 
laws of physics are the same for them, no matter how fast (or in what direction) they are moving relative 
to one another. 

Now this principle underlies in a deep way the principle of inertia. The principle of inertial states: 

A body at rest will remain at rest unless acted upon by an external force. 

A body in uniform translational motion will remain in that state of motion unless acted 
upon by an external force. 

Stated this way it appears as though there are two special states of motion, i.e., " rest '' or no motion, and 
"uniform translational'' motion (straight line motion with no acceleration, or bumps or jars). However, 
Galileo, Newton (and this principle is often credited earlier to Rene Descartes as well) understood that 
there really is no difference between a state of rest and a state of uniform translational motion. That is, it 
is really a matter of the observer's state of motion as well. If you observe an object at rest a and if I am 
moving at a velocity v in the +x direction, then I will observe the object as moving with velocity -v in the
+x direction relative to me! If physics is the same for you and me, then we both conclude the object is 
either at rest or in a state of uniform motion if not acted upon by a force! Bottom line: There is no 
absolute state of motion or rest.

The principle of inertia therefore implies that all observers observe the same laws of physics to hold true 
independently of their state of relative motion, at least in the absence of forces However, if forces are 
produced by other physical systems, then forces too must be governed by this principle. So, all inertial 
observers must agree that the laws of physics are the same for them, and motion must be a symmetry 
operation like rotation that leaves the laws unchanged. (Note: this does not mean that the observers will
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observe the exact same thing; time, length, energy, momenta, etc, for a given physical event will appear to 
be different for different observers; It is the laws of physics that interrelate these quantities that will 
always appear to be the same!)

We almost take these basic notions of inertia, which begin in Newtonian and Galilean physics, and which apply to this 
day in all of physics, for granted, or as self-evident. However, they are far from self-evident. The Greeks never conceived of 
the idea that an object in motion remains in motion unless a force acts upon it. The Greek's, and indeed, all of the natural 
philosophers (physicists) down to the era of Galileo had it all wrong. They all thought that an object moved only if an 
external force was applied . Take away the force, and the object has a "natural tendency" to come to rest. Even the great 
Johannes Kepler, who gave a set of laws of motion for the planets that encoded the correct results of the Newtonian theory 
of gravity to come later, thought that something was pushing the planets about in their orbits. In some sense, the 
relationship between force and motion that the Greek philosophers had in mind was: 

"Force = (Mass) x (velocity)" 

Obviously, this view causes one to completely misunderstand the nature of the forces at work that produce planetary 
motion. If the force vector is tangential to the orbit then it is hard to see what the sun has to with it. However, once one 
realizes the principle of inertia (which may have originated with Rene Descartes) that the velocity is constant unless a force 
is applied, then the next best guess is Newton's: 

"Force = (Mass) x (acceleration)" 

For a planet moving in a circular orbit, the acceleration is directed toward the center (it is "centripedal''). Now the correct 
formula ala Newton allows us to see that the force must also be directed toward the center. Voila, a possible connection to 
the sun as the source of the force now becomes possible!

Unfortunately, we must now send you off to a textbook on Special Relativity to learn about all of the 
miraculous effects that occur as a consequence of the Lorentz transformation. We will over time develop 
a more complete treatment of Relativity for the website. Indeed, Special Relativity is conceptual, but 
involves no more mathematics than algebra (it doesn't involve Calculus until it is applied to more 
complex situations).

Our key point here is that Relativity is an expansion of our understanding of the deep secrets of the 
symmetry of nature. We'll see below, however, how it all leads to the existence of anti-matter!

The laws of physics are invariant under spatial and temporal translations, rotations in
space, and Lorentz transformations of space-time.
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Emmy Noether 

Symmetries of the Laws 
of Physics and Noether's 
Theorem 

In 1905, a mathematician named Emmy (Amalie) Noether* proved the following theorem: 

For every continuous symmetry of the laws of physics, there must exist a conservation
law. 

For every conservation law, there must exist a continuous symmetry. 

Thus, we have a deep, deep connection between a symmetry of the laws of physics, and the existence of a
corresponding conservation law. In presenting Noether's theorem at this level we usually state it without
proof. A simple proof can be given if the student is familiar with the action principle. However, it is better
to motivate the result through examples. (For a proof, check out Mathematics of Symmetry and 
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Physics.) 

Conservation laws, like the conservation of energy, momentum and angular momentum (these are the 
most famous), are studied in high school. We now see from Noether's theorem that they emerge from 
symmetry concepts far deeper than Newton's laws. We will also learn that there are many other 
conservation laws in physics. Finally, we will give some idea of how this theorem plays out in the 
quantum theory domain. 

Now, as we have stated above, it is an experimental fact about the nature that the laws of physics are 
invariant under spatial translations. This is a strong statement. For example, if space had the structure of 
a crystal, then moving the origin of coordinates from a nucleus to a void would change the laws of nature 
within the crystal. The hypothesis that space is translationally invariant is equivalent to the statement that 
one point in space is equivalent to any other point, i.e. the symmetry is such that translations of any 
system or, equivalently, the translation of the coordinate system, does not change the laws of nature. 
Equivalently, the laws (and equations that express these laws) are invariant to translations (translational 
symmetry). 

Now comes the amazing result of mathematician Emmy Noether, whose theorem, in this case, states: 

The conservation law corresponding to space translational
symmetry is the Law of Conservation of Momentum. 

So, we learn in senior physics class that the total momentum of an isolated system remains constant. The 
ith element of the system has a momentum in Newtonian physics of the form: 

pi = m vi 
and the total momentum is just the sum of all of the elements, 

Ptotal = p1 + p2 + ... + pN 

for a system of N elements. Noether's theorem states that P is conserved, i.e., it does not change in time, 
no matter how the various particles interact, because the interactions are determined by laws that don't 
depend upon where the whole system is located in space! 

Note that momentum is, and must be, a vector quantity (hence the little arrow over the stuff in the 
equations). Why? Because momentum is associated with translations in space, and the directions you 
can translate (move) a physical system form a vector! So, if you remember the Noether theorem, you 
won't forget that momentum is a vector when taking an SAT test! 

Turning it around, the validity of the Law of Conservation of Momentum as an observational fact, via 
Noether's theorem, supports the hypothesis that space is homogeneous, i.e., possessing translational 
symmetry. The more we verify the law of conservation of momentum, and it has been tested literally 
trillions of times in laboratories all over the world, at all distance scales, the more we verify the idea that 
space is homogeneous! 

We note that Noether's Theorem further assures us that for any translationally invariant physical system
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there is always something called "momentum'' and it is always conserved. The exact formula for the 
momentum depends upon what we are studying. For the Newtonian particle it takes the form mv, while
for the relativistic particle, mv/(1- v2/c2)1/2, and for the electromagnetic wave E B/4 c, etc. Note that in 
each case the momentum is always a vector (3 component) object corresponding to the three translational 
directions of space. 

The experimental evidence also favors very strongly the homogeneity of time, i.e. any point on the time 
axis is as good as any other point, i.e., the laws of physics are invariant under tanslations in time. What 
conservation law then follows by Noether's Theorem? 

Surprise! It is nothing less than the law of conservation of energy: 

The conservation law corresponding to time translational symmetry is the Law of
Conservation of Energy. 

Since the constancy of the total energy of a system is extremely well tested experimentally, this tells us 
that nature's laws are invariant under time translations. 

Here is an example of how time invariance and energy conservation are interrelated. Consider a water 
tower that can hold a mass M of water and has a height of H meters. Assume that the gravitational 
constant, which determines the acceleration of gravity, is g, on every day of the week except Tuesday, 
when it is a smaller value g'< g. Now, we run water down from the water tower on Monday through a 
turbine (a fancy water wheel) generator which converts the potential energy MgH to electrical current to 
charge a large storage battery. We'll assume 100% efficiencies for everything, because we are physicists. 
This is Monday's job.
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Now on Tuesday we pump the water back up to H, using the battery power that we accumulated from
Monday's job to run the pump. But now the g' value is smaller than g and the work done is Mg'H, which
is now much less than the energy we got from Monday's job. This leaves us with M(g-g')H extra energy
still in the battery, which we can sell to a local power company to live on until next Monday. This is a
perpetual motion machine! It produces energy for us, and we can convert that to cash. It does not
conserve energy because we cooked up false laws of physics, in this case gravity, that are not time
translationally invariant!!! Hence, we violated a precept of Noether's Theorem. (Can you come up with
similar cute example of violating momentum conservation by making the laws of physics spatially
inhomogeneous?) 
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We also live in a world where the laws of physics are rotationally invariant: 

The conservation law corresponding to rotational symmetry is the Law of Conservation 
of Angular Momentum. 

Conservation of angular momentum is often demonstrated in lecture by what is usually called "the 3 
dumbbell experiment". The instructor stands on a rotating table,

his hands outstretched, with a heavy dumbbell in each hand (who is the third dumbbell?). A student starts
the lecturer rotating on his table. He turns slowly, then brings his hands (and dumbbells) close to his
body. His rotation speed (angular velocity, ) increases substantially. What is kept constant is the
angular momentum, J, the product of I, the moment of inertia, times the angular velocity \omega. Hence, J
= I
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By bringing his dumbbells in close to his body, the moment of inertia I, is decreased (roughly speaking,
the moment of inertia is I0, the Professor's body's moment, plus the two dumbell masses 2M times the
length of his arms squared, r2, or I = I0 + 2Mr2; in the experiment, r is initially the extended length of his
arms, and the finally is approximately 0, the retracted length of the arms). But J, the angular momentum,
must be conserved, so  must increase. Skaters do this trick all the time. 

Atoms, elementary particles, etc., all have angular momentum and in any reaction, the final angular
momentum must be equal to the initial angular momentum. Like our planet earth, particles spin and
execute orbits and both motions have associated angular momentum. Data over the past 70 or so years
confirms conservation of this quantity on the macroscopic scale of people and their machines and on the
microscopic scale of particles. And now, (thanks to Emmy) we learn that these data imply that space is
isotropic; —there is no preferred direction. All directions in space are equivalent. Incidently, the
conservation of angular momentum is encoded into Kepler's third law of planetary motion, and in some
sense represents the first exact statement of a conservation law (Archimedes anticipated energy
conservation). 

These translational and rotational symmetries of space and time need not have existed. That they do is
the way nature is. We are learning some of the actual properties of the concepts we use to describe the
world: space and time. It didn't have to be this way. For example, if all of space were constructed like the
insides of a crystal, then all directions would not be equivalent, and continuous translational symmetry
would be lost. 

What about the Lorentz invariance? What is the conserved quantity associate with it? Actually, the devil
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gets into this one; we find that the conserved quantity is actually 0. Fortunately, 0 is conserved, so there 
is a technical conservation law here, it just isn't a useful one. Nonetheless, Lorentz invariance has
profound effects, like the fact that mass is equivalent to energy through E=mc2, which we'll prove below, 
using Noether's Theorem. 

There are more abstract symmetries which do not involve space or time coordinates. An example is the 
symmetry of an assemblage of positive and negative charges. We can define an operation that tests for 
symmetry as follows: "change the signs of all the charges." In this case the appearance of the system 
changes. For example, if we have a Hydrogen atom, the nucleus is a positively charged proton and the 
electron orbiting the nucleus is negatively charged. After performing our operation, we are left with a 
system containing a negatively charged nucleus and a positively charged electron orbiting. The
"invariance'' under this operation is the statement that both systems have identical physical properties. 

Such a system could in principle be constructed. Positive electrons were discovered in 1932 (positrons) 
and negative protons were discovered in 1955. These are examples of "antimatter.'' An anti-Hydrogen 
atom could be constructed from the anti-proton and the positron; in fact, it has been made in a clever 
particle accelerator experiment, and some of its properties have been observed. Matter-anti-matter 
symmetry implies that the mass, spins, binding energies, excited states, etc. of both real Hydrogen and 
anti-Hydrogen must be identical. The charge-reversal symmetry is another example of a discrete 
symmetry. We will have more to say about anti-matter, and ultimately we can glimpse why anti-matter 
must exist from the basic symmetry principles of space and time embodied in Einstein's Theory of 
Relativity.

*(pronounced like "mother'' with an "n"; born, 1882, she had a great deal of trouble finding permanent employment in 
male-dominated European universities, and had to flee the rise of Naziism; she spent her last few years at Bryn Mawr; she 
died in 1935) 

The Homepage.
I. Introduction.
II. What is Symmetry?
III. Symmetries of Space and Time.
IV. Special Relativity
V. Noether's Theorem and Conservation
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Emmy Noether 

Symmetry in Physics: 
Symmetries in Quantum 
Mechanics 

We would like to illustrate the generality and power of some symmetries that emerge in the quantum 
theory uniquely. These are the symmetries of "phase invariance'' or "local gauge invariance,'' and the 
symmetries associated with interchanging "identical particles''. These symmetries play a profound role in 
controlling the structure of the basic forces in nature, the conservation of particle number, the 
conservation of electric and other charges, etc. etc. These symmetries ultimately control nature as we see 
it and feel it, from controlling the basic stability of matter, dictating the Periodic Table of the Elements, to 
producing wierd phenomena such as lasers, superconductors, superfluids, etc. etc. 

First we must approach the question: what is quantum theory? 

The Wave Function 
Suppose we have only one particle in the whole Universe. Of course, this is always just an 
approximation in which one particle is treated approximately in isolation from everything else. In fact, it 
is a pretty good approximation for freely propagating light (photons) or electrons or neutrons or protons 
or atoms (viewed as particles) straying freely in space (and even to a lesser degree within a metal) and
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even for quarks found inside the proton at extremely short distances (or in very very high energy 
collisions). 

How do we describe such a particle? In quantum mechanics we do so by introducing the idea of the
"quantum state.'' A particular form of this idea is to talk about the "wave-function'' of the particle. And, 
for simplicity, we will assume that our particle is extremely elementary and carries no information other 
than where it is located. [in a vague sense that is what a particle is; it is a tiny object which carries a 
limited amount of information, such as (1) its position, (2) its "spin'' i.e. how much angular momentum 
resides with the particle, and this is subject to special rules from quantum mechanics, (3) its electric 
charge, and various other tidbits of information that we won't consider at present; however, if you are a 
computer geek you can think of an elementary particle as a kind of "byte'' of information]. For our very-
elementary particle that carries only information about position the wave-function is simply a
(complex number valued) function of space, and time: 

(x, t ) 

The meaning of the wave-function is subtle and profound, and involves the full construction of the 
quantum theory. We will tell you however, that it is useful, because the (absolute) square of the
wave-function is the probability of finding our particle at any given point in space, at any particular time: 

| (x, t)|2 = probability of finding particle at position x at the time t. 

Let us emphasize that the wave-function for particles like electrons associates a complex number ( a
number of the form (real number)1 + i(real number)2, where i is the infamous "square root of minus 
1''). To form the observable probability of finding the particle somewhere at sometime, note that we take
the "absolute square'' (the absolute square of a complex number z is z times its complex conjugate z*, or
|z |2 = zz*.) 
At this point you students say: "Surely you jest!!!'' "Don't you mean that you are merely using complex 
numbers for a kind of convenience, like they do in electrical engineering, and that there really is no 
physical significance to the use of complex numbers?" 

To wit we answer: No!!! We do not Jest!!! In Quantum Mechanics there really are complex numbers 
and the wave-function really is a complex valued function of space-time. Now, of course we could reduce 
everything to ordered pairs of real numbers, and do all the math without ever talking about i, but there is 
no benefit or meaningful significance to doing so. That would be like talking about some horrible social 
disease at a cocktail party without ever using the actual name of the disease, but everyone would still 
understand what we were really talking about, and some character might sooner or later blurt it out. The 
fact is, in the mathematics of quantum mechanics the square-root of -1 plays a fundamental role. Nature 
reads books on complex numbers!!! 

However, since in the end we measure real numbers, i.e., we measure probabilities like | (x, t)(x )|2, we
might ask: "what is the significance of the overall complex phase of the wave-function?'' Do we smell a 
symmetry here? What happens if we take the electron wave-function and multiply by an overall complex 
phase factor? 

(x ) -> exp( i ) (x) 

Now the probability is unchanged: 

| (x )|2 -> | (x )|2 
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This is, therefore, a symmetry operation in quantum mechanics. 

Now the mind boggling, goose-pimple inducing, amazing consequence of this symmetry is the 
corresponding conservation law (remember, Emmy Noether says for every continuous symmetry there is 
a conserved quantity; we have here a continuous symmetry because the real number  can be any value 
we like; this is, by the way, the U(1) symmetry we encountered at the very beginning of these lectures). If 
the particle we are talking about is actually the electron, then we have discovered nothing less than: 

The conservation of electric charge!

The conservation of electric charge is a very well tested experimental law of physics. For example, it 
forbids processes like: 

e- -> neutrino + photon,

in which case electric charge would completely disappear. Indeed, we never see processes like this in the 
laboratory. 

On the other hand, processes like this one do occur: 

e- + p+ -> n + neutrino

Since the final state is electrically neutral, the negative electric charge of the electron has combined with 
the positive electric charge of the proton, and by electric charge conservation, we are assured that the 
electric charge of the electron is equal to the opposite of that of the proton to an infinite number of 
significant figures. Indeed, we can place a large quantity of Hydrogen gas into a container and obeserve
to a very high precision that Hydrogen atoms (which are just bound states of e- + p+) are electrically 
neutral. 

Now for some tricky questions: 

Q: If photons are also described by wave-functions, then why aren't photons charged? 
A: Now here is where the complex numbers are so important. The wave-functions of photons are always 
real numbers, and therefore we cannot multiply by an overall phase factor, and ergo photons carry no 
electric charge! 

Q: Oh, so things like neutrons also have real wave-functions? 
A: NO, neutrons are different; they also have complex wave-functions, and you can multiply by the 
complex phase factor just like for electrons but it can be a different phase factor. For neutrons there is 
also a conserved charge, as there must be according to Emmy Noether's theorem, but now it is not electric 
charge. For neutrons the conserved charge is called "baryon number'' and it doesn't involve 
electromagnetism. 

Q: So how can I tell if a given complex wave-function has electric charge or some other charge, like 
baryon number, associated with it?
A: Smart kid! Well consider the following... 

In fact, the symmetry associated with electric charge is even larger than just multiplying the electron
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wave-function by an overall constant phase. In fact, it is infinitely larger. We can actually multiply the 
electron wave-function by a phase factor that is an arbitrary function of space-time: 

(x, t ) -> exp( i (x, t) ) (x, t) 

This gives not only the conservation of electric charge, but as a symmetry of nature we find that we must 
mathematically include all of the electromagnetic physics, i.e., we need the photon and the precise 
equations of motion of photons, which leads to the Maxwell equations of electromagnetism , etc. This 
simple but enormous symmetry, is called "local gauge invariance'' and it actually defines all of 
electrodynamics!!! The only missing parameters we must include are the value of the electric charge and 
the mass of the electron. 

The local gauge invariance distinguishes the symmetry operation we perform on an electron (it is a 
function of space-time) from that we do to a neutron (it is only a constant). We call the latter case a
"global gauge transformation'' and it is a very much humbler symmetry than the "local gauge 
transformation'' we do on all charged particle wave-functions. In fact, some people think that true global 
charges cannot exist at all in physics, and that only local charges can exist. This comes from the idea of 
itsy-bitsy-mini-tini-black-holes that form part of the vacuum itself at very very short distances.
Black-holes can swallow global charge and make it disappear. Hence, baryon number would fall into a 
black-hole and we would seem to see a loss of net baryon number in a given process. Electric charge, 
however, cannot be swallowed by a black-hole because when a black-hole swallows an electron, the 
black-hole itself becomes electrically charges and electric charge is again conserved!!!. So, we think that 
only local gauge symmetries are true symmetries of nature, while global ones like baryon number, are 
fakes. So, if a particle has a charge q (electron has q = -1) the rule is: 

(x, t ) -> exp( -iq (x, t) ) (x, t) <--> Electromagnetic Gauge Transformation 

We should put the above equation on all Tee-shirts and then say "Let There Be Light.'' 

Now, we won't get into it here, but it turns out that all of the forces in nature come from generalizations 
of this important symmetry: 

All forces come from Local Gauge Symmetries 

This includes electromagnetism (local phase invariance), gravity (local coordinate system invariance), the 
strong force (associated with quark color, and the freedom to rotate a quark in color space locally), and 
the weak interactions (involving rotations between charged leptons and neutrinos, or between up quarks 
and down quarks). 

This has been a brief descriptive expose of some of the headiest issues in modern physics. We have 
briefly toured the frontier. If you are interested in some more of this, it will be described in the 
mathematical soliloquys. 

Identical Particles in Quantum Theory 
Do students who study the (Mendeleev) Periodic Table wonder why the elements go through a cycle of 
properties? For example, Lithium is an active metal--but as we count off to the right of the table, we get to 
Neon, which is an inert gas. Why? The general statement is that Lithium has a single electron in a "shell" 
and Neon has a complete, and hence, a closed shell. But why? Why shells? What rules cover the
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arrangement of electrons as we proceed from element to element? 

We start by assuming that, as we go progressively to more positive nuclei (with Z protons) and add 
electrons to keep the atom neutral, nature seeks the lowest energy state. We know that the states of atoms 
are quantized: but that atoms will organize themselves to occupy the lowest energy state. Since one gets 
less energy by moving electrons close to the nucleus, why aren't all the added electrons as close to the 
nucleus as possible? The answer is: They are, but exchange symmetry forces electrons to keep away 
from each other. A new "effective force" appears, which is, in fact, much more powerful than the 
Coulomb repulsion of like sign electric charges. This "exchange symmetry" plays a crucial role in the 
formation of solids, atoms, nuclei and hadrons (systems containing quarks), as well as neutron stars, 
white dwarfs, and black holes . . . but we digress! 

Consider a simple physical system containing two electrons, for example, a Helium atom. We describe 
the Helium atom by a quantum mechanical wave-function that depends upon the positions of two 
electrons (for the moment we will simplify things and assume that electrons are only described by their 
positions; this is false because they also have another associated quantity called spin): 

(x1, x2, t) 

This is a function of the positions of electron (1), x1 and electron (2), x2 and time t.. Again, it is useful, 
because the (absolute) square of the wave-function is the probability of finding our electrons at the 
points in space at the given time: 

| (x1, x2, t)|2 = probability of finding electrons at x1 and x2 at time t.

Now consider the act of exchanging one particle with the other particle. In other words, we rearrange our 
system with the swapping of the positions (and, if we kept the extra information, we would also swap 
spins, etc.) 

x1 <--> x2 

Hence the new "swapped'' system is described by the wave-function: 

(x2, x1, t) 

But is this really a new system or just the original system we started with? 

Now, whereas the class of things called "dogs'' is large, no two dogs are identical, even if they happen to 
both be poodles. However, all electrons are precisely identical to each other. Electrons, remember, carry 
only a very limited amount of information (and for the moment we are assuming that it is only positional 
information). Electrons do not have freckles, warts, surgical marks, dental records, or other identifying 
body markings. Any given electron fresh from the electron factory is exactly identical to any other 
electron! 

Therefore, any physical system must be invariant under the swapping of one electron with another . In a 
sense, nature is simple minded in the way it treats electrons in that it doesn't know the difference between 
any two (or more) electrons in the whole Universe. At the quantum level this amounts to a true reduction 
in the information content of the Universe from that which we would have carried over from Classical 
Physics! This is also true of replacing one oxygen atom, or one iron nucleus, or one benzene molecule, 
by another. The strong physics content of this symmetry is just that all protons are identical to one
another, as are all electrons, neutrons, etc. Combinations, like molecules H2O are identical. 

Emmy Noether Intro http://www.emmynoether.com/quantum.htm

5 of 11 6/16/03 9:52 AM



This "exchange symmetry" of the wave-function must leave the laws of physics invariant because the
particles are identical. At the quantum level it implies that our exchanged wave-function is
indistinguishable from the original one: 

(x2, x1, t)= (+ or -) (x1, x2, t) 

Notice that the exchanged wave-function can in principle, equal either + or - times the original one. This 
is allowed because we can only measure probabilities (squares of wave-functions). So, which is it , + or 
-? 

Now, suppose that instead of electrons we were talking about photons or mesons (particles called
"bosons" with no spin, or spin = 1, or spin = 2 , or any integer value of spin). Then the rule is that under 
swapping two particles in the wave-function we would get the + sign. 

(x2, x1, t) = (+) (x1, x2, t) for BOSONS 

We can now prove an important theorem: This means that two identical bosons can share the same point
in space, i.e., 

(x2= x, x1 = x, t) need not be zero! 

In fact, from just a probabilistic point of view we can prove that if the two particles can share the same 
point in space, it is possible to coax a lot of them to share the same point in space, and thus bosons like 
to condense down into compact "coherent" states. This is called Bose-Einstein condensation. It occurs in 
many places in the fabric of nature, and is one of the many miracles of quantum mechanics. 

There are all kinds of variations on Bose-Einstein condensation and all kinds of phenomena that are 
quite similar: 

Lasers produce coherent states of many many photons all moving together in exactly the same state of 
motion at the same time. 

Superconductors involve pairs of electrons bound by crystal vibrations (quantum sound) into spin = 0 
states called Cooper pairs. In a superconductor the electric current involve a coherent motion of many 
many Cooper pairs sharing exactly the same state of motion 

Superfluids are states of extreme low temperature bosons (like in liquid He4) in which the entire liquid 
condenses into a common state of motion which becomes completely frictionless. 

Bose-Einstein condensates have recently been created in the laboratory in which many bosonic atoms 
condense down into ultra-compact droplets of very large density, and move together in a common 
quantum mechanical state. 

For electrons, on the other hand, we get the (-) sign. We will "explain" this to you in a mathematical 
soliloquy later on. It has to do with the fact that electrons have spin = 1/2 and are called "fermions'' (any 
particle with fractional spin, 1/2, 3/2, etc, is a fermion). 

(x2, x1, t) = (-) (x1, x2, t) for FERMIONS 

Basically a spin = 1/2 particle is described with angular momentum that is a square-root of a vector (this
is called a spinor). When we swap the positions of two fermions, it is like rotating the system in space by
180 degrees. Because of the square-root of the vector spins, this rotation produces a net (-) sign when we
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swap the pairs of electrons. 

We can now prove a theorem about all fermions: No two identical fermions (with the same spins i.e., 
with spins "aligned'') can occupy the same point in space: 

(x2 = x, x1 = x ) = - (x1 = x, x2 = x ) = 0! 

More generally, no two identical fermions can occupy the same quantum state. This was first known as 
the "Pauli Exclusion Principle,'' after the Austrian-Swiss theorist Wolfgang Pauli. Pauli also proved that 
it comes from the basic symmetries of the laws of physics, though few theorists understand this proof in 
detail; its much harder than the Noether theorem; we give a sketch of it in the mathematical soliloquy that 
is due to R.P. Feynman). 

This property of fermions, particularly electrons, largely accounts for the stability of matter. For example, 
in a Helium atom we can get two electrons into the same state if one has its spin pointed "up" and the 
other with spin "down" (for spinors, the "up" and "down" spins are actually orthogonal(!), i.e., they 
share no common components). However, we cannot then insert a third electron into that state because its 
spin would overlap with one of the two electrons already present, and the exchange symmetry minus sign 
would give zero if we try to construct such a state. Hence, for the atom Lithium, the third electron must go 
into a new state of motion, i.e., a new orbital. Thus, Lithium has a closed inner orbital or "shell'' (a Helium 
state inside) and a sole outer electron that behaves much like the sole electron in Hydrogen. Lithium and 
Hydrogen therefore have very similar chemical properties. We thus begin to see the emergence of the 
Periodic Table of Elements! 

The build-up of the elements from Hydrogen to Uranium is dominated by this exclusion principle. As 
we add more electrons to make higher atoms, they cannot all go to the lowest energy orbital of 
Hydrogen, because it is already filled with electrons and the new ones we add are excluded. So the 
electrons must populate increasingly higher energy orbitals until that particular "shell" is filled. Each 
shell has room for a certain number of electrons. The number of electrons in the outermost shell 
determines the chemical properties of each atom. All of this is a consequence of exchange symmetry!!! 

Yet another extreme example is that of the neutron star. A neutron star is formed as the core of a giant 
supernova implodes while the rest of the star is blown to smitherenes into outer space. (We were all once 
residents of the interior of a gigantic star that cooked up our heavy elements, exploded, and allowed the 
reformation of the present day solar system!) The neutron star is made entirely of gravitationally bound 
neutrons. Since neutrons are fermions with spin = 1/2, the exclusion principle applies, and the state of 
the star is supported by the fact that it is impossible to get more than two neutrons (each with spins 
counteraligned) into the same state of motion. If we try to compress the star the neutrons begin to 
increase their energies because they cannot condense into a common low energy state. Hence, there is a 
kind of pressure, or resistance to collapse, driven by the fact that fermions are not allowed into the same 
quantum state. 

Neutron stars are strongly believed to exist. In fact, a neutron star often traps the magnetic field of the 
supernova that produced it. This intense magnetic field then rotates with the neutron star at a high 
frequency, maybe hundreds of times per second. This in turn produces the phenomenon of rapid flashes 
of light seen emanating from the star, known as a "pulsar." Many, many pulsars have been discovered. 

Well, that's what science says in any case. An alternative explanation of pulsars is that they are the 
communication beacons of some large interstellar cell-phone network of an advanced extra-terrestual 
civilization. 

Remarkably, if the mass of the neutron star exceeds about 1.4 solar masses, then gravity can actually 
win. However, gravity only wins by making one of the most extreme objects anyone has every thought 
of: a black hole. 
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Pause: Remember, all of this comes from the exchange symmetry of the quantum wave-functions of
elementary particles! 

The apparent failure to observe this exchange symmetry in any obvious way in the case of poodles or
people or any other everyday macroscopic object is "simply" a consequence of the complexity.
Complexity requires that the individual particles have to be far apart from one another, so that many
different states are possible, and the particles don't come close to being in the same quantum states at the
same time. Thus the effects of exchange degeneracy are not obvious in complex extended systems. 

Mirror Symmetry (Parity) 
Now for the symmetry demonstrated by the process of reflection in space. Suppose one wall of our ultra
laboratory is a mirror. We see two views—the "real" lab, with all kinds of research, measurements, data
logs, etc., and a similarly active, similarly precise set of activities in the mirror. If a video were taken of
the two views, could anyone tell the difference? 

Mirror symmetry, or reflection symmetry (or parity), is the statement that both videos represent the way
the world is; i.e. there is no physical (or biological) system or physical process whose mirror image isn't
also a possible physical system or process. We would then say that the laws of nature are invariant to
reflection in space. In the simplest example of a plane mirror, we replace all distances to the reflection
plane, z by –z . 

Now a box of screws in the lab would usually be right-handed screws, i.e. a clockwise rotation moves the
screw forward. Seen in the mirror, the clockwise rotation becomes counter-clockwise, but the mirror
image of the screw also moves forward, i.e. the mirror screw is left-handed. So? The point, however, is
that a left-handed screw can exist in the lab, it just takes a special order (e.g. "please make us 10 dozen
8-32 left-handed screws"), and so the mirror lab just has different conventions.

Men's jackets have buttons on the right side in the lab, but on the left side in the mirror—again
convention. Since mirror reflection changes a right-handed effect into a left-handed effect, it is equivalent
to the statement that nature is totally indifferent to handedness, that there is a perfect symmetry between
right and left handedness. One popular way of thinking of this is to try to define a right-handed object
(e.g. machine screw) to an inhabitant of a distant planet or the crew of a spaceship entering the solar
system. Try it! But remember that "clockwise" is a convention. 

One experiment seemed to do the trick—it seemed so asymmetric that physicist Ernest Mach expressed
deep shock when he thought about it. Consider a current flowing away from you. That is easy to
transmit to the aliens because you can teach them how to make a battery and agree to the definition of
anode and cathode (they are different elements). Now place a compass needle over the wire and it flips to
the RIGHT! We can, it seems, teach the ignorant alien which is his (or her) right hand. No? No! Why
not? Hint: How do you explain how to make a compass needle? 

To test the symmetry, we need to discover some phenomena in which right-handedness is intrinsic. Until
1957, it was believed that this was impossible, that the world and its mirror image obeyed the same laws
of physics. However, in 1957 one found a fundamental particle that had no mirror image! 

Consider the muon. It has a spin = 1/2 and it is unstable. When it decays, it shoots electrons out in a
variety of directions. The spin axis is a convenient reference direction —we can call it N-S or E-W or +z
and –z. We know the muon is spinning, but there is, so far, no way to distinguish one end of the spin
axis from the other. We must think of this as an isolated particle. Let's do the research in outer space so
that north poles, etc. do not confuse us. We have the muon (let it be a negative muon, actually a larger
number of them) and a mirror and you, the observer. 
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Now relative to the spin axis, we can ask how the decay pattern of electrons from the demise of a large 
number of muons are distributed. Here is the key! If the number of electrons emitted in the decay of a 
number of identical, spin-aligned muons favors one end of the spin axis, say the +Z end, over the 
opposite end (the -Z end), then mirror symmetry is violated! This is because the lab muons, spinning say, 
about a vertical axis and, by our convention, counter-clockwise, favor emitting electrons upward and this 
defines a left-handed screw; the spin replacing the turning action of the screwdriver and the "majority of 
the electrons" replacing the forward motion of the screw. 

In our muon example, the mirror image does not exist! Negative muons decay "left-handedly", and so, 
the test of mirror symmetry, or the corresponding conservation law of Parity, is the asymmetry in the 
distribution of electrons relative to the spin axis. In 1957, this experiment was carried out and the 
forward-backward ratio was 2:1. Parity would have been violated had the ratio been 1.00122 ± .00002. It 
turned out that the violation of mirror symmetry is a large effect but it takes place only for processes in 
which the weak force is involved, i.e. the decay of muons. 

The question of parity (P) conservation was raised by T. D. Lee and C. N. Yang in 1956, even though 
this symmetry was practically bread-and-butter useful in compiling data on nuclear and atomic physics 
for decades. The breakthrough of Lee and Yang was the idea that symmetry could be perfectly respected 
in the strong and electromagnetic forces, but that the weak force, radioactivity, would ignore this 
symmetry. In 1957, it was discovered that weak processes are not invariant to the parity (P) operation. 
This was a new, revolutionary idea— that the forces of nature may have different levels of symmetry. 

Charge Conjugation and Time Reversal 
We have already noted that mirror symmetry, designated by the symmetry operation: reflection in a 
mirror, or P is not a valid symmetry when it comes to processes involving the weak force. We did 
discuss particle-antiparticle symmetry, which is designated by the operation C. 

In 1957, this too was shown to be violated in the weak force reactions such as the decay of pions and 
muons. Since violations of symmetries are philosophically disturbing, they are also enticing clues to 
some underlying theory. After the Parity experiments showed that P is not a valid symmetry, there arose 
the conjecture that, perhaps, if we reflect in a mirror (P) and simultaneously change particle to antiparticle 
(C), we would establish the combined symmetry, PC. 

Reflecting a negative muon then gives rise to a positive muon (in the mirror) and there is PC symmetry. 
Physicists rejoiced! We have a new and deeper symmetry which connects space and electric charge. The 
joy was short-lived. In 1964 in a beautiful experiment involving some more exotic particles (neutral
K-mesons), it was shown that PC is also not conserved, i.e. the physics of weak forces is not invariant to 
the operation PC.

The origin of this breakdown of our beloved symmetry has been at the frontier of physics for the past 30 
years. We still do not know how this will play out, but we have since learned that if PC were indeed a 
perfect symmetry, our universe would be totally different—we, our solar system, stars and galaxies, 
would not exist! Let this provocative conclusion close this very incomplete survey of the role of 
symmetry in physics. 

(Go here to read in greater detail about the philosophical struggles that a deep thinker must contend with 
to arrive at these common sensical everyday ideas!) 
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Emmy Noether 

Symmetry in Physics: 
Discrete Symmetries 

Discrete Symmetries 
We described the way in which space and time are constructed on the basis of the continuous
symmetries, i.e., the operations of translations in space, translations in time, rotations in space, and
Lorentz transformations (which are essentially rotations in space-time). For each of these the symmetry
operation can be an arbitrary amount, e.g., we can translate a system in space by 16 microns, or in time
by 37.8 years, or rotate by 42.7o, or move the system at a relative velocity of 800 km/sec. Furthermore,
there is no smallest step we need take to perform a symmetry operation, i.e., we can perform an
infinitesimal rotation, translation, or motion of the system. This is the meaning of the word continuous .

There are, however, important symmetries which are discrete , or non-continuous, where the symmetry 
operations comes in distinct steps and there is no infinitesimal symmetry operation. The operation either
happens in a distinct step, or it doesn't happen at all. Three of these are of special interest, particularly
when they are applied at the molecular, atomic or sub-atomic level.

Reflections in Space (Parity Symmetry) 
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 Essentially, this means reflecting the system in a mirror. If we look 
through a mirror we see another world. This we will call "Alice's world''. We see physical objects in that 
world that move around, collide and interact, and obey a system of rules that is very similar to the system 
of rules that work on our side of the mirror. 

For example, my cat Tum (on my side of the world) runs onto a slippery surface, a freshly waxed table 
top, and slides into the vase of flowers, which smash onto the floor. Momentum is conserved in this 
collision; energy and angular momentum are all conserved (if I include the dissipation energy in sound

and heat when the flowers finally hit the floor,  the total energy is indeed 
conserved), etc. These are some of my laws of physics, all dicatted by symmetry principles on my side of 
the mirror. 

In Alice's world there is also a cat, which looks very much like Tum. I'll call him Mut (he is also a
"him''). He too slides on a slippery table surface and collides with a vase of flowers and knocks them 
onto the floor. I can actually make detailed measurements of this collision to check that in Alice's world 
there is exact momentum, energy and angular momentum conservation. As far as I can see, translational 
symmetry in space and time, and rotational symmetry, and many many other symmetries all are valid in

the mirror world.  And so, I begin to believe that Alice's world, the world
in the mirror is subject to the exact same laws of physics that my world is subject to. 

The operation of reflecting a system in a mirror and the notion that Alice's world is governed by the same
laws of physics as my world is a hypothetical symmetry. It is a discrete symmetry because we either
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reflect or we don't; there is no 0.126 units of reflection, it's all or nothing. This symmetry is called:
Parity. 
This raises an interesting and more precise question. Is parity required to be a symmetry of the laws of 
physics? And, indeed, is parity a true symmetry of the laws of physics? How might we find out? 

Suppose that you are given a movie of a physical process. For example, it may the collision of billiard 
balls (or Tum colliding with the flower vase). The movie film may be flimed with the camera as shown in 
Fig.(1). Alternatively, it may be filmed with the camera viewing the reflection of the system in a mirror. 
Let's assume that this is a really good camera an a really good mirror (no knicks or smudges). Is there 
any way you can tell that the physical process you are viewing is filmed through the mirror, or taken 
directly? 

Now, this is a deep question, but we need to reduce to simple systems to see that. For example, I forgot 
to tell you that Tum (a complex system) has a white spot on the right side of his face. Thus, Tum is
"tagged'' with a distinguishing feature of "right-handedness.'' Therefore when you view the image of the 
cat-vase collision you can look to see if the white spot is on the right or left side of the cat's face. If it's 
on the left-side, then you know you are seeing Mut, the reflection of Tum, and you can tell that the image 
is viewed through the mirror. 

So, suppose we go down to the level of molecules. There are certain complex molecules, sugars and 
proteins, that come in two varieties. These are refered to as dextro-xyz (right-handed) and levo-xyz
(left-handed). It is possible to tell them apart since right-handed sugars rotate the plane of incident 
polarized light clockwise, while left-handed sugars rotate counter-clockwise. Biological systems on earth 
are known to digest only right-handed proteins, while the ingestion of left-handed proteins is either 
useless, or fatal! Thus, the biological properties of these molecules depend not only upon the chemical 
(atomic) content, but also on the structure in a reflection dependent way. 

If Tum had no white spot and is a completely black cat with no obvious distinguishing features, then we 
would have a hard time telling Mut from Tum, and we couldn't tell if the film of the cat-vase collision was 
shot through the mirror or not. However, we might examine the food consumed by the cat, or his DNA, 
or a sample of tissue, and discover that our cat had left-handed proteins of a variety that only real cats 
have right-handed. we could then conclude that it is Mut, and not Tum, and the film is again shot in the 
mirror. 

By the way, the fact that all living organisms on Earth use the particular dextro-xyz form of a given sugar molecule is not 
surprising, and is simply a direct consequence of natural selection and evolution. In the primordial process of evolution, 
some 2 to 3 billion years ago, nature made a random choice to use a particular handedness molecule in a particular
proto-organism. It could have easily been the other way ... it's like the kick-off of the super-Bowl, all determined by the 
"flip of a coin.'' This little proto-organism became the ancester of every subsequent living thing, and that random event 
therefore propagated down the chain of life to all things alive today. Evolution is a factual set of principles, and one cannot 
understand much of the biological world without understanding evolution. 

It's not hard to make something with handedness. A box of screws in a hardware store would usually be "right-handed,'' i.e. 
a clockwise rotation moves the screw forward. Seen in the mirror, the clockwise rotation becomes counter-clockwise, but 
the mirror image of the screw also moves forward, i.e., the mirror screw is "left-handed.'' So? The point, however, is that a 
left-handed screw can exist in the lab, i.e., it is completely compatible with the laws of physics; nothing violates the laws 
of physics to make a left-handed screw, it just takes a special order from a manufacturer (e.g. "please make us 10 dozen 
8-32 left-handed screws"), and so the mirror lab just has different conventions for defining left and right.

Now we go to a greater level of simplicity and we look at individual atoms in collision. Can we now tell 
whether the film is taken through the mirror or not? Even atomic and nuclear collisions fail to reveal any 
difference between a given system and its mirror image. Physicists thought that once we got down to 
simple systems, systems that are not constructed from a complicated set of rules such as a cat (involving 
natural selection, and many stages of evolution in which handedness does become imprinted), that we
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would see pure left-right symmetric laws of nature. At this level we shouldn't be able to tell if the film is 
taken through the mirror of otherwise. 

Nonetheless, we go still deeper and test this idea at the level of elementary particles. Are there any 
properties of elementary particles that are different in Alice's world from our world? 

We'll describe an experiment done by one of us (Leon Lederman) to test the idea of parity as a symmetry in the interactions 
of elementary particles. It provides a fairly simple way of seeing what's going on, but you will have to think it through 
carefully. Here goes: 

There is an elementary particle called the pi-minus meson, denoted - (which, we now know today is made of adown-quark and an anti-up quark, so it really isn't an "elementary particle'' at all, but for our purposes we can consider it to

be such) The - decays into a muon - and a neutrino 0, or: 

- -> - + 0,

The - meson is spin-0, meaning it has no angular momentum; it is a sort of tiny blob which does not rotate. The muon 
and the neutrino on the other hand each carry spin; they are little pin-points with angular momentum. We say they have 
spin-1/2 because the quantity of angular momentum which they carry is precisely 1/2 times Planck's constant. 

Now, we know, according to Noether's theorem and rotational symmetry, that the conservation law of angular momentum 
must hold, even for tiny elementary particles. Thus, when a pi meson decays, the initial angular momentum is zero, and 
therefore the sum of the angular momenta of the muon and the neutrino must be zero. An extremely important 
experimental point is that you can slow down and stop a speeding muon, and you can measure its spin. The slowing down 
and stopping doesn't change the spin direction, so it is actually possible to measure the exact direction of the muon angular 
momentum! 

So, we can look for events where the muon comes out with its spin aligned along the direction of motion. And we can 
look for events in which the spin is counteraligned to the direction of motion. When the spin is aligned in the direction of 
motion we say the helicity of the particle is positive (+); when the spin is counteraligned to the direction of motion we say 
the helicity is (-). 

Now, you must think the following amazing fact through carefully: Helicities are always reversed when viewed in a mirror. 

Recall how we define the angular momentum vector using the righthand rule. For a top, we curl our right-hand fingers in 
the direction that the material is spinning, and our thumb defines the angular momentum vector direction. (See the figure) 
This is a convention that we use, and it must be used consistently for everything, e.g., we use the right-hand rule for 
muons and for neutrinos; we don't switch the left-hand rule when we switch between muons and neutrnos. Also, since we 
don't know a priori if we are viewing a movie filmed through a mirror or not, we will always use the right-hand rule, even 
for systems we see in Alice's world, i.e., we don't switch to a left-hand rule in Alice's world, because there is no way of 
knowing if we are viewing Alice's world or our world. Now consider a tennis ball that is spinning and moving in any 
direction, with spin aligned in the direction of motion (recall, we use the right-hand rule to construct spin). It's mirror 
image may have the direction of motion reversed, but then the spin will not reverse (using right-hand rule for the mirror 
image!); or the direction of motion may be the same, but then the spin-direction reverses. So, the helicity is always 
reversed in the mirror. This is also true of screws, if you think in terms of the helicity of a screw, Also, think of the 
mirror image of a winding staircase and you will realise that helicity is reversed there as well. 

Leon measured the helicity of the outgoing muon in pi decay. If parity is a good symmetry of the laws of physics, then 
both helicity + and helicity - should occur with equal probability (remember, quantum theory produces things

probabilistically). In fact, the result of the experiment was amazing: The helicity of the muon proucude in - decay is always (-). 

Why is this so amazing? Because, if you were to "see'' a film of a pion decay into a helicity (+) muon, then you would be 
able to announce instantly that this process is occuring in Alice's world; that is, you are seeing an image through a
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mirror!!! The laws of physics contain interactions which are not symmetric under parity, and these intereactions occur in pi 
meson decay. This is called the left-handed neutrino (or right-handed anti-neutrino) and it is produced in many processes 
called weak interactions. The spin of the neutrino is always counteraligned to the direction of motion. Hence the term
"left-handed.'' Neutrinos are so weakly interacting that they can travel unimpeded through vast distances of solid matter. In 
fact, there are so many neutrinos being produced in the sun that billions of them are passing through you every second. 

Until 1957, it was believed that parity was an exact symmetry of physics. The question of parity (P) 
conservation was first raised by T. D. Lee and C. N. Yang in 1956, even though this symmetry was 
practically bread-and-butter useful in compiling data on nuclear and atomic physics for decades. The 
breakthrough of Lee and Yang was the idea that symmetry could be perfectly respected in the strong and 
electromagnetic forces, but that the weak force, radioactivity, would ignore this symmetry. In 1957, it was 
discovered experimentally that weak processes are not invariant to the parity (P) operation. This was a 
new, revolutionary idea— that the forces of nature may have different levels of symmetry. 

Reflections in Time (Time Reversal Symmetry) 
This symmetry examines the effect on the laws of physics of reversing the direction of the flow of time. 
Newton's laws of motion make no distinction between past and future, and time can apparently flow in 
any direction. 

Again, we can view the laws of physics in action in a movie film. We then run the film backwards 
through the projector. When applied to simple systems, billiard balls colliding on the table, atomic 
collisions, etc., it would not be possible to tell in which direction the film was progressing. The motion 
we see satisfies laws of motion that are the same, whether run forward or backward. 

However, when we apply this to more complex objects, like physicists, it is easy to tell which way the 
film is running -- their hair always turns grey, the total useful reserve of energy alwasy decreases as we 
go into the future, and Humpty-Dumpty never reassembles himself and jumps back up on the wall. The 
motion of large complex (or statistical) systems including people, is not time reversal symmetric, even 
though the simple components obey time reversal symmetric laws of motion. 

Notice that in physics we always pose and solve if-then problems. For example, consider the following question (Q1): If a
particle at time t1 is located at x1 traveling at a velocity, v, then where will it be at time t2? Of course, the answer is 

trivial: 

x2 = x1 + v(t2 - t1)

but even this trivial result illustrates some deep philosophical issues as to how we describe nature. First, we see indeed
that the answer is time reversal invariant. A time reversed question is (Q2): "If at time t1 the particle is located at x2 and
traveling with velocity -v (velocities change sign when we reverse the arrow of time), then where will it be at time t2?"
Now the answer must be x1. And indeed, we see that our formula gives:

x1 = x2 - v(t2 - t1) 

In this way of time-reversing the question, we set up initial conditions that were the opposite to those in the first question 
Q1, i.e., we put the particle at the location where it ended up in Q1, and we reversed the direction of motion. We thus find
that after an equivalent time interval, the particle gets back to x1. So, we can do time reversed physics without actually 

reversing the flow of time. 

Notice another peculiar aspect of physics. No where in any formulation does the issue of a special point in time called
"now'' ever occur. Yet, we humans sense something we call "now.'' Is it an illusion? We call this the "Now'' question. 
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Relativity tells us that there is no absolute "now'' in the Universe, because different observers in different inertial reference 
frames will disagree on which events at different places in space are simultaneous. Hence, even within our brains, there can 
be no perfect synchronization on short time scale of order (size of brain)/(speed of light). However, the brain is fairly slow, 
so perhaps there is some averaging going on that yields the experience of "now.'' Is "now'' therefore real and part of the laws 
of physics? 

The fact that this question is so murky tells us the answer: There is no priveleged role of "now'' in the laws of physics. The 
perception of the sensation of "now'' has to do with the murky business of "consciousness.'' Since there is no real theory, or 
even model, of consciousness, we cannot address this further, except to say that consciousness is a very complex 
phenomenon. 

So, why do complex systems seem to prefer an arrow of time, while their elementary constituents do not? This also has to 
do with the if-then nature of physics. Anything we observe involves laws of motion, but also special initial conditions, 
called "boundary conditions'' in the theory of differential equations (the laws of physics are, for the most part, differential 
equations). If I have initially a container full of a gas, and I open the valve on the container, the gas will escape and fill a 
room. The laws of motion are perfectly time reversal invariant, bt I never see a room full of gas collect itself 
spontaneously into a container. It is simply very unlikely to have an initial condition of a gazillion gas molecules with
their velocities and positions at the initial t1 such that they will collect into the bottle. We can introduce a statistical 
concept, a measure of randomness, called entropy (we won't bore you with the precise mathematical definition of entropy). 
In perfect equilibrium, like hot soup sitting in a thermos bottle with no escaping heat, the entropy remains constant in 
time; in non-equilibrium processes, like shattering glass, or rotting flesh, the entropy always increases. 

Now, this does not mean that complex ordered systems cannot evolve. Indeed, they certainly can and do evolve. As a 
system, such as a gas of water vapor cools, there will form droplets of liquid, which have more order than the gas; still 
cooler and the droplest form crystals of ice with still more definite order. This process of cooling is not an equilibrium 
situation; energy has been allowed to flow out of the water vapor (perhaps as radiation, i.e., photons). As the radiation 
scatters out into space, occupying a more chaotic distribution (more entropy), a small subsystem of cooled droplets is left 
behind (less entropy). The overall entropy has increased, while a subsystem seems to have formed with less entropy. If that 
subsystem contains a certain configuration of molecules, such as a nucleic acid, then it may be able to make copies of 
itself by expending more energy out into space; again overall enetropy increases, but we get a more and more complex 
subsystem left behind. And eventually, we can form a human sitting there wondering why time seems to flow in a 
particular direction. 

The complex subsystem, (if) having been formed, (then) can evolve in a way by which it increases its own entropy: It can 
fall apart, rot, dissolve, or fade away. 

Particle-Antiparticle Symmetry (Charge Conjugation) 
A discrete symmetry of replacing all particles by anti-particles in any given reaction is called C. The 
symmetry would imply that the laws of physics are exactly the same in the anti-particle world as they are 
in the world. For example, anti-Hydrogen consisting of an anti-proton and an anti-electron (positron) 
would have the same properties, e.g., energy levels, sizes of the electron orbitals, etc., as does the ordinary 
Hydrogen atom (by the way, anti-Hydrogen has actually been made in the laboratory at CERN and 
Fermilab in the past few years). 

We have already noted that mirror symmetry, designated by the symmetry operation: reflection in a 
mirror, or P is not a valid symmetry when it comes to processes involving the weak force. The discrete 
symmetry of replacing all particles by anti-particles is called C. And, as we have seen, there exists yet 
another discrete symmetry operation, called T, which reverses the flow of time, i.e., set t -> -t in all 
physics equations. 

In 1957, C was shown to be violated in the weak force reactions such as the decay of pions and muons.
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Since violations of symmetries are philosophically disturbing, they are also enticing clues to some
underlying theory. After the Parity experiments showed that P is not a valid symmetry, there arose the
conjecture that, perhaps, if we reflect in a mirror (P) and simultaneously change particle to antiparticle
(C), we would have the combined symmetry operation, CP, and perhaps this symmetry is exact in nature. 

Doing CP to a negatively charged muon then gives rise to a positively charged muon (antiparticle, in the
mirror) and this turns out to be a symmetry of the muon decay! Physicists rejoiced! We seemed to have
a new and deeper symmetry which connects space and electric charge. 

The joy was short-lived, however. In 1964, in a beautiful and extremely well executed experiment,
involving some more interesting mesons (called neutral K-mesons, each containing a strange and
anti-down, or a down and anti-strange quark), it was shown that CP is also not conserved, i.e. the physics
of weak forces is not invariant to the operation CP. 

The details of the origin of this breakdown of the symmetry CP has been at the frontier of physics for
the past 30 years. We still do not know how this will play out, but we have since learned that if CP were
indeed a perfect symmetry, our universe would be totally different and we, our solar system, stars and
galaxies, would not exist! 

Now, it is a necessary condition in quantum mechanics that the combined operations of CPT must be an
exact symmetry. It turns out that if CPT failed as a symmetry, then over time probablity would not be
conserved; i.e., the probability for anything to happen under any circumstances would either exceed or be
less than one! Nevertheless, we ask, if the violation of CPT were very, very tiny, would we have noticed?
It is, afterall, an experimental question. And it is a deep theoretical question when one considers
mini-black-holes forming and disappering at very small distances in the vacuum. Do black-holes eat
probability? 

Recently, in refined experiments with neutral K-mesons, direct confirmation of the violation of
T-symmetry has been confirmed. T must be violated when CP is violated in such a way as to make CPT
conserved. Hence, to date, we expect CPT is an exact symmetry. However, T-violation means that deep
down in the laws of physics there is fundamental information that defines a preferred direction, or arrow,
of time. Time reversal invariance is not a symmetry of the laws of physics.
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Emmy Noether 

Symmetry in Physics: 
Mathematics of Symmetry 

Mathematicians solve many problems in geometry and topology by turning them into equivalent 
algebraic problems. This approach to understanding symmetry begins with the 19th century French 
mathematician, Galois, who in his short, tragic life laid the foundation of what we call "group theory". 

Let us think concretely about the symmetries of a very simple geometric object... the equilateral triangle. 
This is the simplest nontrivial example of a system possessing
symmetry and the first time through you may find the mathematics
hidden in this simple object to be quite surprising! 

It is useful to approach this experimentally (if you can visualize the
following manipulations, that's fine; but you are strongly encouraged to
perform the experiments yourself). Prepare two transparencies or
cut-outs as in Fig.(1) and Fig.(2) each featuring an equilateral triangle,
both of the same size. The triangle of Fig.(1) has the three axes of
symmetry labeled as I, II and III. The triangle of Fig.(2) has the vertices
labeled as A, B, and C. (You can just print these figures onto
transparencies, or onto paper and then copy them onto transparencies, or
whatever high-tech solution you prefer; we prefer to draw them onto
blank transparencies with colored pens). 
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The triangle (1) is laid down on a table (or in classroom, onto a transparancy projector platten) and 
should be considered to be "glued" or "taped" in place. It is our reference triangle and it serves as a 
reference grid, or a kind of "coordinate system". Once laid in place we will not move it again. Triangle 
(2), on the other hand, is an experimental triangle. We will overlay the 
reference triangle with the experimental triangle. Our problem is to find 
all possible distinguishable ways in which the experimental triangle
can be lifted up and brought down on top of the reference triangle . The 
vertices of the experimental triangle are labeled so as to allow us to
identify the distinguishable ways in which this can be done. 

We shall begin by overlaying the experimental triangle on the reference
triangle with the vertices reading ABC clockwise around the
experimental triangle. This will be called the initial position. We wish to
find a way in which we can pick up the experimental triangle and bring
it back down on top of the reference triangle so that the vertices read something other than ABC 
clockwise. Each such operation is called a symmetry operation . Our problem is to dicover all possible 
distinguishable symmetry operations of the equilateral triangle. How do we proceed? 

Perhaps you've considered rotating the experimental triangle until the vertices now read CAB clockwise
from the top. This certainly corresponds to a symmetry operation, which is a rotation through 120o. We
shall designate this first discovery as R120. 

Now return to the initial position. What else might we do? It is obvious that a rotation through 240o is 
another symmetry operation which yields the result BCA. However, it is important to emphasize that we 
should always return to the initial position before performing the next operation (this is a bit like 
pressing the CLEAR button on a pocket calculator before doing the next calculation). Thus we discover a
second distinguishable symmetry operation which we designate R240. 

Are there other symmetry operations? Perhaps you've considered a rotation by -120o. However, we now 
see that this operation takes the triangle to BCA (from the initial position, of course) and therefore this is
not a new operation, i.e. it is not distinguishable . (We may thus write the equation: R-120 = R240) 

What about a rotation through 360o? First, we see that it maps the triangle from the initial position ABC 
back to the initial position ABC. Consequently, it is a symmetry operation, but a very special one. For 
one, it is equivalent to doing nothing at all; as such we shall refer to it as the "do nothing operation", or
the identity operation. We shall denote it by the boldface 1 . Second, note that the identity element is a 
symmetry operation of any object; even a lowly Amoeba has the identity symmetry. Thirdly, we note that
a rotation through 360o is equivalent to a rotation through any integer multiple of 360o, e.g., 720o, 1080o

-360o, etc. All are equivalent to the "do nothing'' operation, 1 .

We now have three symmetry operations; are there more? We may consider a reflection about one of the 
three axes of the reference triangle. We begin with the initial position and consider "skewering" the 
experimental triangle (as if we had a barbecue skewer) along one of the axes of symmetry. For example, 
skewering along axis one, we then pick up the triangle and flip it and we arrive at the new position, ACB. 
We denote this symmetry operation as a reflection about axis I and, we'll give it a symbolic name as well:
RI. 

Similarly, we return to the initial position and consider the other two reflections (a) about axis II, or RII
which yields the position BAC and (b) about axis III, or RIII which yields the position CBA. 
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Thus at this point we have a list of six symmetry operations: 

1 identity "do nothing" ... (ABC) 

R120 rotate by 120o ... (CAB)

R240 rotate by 240o ... (BCA)

RI reflect about axis I ... (ACB) 

RII reflect about axis II ... (BAC) 

RIII reflect about axis III ... (CBA) 

Are there any other symmetry operations? At this point perhaps you've recognized that we have 
discovered essentially the six permutations of three objects, 3!=6, i.e. the six permutations of the three 
vertices of the triangle. 

That raises an interesting question: 

Q: Are the symmetries of all such objects, such as squares, pentagons hexagons, cubes, etc. given by the permutations of 
their vertices?

A: In fact the answer is no . It doesn't work that way for the square as we can easily see. Suppose we have a square with 
vertices labeled ABCD. A typical valid symmetry operation of the square is a rotation through 90o and gives DABC, 
which is, indeed, also a permutation of the vertices. However, is there a symmetry operation which can give the vertex 
ordering BACD? (Think in terms of an experimental square on a cut-out; what would we have to do to the cut--out to get 
BACD starting from ABCD?) Clearly, this is not a symmetry operation of the entire square because we would have to 
twist the experimental square to get the vertices into this position, but then the sides would not overlay properly! Thus, 
while all symmetry operations are indeed permutations, not all permutations are symmetry operations. The equilateral 
triangle is simpler and it does have only six symmetry operations, the ones we've listed above, which are equivalent
(isomorphic) to the permutations of three objects. 

Another question may be bothering you: 

Q: Why don't we distinguish between symmetry operations like R120 and R480 ? What happens if we try to distinguish

between these? 

A: Good question. In fact, if you try to distinguish between operations like the identity and R360, or between R120 and
R480, then you are really not focused on the intrinsic symmetry of the triangle. Instead, you would be focused more on the
path that we take when we perform the symmetry operation. For example, I could perform an operation like R120 by

picking up the experimental triangle and placing it back down rotated by 120o in the usual way. Or I could do it by
picking up the experimental triangle, and then go outside and run around a tree in my back yard 10 times, and then come 
back in the house, eat a doughnut, and then place it back down rotated by 120o. There is no added content to the analysis
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of symmetry in adding all of this running around to the operation. Indeed, I won't even know if I am doing R120 or R480
or R120 + 360N where N is a large integer (possibly negative) if I do it the second way. So, we find that the essence of 

maximal distinguishability is captured in the six symmetry operations on our list. Incidently, there are other branches of 
mathematics, such as homotopy, that are interested in the paths we can take on different surfaces, or in different spaces. 

Thus far our exercise has been almost trivial, but now we make the great observation of Galois and his 
colleagues. We now ask, can we obtain additional symmetry operations by combining together two of
the operations previously obtained? That is, let us select any two of our six operations, say R120 and RII. 
Let us first perform one of the operations on the experimental triangle (try R120) and without returning 
to the initial position perform the other operation RII. We see that if we begin in the initial position that 
R120 leads to CAB and then following with RII we obtain the position ACB. But ACB is not a new
position of the triangle, and we see from the above list that it corresponds to RI. We have therefore 
discovered an interesting result: first performing R120 and following it by RII yields the result RI . 

Let us write an equation for this result: 

R120 x RII = RI . 

Here we have introduced a symbol, x, which represents the action of combining the symmetry operations 
in the order indicated. It is easily seen that the x combination of any pair of our symmetry operations
(which we also refer to as "elements'') produces another of the elements. We say that our set of elements 
is closed under the operation x. Thus, in a sense the combining of two symmetry operations is 
something like multiplication of numbers . In this sense the "do nothing operation'' is the true identity 
since: 

1 x R = R x 1 = R , for any operation R . 

Thus we have made a very important
observation: the symmetry operations
form an algebraic system with an 
operation consisting of performing
successive operations . This algebraic
system is called a Group , or a 
Symmetry Group . The symmetry 
operations are the analogues of the
rational numbers under the group
multiplication. We refer to the 
symmetry operations as "group
elements" or simply as "elements" . 

We present the complete multiplication 
table of the symmetry group of the
equilateral triangle in the table to the 
right. You should verify this for
yourself by performing several of the
cases with the experimental triangle and
reference triangle transparencies. The 
table is to be read like a highway
mileage map; if we choose to perform 
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the product R X R' we first find the row labeled by R , then the column labeled by R' and we look up the 
corresponding entry in that row and column. Take a moment to study the group multiplication table.
Notice, for example, that every element of the group occurs once and only once in every row, and in
every column of the table! The multiplication table of symmetry operations is a magic square!!! 

There are several important properties of all symmetry groups. In fact, this is the precise mathematical
definition of a group: 

A group is a set of elements and a composition law, x, such that the product of any two
elements yields another element in the set, (closure); 

Every group has a unique identity element satisfying 1 x R = R x 1 = R for any element
R of the group. 

Each element of the group has a unique inverse element. That is, given an element R 
there exists one and only one element R-1 (which may even be R itself), such that R x 
R-1 = R-1 x R = 1 .

Group multiplication is associative.

Associativity is a bit tricky. It means, given any three group elements R1, R2 and R3, then: 

R1 x (R2 x R3) = (R1 x R2) x R3

In words, start with the triangle in the initial position. First perform operation R2 and follow it by R3 and remember the
result (call this result R4). Now return to the initial position of the triangle and first do R1 and follow by R4. The result 
of this sequence of operations will always be the same as having first done R1 followed by R2 then followed by R3. This 
seems complcated, but is the true operational meaning of associativity and you should carefully think it through to make 
sure you understand it. Indeed, we take this for granted because the ordinary operations of arithmetic are associative, i.e. 
3x(4x5) = (3x4)x5. However, there do exist, in pure mathematics, nonassociative systems in which Ax(BxC) does not 
equal (AxB)xC. These include "normed division algebras based upon octonions." People have attempted to relate this kind 
of mathematics to physics (octonions were thought to be possibly associated with the physics of quarks in the mid 1970's), 
but it seems not to be relevant. Thus, as far as we can tell, nature and its associated mathematical description is always 
associative. 

It is remarkable that these definitions (or axioms) that define groups in a logical or 
algebraic sense capture the essence of symmetry. All symmetries are groups, and groups 
always have a geometric interpretation as a symmetry (though it can get to be a very 
complicated geometrical interpretation; for example, the "monster'' group corresponds to 
the symmetry of the closest packing of ball bearings in a crate that lives in 26 
dimensions!) 

From the "axioms" on our list above one can prove some very important theorems: 

Each element of the group occurs once and only once in each row and each column of 
the multiplication table. This can be proved as a theorem from the preceding statements.
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This is a powerful constraint on the mathematical structure of the group; essentially the 
group multiplication table forms a kind of "magic square''. 

Here is a real thriller: Group multiplication is not necessarily commutative! That is, (R1 x 
R2) need not equal (R2 x R1)!!! 

This last result, namely that group multiplication is not commutative, is really quite 
remarkable. We can see it by doing an example. Start in the initial position of the triangle
and first perform R240 and then follow by RII, i.e. calculate R240 x RII You should
obtain the result RIII. On the other hand, return to the inial position and now first
performing RII, followed by R240. The result now is RI. Summarizing: 

R240 x RII = RIII 

RII x R240 = RI 

This is truly remarkable! Here we have discovered a simple system of six elements with 
a multiplication law and the system is not even commutative. Thus, although the 
ordinary multiplication we learned in grade school is commutative, e.g. 3x4 = 4x3,
group multiplication need not be (Do you remember being bored silly by the notion of commutativity in 
grade school? It seemed like an empty and trivial statement at the time; of course multiplication is commutative. Yet, we 
see now that with the marvelous algebra of groups this ceases to be the case. Commutative algebras are a very special case
indeed). Now, when a group has completely commutative multiplication we give it a 
special name: it is said to be an abelian group , after the mathematician Abel. The 
general group, such as the equilateral triangle group, is noncommutative, or nonabelian . 

All possible continuous groups, i.e. groups with an infinite number of operations that 
vary continuously with "angle'' parameters, like the rotations of a sphere about a given 
axis through any angle, were completely classified early in the 20th century by Cartan. 
Remarkably, only very recently have all possible discrete symmetry groups been 
classified. This job was made difficult by the existence of certain "sporadic'' groups, such
as the "monster group'' with about 8x 1053 elements. The classification of the discrete 
groups constitutes one of the longest and least comprehensible theorems in mathematics 
(see "The Enormous Theorem," by D. Gorenstein, Scientific American (Dec. 1985), pg. 
104). 

Group mathematics seems to underlie the structure of our physical world. One may 
wonder how a noncommutative mathematics can have anything at all to do with nature, 
or physics? Yet it is easily demonstrated in the classroom. For example, perform two
successive rotations by 90o on a textbook, first about an imaginary x-axis followed by 
one about an imaginary y-axis, and note the book's position (remember also your choice 
of x-axis and y-axis, and don't change these!). Now return the book to the initial position 
and perform first the rotation about the y-axis followed by a rotation about the x-axis. 
You will find that the book ends up in a different position the second time than you
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obtained the first time. In fact, the rotations can be any angles you choose, and the same
noncommutativity will occur. Thus, our real world in 3-dimensions is very very
noncommutative! 

The symmetry group consisting of rotations of objects through any angle about three
chosen orthogonal axes is space is a noncommutative group. Indeed, this group has a
name: The continuous group consisting of all rotations of objects in three dimensions
(the full symmetry group of a sphere) is known as SO(3). It governs the physics of
angular momentum and spin. 

We can generalize this group of rotations. The symmetry of a sphere in N-dimesnions is called SO(N). Mathematically, we
consider an (unit length) N-vector which lives in an N-dimensional space. We can describe this N-vector by giving its N
components (x1, x2, ... , xN), i.e., these components are just the projections of the vector onto some orthogonal
N-dimesnional coordinate system. Now the action of the symmetry group SO(N) is to replace these N-components by new
values, (x'1, x'2, ... , x'N). The condition is that both the xi and the x'i must be unti vectors, i.e., they describe points on
the surface of a unit-sphere (a sphere of radius = 1) in N-dimensions, i.e.,

x1
2 + x2

2 + ... + xN
2 = 1

x'1
2 + x'2

2 + ... + x'N
2 = 1

Yet another generalization produces very important symmetry groups in quantum theory. Now we view our N-vector as a
set of N complex numbers: (z1, z2, ... , zN). The group SU(N) replaces these by new numbers (z'1, z'2, ... , z'N) such

that: 

|z1|2 + |z2|2 + ... + |zN|2 = 1

|z'1|2 + |z'2|2 + ... + |z'N|2 = 1

Hence, SU(N) is the symmetry of the complex unit sphere. Complex numbers play a fundamental role in quantum 
mechanics, and thus the usual symmetries occuring in nature are SU(N) symmetries. 

In the mid 1960's it was recognized that the strongly interacting particles (like protons, neutrons, pi-mesons, and particles 
called "strange" particles etc.) could be placed into multiplets of a continuous symmetry group, SU(3). (see "The
Eight--Fold Way", by M. Gell-Mann and Y. Neeman, (1964). ) One of the representations of SU(3) has eight components, 
and is known as an octet (these SU(3) symmetry elements can be represented as 8x8 matrices in an irreducible way; the 
eight members of the octet mix amongst themselves under an SU(3) transformation). Eight known spin-0 mesons fit into 
one multiplet, the eight spin-1/2 baryons into another, and so on. There is also a 10 component representation into which 
the spin-3/2 baryonic resonances fit (in fact, one, the Omega-minus, was missing at the time SU(3) symmetry was 
discovered and it was correctly and dramatically predicted by Murray Gell-Mann in 1963). The particles in the multiplets 
were not degenerate (having equal masses) indicating that the SU(3) symmetry was not exact, but the pattern was clearly 
established. 

The main puzzle was then that the smallest representation of SU(3), namely a triplet consisting of three spin-1/2 particles 
with predicted electric charges of +2/3 (up), -1/3 (down) and -1/3 (strange) were not detected in experiments (in these units 
the electron charge is -1). These particles are known respectively as the "up quark'', the "down quark,'' and the "strange 
quark''. Today, however, with more powerful microscopes (i.e., particle accelerators and particle detectors) we have seen the 
quarks living deep inside of the all the strongly interacting particles. Indeed, the list of quarks now contains three additional 
ones, "charm," "bottom" (aka "beauty"), and "top" (aka "truth"). All of the mesons produced in high energy collisions are 
composed of quark and anti-quark combinations, while each baryon contains three quarks. We now know that the forces 
between quarks permanently lock them inside of these specific combinations. So, while the quarks are like the basic 
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"atoms" in nature, we only find them inhabiting combinations or "molecules;" we have never seen an isolated quark in any 
experiments performed to date. 

Thus, symmetries have fancy names given by the mathematicians. The spherical 
symmetry is called O(3); the cylindrical symmetry is called O(2). Now, notice that any 
symmetry operation that we can perform upon the cylinder we can also perform upon 
the sphere; but the converse is not true. 

The symmetry group O(2) (of the circle) fits inside of the symmetry group O(3) (of the 
sphere). You can think of it this way: Suppose you made a perfect sphere out of silly 
putty. It would possess the symmetry operations of O(3). Now flatten the sphere into a 
pancake. This pancake is just a slightly fat circle and it therefore has the symmetry group 
O(2). You can still perform the symmetry operations of rotations about the pancake axis 
of symmetry, but we have lost all of the other operations that were the (larger) symmetry 
group of the sphere. Hence we say that O(2) is a "subgroup" of O(3). 

We can give a more precise mathematical definition of the continuous group symmetry 
operations as follows. We'll consider the group O(2). Consider the pair of real numbers
(x,y). The special pairs that satisfy x2 + y2 = 1 define the unit circle. Now consider a 
linear mapping from any pair to a new pair (x,y) -> (x',y') such that x'2 + y'2 = 1. This 
mapping is a symmetry of the circle. In fact, the term "linear'' is all important here 
because there are an infinite number of nonlinear maps of the circle into itself (some 
which squeeze and stretch the circle perimeter, maintaining the circle's shape). The 
symmetry group of O(2) in its simplest form is considered to be the linear maps (x,y) ->
(x',y') such that x'2 + y'2 = 1, and therefore we can write them down: 
x' = x cos( ) + y sin( ) 

and 

y' = y cos( ) - x sin( ). 

Similarly, we can consider the sphere in three dimensions as the set of points (x,y,z)
satisfying x2 + y2 + z2 = 1. Then the set of linear maps (x,y,z) -> (x',y',z') such that x'2 + 
y'2 + z'2 = 1 defines the symmetry group O(3), as we described above. 
Another way to visualize O(2) is to consider the complex plane, i.e. the ordinary plane of 
ordered pairs (x,y), where we represent each point by a vector z = x+iy. z is a complex 
number; i is the square root of -1. Given any complex number z we can obtain a new 
complex number z' by multiplying z by the complex phase factor exp(i ), that is: 

z' = exp(i  ) z 

where  is real. Its easy to see that z' is just the vector z rotated counter-clockwise by the 
angle  .
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Therefore, if we consider the set of z such that |z|=1, we have the unit circle. The
transformation z' = exp(i )z just maps the circle into itself. Hence, the symmetry group
of the circle is just the set of all operations, exp(i ). We see that the set contains the
identity, and that the inverse of any rotation exp(i ) is just exp(-i ). [Actually, we restrict
 to lie in the interval 2  >  >= 0 so that there is a one-to-one-correspondence between

rotations and the parameter ].

The group of rotations on the complex numbers is called the one-dimensional unitary
group and is denoted U(1). However, we see that it is completely equivalent to the
group O(2). O(2) is generally considered to act on real 2-d vectors, but complex
numbers can be used to represent such 2-d vectors, and hence the equivalence between
the two groups.

The Homepage.
I. Introduction.
II. What is Symmetry?
III. Symmetries of Space and Time.
IV. Special Relativity
V. Noether's Theorem and Conservation
Laws.
VI. Conservation Laws and Quantum
Mechanics.

Emmy Noether Intro http://www.emmynoether.com/math1.htm

9 of 10 6/16/03 9:56 AM



Emmy Noether 

The Problem of Mass 

More than 60 years ago Enrico Fermi scribbled down a descriptive theory of the "weak 
interactions.'' These were feeble forces seen at the time at work in nuclear processes.
Fermi had to introduce a new fundamental constant into physics, which we call GF (the 
F stands for Fermi). This fundamental constant contains a fundamental unit of mass, 
which sets the scale of the weak forces, and is about 175 GeV. (= about 175 times the proton 
mass; 1 GeV = 1 Giga electron volts; we use energy to describe mass because E = mc2; the proton has a 
mass of approximately 1 GeV). 

In the intervening years we have come to understand a great deal about the weak forces. 
In the early 1970's the greatest stride along this path occured when the "Standard 
Model'' was theoretically and experimentally established. This is a true unified theory of 
weak, electromagnetic, strong and gravitational forces under one fundamental symmetry 
principle, called "the gauge principle.'' Like the discovery of DNA as the basic 
information carrier of all living things, the gauge principle is the basic underlying 
defining concept of all forces we know of in nature. Yet, despite this triumph, the origin 
of scale of the weak forces as embodied in Fermi's original theory, the 175 GeV, remains 
a subtle mystery. 
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In the Standard Model we view the vacuum as something like a superconductor. In a superconductor, 
which can be made in the laboratory (they are used in many commercial devices, such as medical 
magnetic imaging systems, sensitive magnetometers, etc.) a quantum effect at very low temperatures 
causes the photon to become a massive particle in a material such as Lead or Niobium. In free space the 
photon is perfectly massless (hence, it always travels at the speed of light). Yet, in a superconductor a 
photon becomes heavy, with a mass of about 1 electron volt, and, in principle, it can be brought to rest. 
This mass generation for the photon gives rise to the peculiar features of superconductors, e.g., they have 
absolutely no electrical resistance to current flow. 

In the Standard Model, however, it is not the photon which becomes massive (the photon remains
massless in the Standard Model!). Rather, 3 other particles, closely related to the photon, the W+, W- and
Z0, become heavy. In fact, the forces that are mediated by the quantum exchange of W's between other 
particles are exactly the weak forces that Fermi was trying to understand 60 years ago . Indeed, the 
weak forces are weak because the W and Z are heavy. We conceive of the same kind of quantum effect 
as in a superconductor acting everywhere throughout the Universe to give the W's and Z their masses, in 
analogy to the way that the superconductor gives the photon a mass. The Fermi scale is the direct 
quantitative measure of this phenomenon. What then is this new quantum effect that gives rise to mass in 
the Standard Model? 

Taking our cue from the superconductor, we find that "something" must undergo "condensation" in the 
vacuum itself (this is analogous to Bose-Einstein condensation, and it also occurs in "superfluids''). 
Condensation is only vaguely something like the formation of dew on a lawn in the cold early fall. In 
quantum theory a condensate is a very large value of a quantum field filling all (or much) of space. This 
"something'' can be modeled by a spin-zero field that fills all of space and is called the "Higgs field," 
after Peter Higgs of the University of Edinburgh. The strength of the Higgs field in the vacuum is 
measured as an energy and it is just the Fermi scale, 175 GeV! 

The condensate is felt by the various particles through their "coupling strengths.'' For example, the
electron has a coupling strength ge. Then, the electron mass is determined to be: me = (ge) x (175 GeV).
Since we know me = 0.0005 GeV, we see that ge = 0.0005/175 =0.0000029. This is a very feeble 
coupling strength, so the electron is very low mass particle. Other particles, like the top quark which has
a mass mtop = 175 GeV has a coupling strength almost identically equal to one. Still other particles, like 
neutrinos, have nearly zero masses, and therefore nearly zero coupling strengths (the topic of neutrino 
masses has recently become very interesting, but we won't delve into it here). 

The Standard Model only predicts the coupling strength of the W+- and Z0 particles, so their masses,
MW and MZ (note that W+ and W- are just particle and antiparticle, and must have the same identical
masses; the Z0 is it's own antiparticle), are predicted (correctly) by the theory. The W has a mass of 
about 80 GeV and the Z a mass of about 90 GeV and these are presently being measured to very high 
precision. These particles, W and Z, called "gauge particles,'' have coupling strengths that are related to 
known quantities, like the electric charge, e, and something we measure in the lab called the weak mixing
angle, W. So, knowing e, W and GF, we can predict MW and MZ. 

So what is the Higgs field? We don't know. It is put into the Standard Model "by hand" to explain mass. 
We know there must be something there that either really is a Higgs field, or that imitates one in a very 
faithful way. We do know that we can, if something like a Higgs really exists, with sufficient energy and 
luminosity, give the vacuum a good kick and produce a Higgs-like particle in the laboratory. This particle 
is believed to have a mass less than 200 GeV (if it really is a pure Higgs), and may even be lighter than 
that. As you may know, the LEP machine at CERN, which has reached the end of it's lifespan and is now 
being decommissioned, was producing some faint hints of a possible Higgs boson signal at 115 GeV 
(many people wanted to continue to run to find out if these hints were real, but CERN must now begin 
construction of the very high energy LHC). 
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At Fermilab, over the next 5 years, we have a very good chance of producing and observing the Higgs. 
To understand this, first you must understand that the Tevatron is essentially a quark collider, in fact 
most of the interesting physics is produced at the Tevatron when an up or down quark inside the proton 
collides head-on with an anti-up or anti-down inside of the antiproton. There are then two key modes for 
making the Higgs: (1) up + anti-down -> W + Higgs and (2) up + anti-up -> top + anti-top + Higgs. 
Ultimately, both of these modes are useful only if the machine has sufficient brightness. We are hoping 
to achieve a brightness in the upcoming Run II (total or integrated luminosity) about 100 times more 
than what we achieved in the previous Run I which discovered the top quark. [Many of us (including me) 
think we should push very hard to get the resources to do 1000 times the brightness of Run I. This 
depends upon $ (dollars) and people]. The purpose is to answer the question: What is the Higgs? 

Thus, the Standard Model has taught us that the basic weak scale, the Fermi scale, of mass determines 
the masses of all other things we see in the Universe. The electron mass, so fundamental to chemistry, 
biology, the brightness of the sun, etc., derives from the scale of weak force, but through a very feeble 
coupling to the Higgs condensate. We do not know how this feeble interaction comes about. 

At Fermilab in the mid 1990's we discovered the heaviest of the elementary particles, the top quark. As 
mentioned above, the top quark has a mass very close to 175 GeV, and very near to the scale of Fermi's 
weak theory. The coupling strength of top to the Higgs is large, it equals 1.00, compared to the lowly 
electron with it's coupling of about three millionths. Large couplings are often easier to understand 
because they imply stronger affinities between certain of the various particles in the full theory, and they 
are easier to connect together experimentally. Therefore, for the first time we feel we may be getting close 
to an understanding of the origin of the mysterious physics that is responsible for mass itself. 

Many theorists are studying the possiblity that the top quark, together with additional new forces, plays a 
more intimate role in establishing the scale of the weak interactions, and thus the masses of all 
elementary particles we have measured previously. Key ideas, borrowed from the BCS theory of 
superconductivity and the known behavior of the strong interactions in particle physics, are being applied 
in one avenue of investigation known as "top quark condensation'' models. Here the Higgs particle is 
actually a boundstate of the top and anti-top (or of top and anti-X, where X is something new), quarks 
due to new strong interactions (called topcolor). In recent years these models, which descend from older 
"Technicolor" models, have overcome some severe difficulties and now are consistent with existing 
Standard Model data. This is due entirely to facing the challenge of the heavy top quark. The models 
contain low mass states, called Pseudo-Nambu-Goldstone Bosons, and these may show up in Higgs 
boson searches first. 

Another line of reasoning, and the majority view at present amongst theorists, is "Supersymmetry". 
Supersymmetry is a hypothetical extension of our understanding of space and time to include additional 
dimensions that are "fermionic.'' This means that the dimensions themselves have wierd fermionic 
properties. For example, a particle that is a boson, such as the photon, when pushed in the direction of a 
fermionic dimension becomes a fermion, called the photino. Or, a quark, which is a fermion, when pushed 
in the direction of the fermionic dimension, becomes a boson, called a "squark.'' So, supersymmetry 
predicts that for every fundamental observed fermion (boson) in nature there must exist a corresponding 
"superpartner'' boson (fermion). We don't yet see these "superpartners'' in nature, so if supersymmetry is 
a valid symmetry, something must be hiding it at the relatively low energies where we make our 
observations. 

Supersymmetry is intimately connected with theories of quantum gravity, called superstring theories. It 
can be used to construct supersymmetric theories of the weak scale, but the connection is less mandatory 
than it is in the connection to gravity. 

There are an infinite number of possible supersymmetric models of the weak scale, but one has become a 
standard: The Minimal Supersymmetric Standard Model (MSSM). The MSSM predicts that all of the 
superpartners of the quarks, leptons, and gauge bosons (for example, the gluino is the superpartner of
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the gluon, anf the wino the superpartner of the W, etc.) should be observable, and soon! Both the 
Tevatron and the LHC will have ample opportunity to begin to see these objects. The MSSM also 
predicts 5 observable Higgs bosons, but it is expected that only the lightest one will be relatively easy to 
find. Here, too, the top quark mass has considerable influence on these hypothetical Higgs particles. 
Without a heavy top quark, the Higgs condensate could not form in the MSSM! The MSSM is fairly 
specific about where the lightest Higgs must be in mass; it places the lightest Higgs particle in a well 
defined mass range of less than 140 GeV, well within reach of the Tevatron (and perhaps the reason why 
LEP was seeing a few funny events at the end of it's run). 

In many ways the discovery of the top quark, and the upcoming discovery of the Higgs, 
marks the beginning of a new era in physics -- the "post-Fermi era'' -- in which new 
discoveries will reach beyond the Standard Model and beyond our current 
understanding and imagination. The top quark, and certainly the Higgs, will be the key 
that opens the door to this new era. To this day we have never failed to make a new and 
unexpected discovery within a new order of magnitude range of energies in subatomic 
physics. Indeed, the range of energies accessible to the Tevatron may yield the first 
physics departures from the standard model. The promise of the understanding of 
something as fundamental to nature as the origin of mass lies ahead. Indeed, we will 
finally understand the origin of the fundamental constant that Fermi scribbled down 
some sixty years ago, when steam locomotives and horse-drawn plows were common 
sights on the American plains, and television and credit cards nonexistent. What novel 
devices this will lead to in some distant future era will no doubt make the PC-internet era 
look to them like the horse and steam era looks to us. 

High Energy Physics is the study of the forces and the behavior and structure of matter 
at the shortest distances. It is the ultimate microscopy. The great particle accelerator, the 
Fermilab Tevatron, is the world's most powerful microscope. Today physicists are 
looking at the substructure of subatomic particles on a scale that is smaller relative to the 
atom than the atom is small relative to a human being. In a very real sense, we are now 
examining, and coming to understand, the very "genetic code'' or the "DNA'' of matter 
itself. What could be more fundamental? 
-CTH

The Homepage.

I. Introduction.

II. What is Symmetry?

III. Symmetries of Space and Time.

IV. Special Relativity
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Emmy Noether 

Symmetry in Physics: 
Chemistry 

The Elements 
It is generally agreed that the ubiquitous chart, the Periodic Table of the Elements (or the Mendele'ev
Chart), is the starting point to the subject of Chemistry. We have discovered that very few high school
students and high school teachers understand why the Periodic Table is what it is. 

What is the Periodic Table of the Elements? This beautiful HTML version of the Periodic Table of the
elements is available at a Los Alamos National Laboratory educational website devoted to chemistry
(click here to visit this site). There are many additional educational features about chemistry available
there, and you can always get back here by the "back" button on your browser. 
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The Periodic Table of the Elements 

1
IA
1A

18
VIIIA
8A

1
1
H

1.008

2
IIA
2A

13
IIIA
3A

14
IVA
4A

15
VA
5A

16
VIA
6A

17
VIIA
7A

2
He

4.003

2
3
Li

6.941

4
Be

9.012

5
B

10.81

6
C

12.01

7
N

14.01

8
O

16.00

9
F

19.00

10
Ne

20.18

3
11

Na
22.99

12
Mg
24.31

3
IIIB
3B

4
IVB
4B

5
VB
5B

6
VIB
6B

7
VIIB
7B

8 9 10 11
IB
1B

12
IIB
2B

13
Al

26.98

14
Si

28.09

15
P

30.97

16
S

32.07

17
Cl

35.45

18
Ar

39.95
------- VIII -------
------- 8 -------

4
19
K

39.10

20
Ca

40.08

21
Sc

44.96

22
Ti

47.88

23
V

50.94

24
Cr

52.00

25
Mn
54.94

26
Fe

55.85

27
Co

58.47

28
Ni

58.69

29
Cu

63.55

30
Zn

65.39

31
Ga

69.72

32
Ge

72.59

33
As

74.92

34
Se

78.96

35
Br

79.90

36
Kr

83.80

5
37
Rb

85.47

38
Sr

87.62

39
Y

88.91

40
Zr

91.22

41
Nb

92.91

42
Mo
95.94

43
Tc
(98)

44
Ru

101.1

45
Rh

102.9

46
Pd

106.4

47
Ag

107.9

48
Cd

112.4

49
In

114.8

50
Sn

118.7

51
Sb

121.8

52
Te

127.6

53
I

126.9

54
Xe

131.3

6
55
Cs

132.9

56
Ba

137.3

57
La*
138.9

72
Hf

178.5

73
Ta

180.9

74
W

183.9

75
Re

186.2

76
Os

190.2

77
Ir

190.2

78
Pt

195.1

79
Au

197.0

80
Hg

200.5

81
Tl

204.4

82
Pb

207.2

83
Bi

209.0

84
Po

(210)

85
At

(210)

86
Rn

(222)

7
87
Fr

(223)

88
Ra

(226)

89
Ac~
(227)

104
Rf

(257)

105
Db
(260)

106
Sg

(263)

107
Bh

(262)

108
Hs

(265)

109
Mt

(266)

110
---
()

111
---
()

112
---
()

114
---
()

116
---
()

118
---
()

Lanthanide
Series*

58
Ce

140.1

59
Pr

140.9

60
Nd

144.2

61
Pm
(147)

62
Sm
150.4

63
Eu

152.0

64
Gd

157.3

65
Tb

158.9

66
Dy

162.5

67
Ho

164.9

68
Er

167.3

69
Tm
168.9

70
Yb

173.0

71
Lu

175.0

Actinide
Series~

90
Th

232.0

91
Pa

(231)

92
U

(238)

93
Np
(237)

94
Pu

(242)

95
Am
(243)

96
Cm
(247)

97
Bk

(247)

98
Cf

(249)

99
Es

(254)

100
Fm
(253)

101
Md
(256)

102
No
(254)

103
Lr

(257)

** Groups are noted by 3 notation conventions.
For a list of a the element names and symbols in alphabetical order, click here
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This unit is an "arm waving" effort to explain, from fundamentals, how the Periodic Table gets to be the 
way it is, and, in so doing, touches on some quantum theory and the all important, but also all too 
unreasonably ignored, concepts of symmetry. 

We start with something that should be taught in low level courses in Physics and Chemistry. It may 
take some major swallowing on the part of the student. But it will be rewarded. 

The Atom of Niels Bohr 
The Hydrogen atom was first conceived of in quantum theory by Niels Bohr. Now, this is a chicken and 
egg situation. Which came first, the Quantum Theory or the theory of the Hydrogen Atom? In essence 
they both came along together. The theory of the Hydrogen atom was a major conceptual leap forward 
for the infant quantum theory, which no one had a clue as to how to construct. It was also a major step 
forward for the understanding of the atom itself, and hence the science of Chemistry, which had 
previously defied understanding within the classical theory of physics. 

Of course, some parts of the atom were known, more or less, from empirical studies. It was known from 
Rutherford that there is a tiny core inside of an atom, called the nucleus, wherein resides 99.98% of the 
mass. And it was more-or-less realized that electrons, discovered in 1898 by J. J. Thompson, somehow 
coexist in space with the nucleus. And, it was clear that electromagnetism somehow holds this system 
together. 

But, according to Maxwell's theory of electromagnetism, when placed in a classical circular orbit, the 
electrons immediately radiate all of their orbital energy away and collapse down onto the nucleus. Such 
an object would be chemically dead. In fact, such an object makes no sense. In fact, nothing about 
electrons, atoms or nuclei makes sense at all in the classical theory. So, we need the quantum theory. One 
nice simplification happens here, however. We can neglect the effects of Relativity because the electrons 
are actually moving at velocities that are slow compared to the speed of light as they move about the 
nucleus (the move at a few one thousandths of the speed of light in their motion). However, the motion is 
nothing whatsoever like that of a planet going around a star. It isn't possible to describe the motion as a 
precise orbit, where we say: "the electron is at position x traveling with velocity v at time t.'' We must 
settle for something containing less information than a classical orbit; we must settle for the quantum 
orbital, or the wave-function, which determines the probability of finding the electron at x and time t. 

We'll assume that a preliminary course in conceptual physics or chemistry gives students a sense of the 
structure of atoms: atoms are a central, very small nucleus, carrying almost the entire mass and the total 
positive charge of the atom. Outside the nucleus are the negatively charged electrons in cloud-like orbits 
about the nucleus. The laws of quantum theory teach us --- and we transmit this to the chemistry 
students --- that only certain special orbits of the electron motion, or orbitals, are allowed. The orbits are 
"quantized,'' and hence the term "quantum theory.'' From Louis de Broglie's 1923 insight, we learn that 
electrons behave like waves, and each electron is associated with a "wavelength.'' Experiments carried out 
by G. P. Thompson in England in 1928, and by C. Davisson and L. H. Germer at Bell Laboratories in 
New Jersey confirmed DeBroglie's theory that the wavelength "associated" with an electron is given by: 
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 = h/mv 

Here h is Planck's constant, the "logo" of quantum theory, and m is the electron mass and v the electron 
velocity. Indeed, mv is just the electron's "momentum.'' 

In the old quantum theory of Bohr we assume that when an electron is bound in an atom it moves in a 
circular orbit of radius R . The allowed orbits are only those in which the circumference of the orbit, 2 
R , matches to an exact integer number of wavelengths. This is much like the sound vibrations produced 
by a musical instrument, e.g., the "standing waves'' that occur on a guitar string or in an organ pipe have 
wavelengths that are (inverse integer) multiples of the length of the string or pipe. Putting the statement 
mathematically, we can squeeze n wavelengths of the electron into one full circumference, or: 

n = 2  R = nh/mv 

where n is an integer: 1 , 2 , 3 , etc., which enumerates orbits and  is the wavelength of the electron, 
given by eq.(1.1). 

We can now derive a formula for the allowed radii of the orbits in terms of other known quantities. Our 
delicious mixture of quantum and classical ideas leads to an expression for the orbit radius " R " in the 
atomic orbit that depends only upon n (i.e., we eliminate the unknowns,  , v , etc.). 

We start with Newton's law of motion F=ma , and we assume a circular orbit. For a particle moving in a 
circular orbit of radius R with velocity v there is a "centripedal" (pointing toward the center) acceleration
of v2/R . Thus, to produce the motion in the circular orbit we need to apply a force of F = ma = mv2/R 
directed toward the center of the orbit. Our centripedal force is provided by the electrostatic attraction, the 
"Coulomb force,'' between the negatively charged electron and the positively charged nucleus of the
atom. This is given by Ze2/R2 , for the force between the nucleus of charge Ze and the electron of charge 
e , separated by a distance R . (Note: Here, the charges are measured in the centimeter-gram-second
system of units in terms of "esu'' or "electrostatic units;'' The electron has a charge of 4.8 x 10-10 esu ) 

So, we have: 

mv2/R = Ze2/R2 

but eq.(2) tells us that v is related to R : 

v = nh/ 2  m R 

We substitute the expression for v in eq.(4) into eq.(3) and solve for R: 

R = n2h2/4 2 m Z e2 

Voila! This is the desired expression for the atomic orbit radius in terms of known quantities and the 
"quantum number'' n , where n = 1, 2, 3, . . . . For the special case n=1 we define the expression of eq.
(1.5) to be the symbol a0 : 

a0 = h2/4 2 m Z e2

The quantity a0 has dimensions of length, and is called the "Bohr radius.'' When we put in Planck's 
constant, the 's, etc., we get: 
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a0 = 5.25 x 10-9 cm

So we see how we get only certain allowed radii for the orbits, given by: 

R = n2 a0

This is completely different than in the case in classical physics, where we could have any radius or any 
orbit we desire by simply choosing the velocity of the electron at will. We say that the orbits are
"quantized.'' For the special case of the Hydrogen atom we have Z = 1 , and the orbital radii are then: a0 , 
4a0 , 9a0 ... 

What about the energy of the orbiting electron? The total energy of the electron is the sum of the kinetic
energy, the "energy of motion,'' m v2/2 , and the potential energy, -Ze2/R . Note that the potential energy is 
negative here because the force is attractive between the nucleus and electron; thus the electron is pulled 
down into the negative potential; a positive potential energy would represent a repulsive force, such as 
between pairs of electrons. Hence, for the total energy we have: 

E = m v2/2 - Ze2/R 

However, from equation (1.3), we see that mv2/2 = Ze2/2R , i.e., the kinetic energy equals half the
(positive) magnitude of the potential energy. So, upon substituting into eq.(1.9), the formula for the total 
energy, we have: 

E = -Ze2/2R 

Now, using our formula for R in eq.(5) we get: 

E = - 2 2 Z2e^4/n2 h2 = - 13.6 electron volts x Z2/n2 

Thus, each allowed orbit has an energy that is associated with with the quantum number n . For the 
special case of the Hydrogen atom, we have Z=1 and therefore the energies are: 

(n = 1) E1 = -13.6 eV 

(n = 2) E2 = -3.4 eV 

(n = 3) E3 = -1.52 eV 

What is the meaning of negative energy? This means that the electron is bound to the nucleus in an atom. 
Thus, if we want to free the electron from the "groundstate'' (the state of lowest energy, or most negative 
energy), we must give it at least 13.6 eV of energy. Then it can escape. So -13.6 eV is the lowest possible 
energy of an electron bound in a Hydrogen atom, and therefore the most stable state. 

We learn that once it is in an excited state, an electron can jump, or fall, down to a lower energy orbit, 
releasing a quantum of light energy: a "photon.'' Conversely, an electron can jump from a lower energy to 
a higher energy orbit, if it absorbs the required energy from some outside source of photons. The 
quantum theory predicts the exact values of these photon energies to be the exact differences between the 
energies of the levels of the hopping electrons. Thus, Bohr's simple theory explains the discrete spectral
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lines of ionized gases, such as in a discharge tube in the lab, or in the corona of the sun. This had been a 
complete mystery for the preceding half century of physics. 

We apologize that here we used the "old quantum theory" of N. Bohr, rather than the modern (and 
complete) version based upon the Schroedinger Equation, with the electron described by its wave
function (x, t) . We all know that the Bohr theory we have outlined above gives the right answer and is
a quick study that every student (and teacher) should know. In the full quantum theory, however, the
electron does not circle the nucleus in a well defined orbit, but rather is described by a wave function, 

n,...(x, t) . The wave-function determines the probability of finding the electron in the n th orbital, at the
location, x , at any time, t , given by: | n,...(x, t)|2 . All statements in the old quantum theory are 
essentially sort-of "averages'' as defined by the more complete theory. We'll have more to say about this 
below. 

More Quantum Numbers 
As we have seen, the quantum theory typically selects only certain discrete energies or orbits as 
contrasted with Newtonian (classical) theory where arbitrary energies and orbits would be allowed. 
Discrete values of the orbit are enumerated in the quantum theory by integers (or half-integers) called 
quantum numbers. Thus in eq.(1.5), n is a quantum number which can take on integer values 1, 2, 3, . . . 
for the different radii. n is special, and is called the "principal quantum number.'' 

It turns out, however, that other properties of the atom, which would have classically a continuum of 
values, are also "quantized" and are allowed only certain values. One important property is angular 
momentum which in Newton's mechanics is a vector quantity given by: L = (r) x (p). The magnitude of 
this vector is given by |L| = mvR for the case of an electron in a circular orbit in classical physics. In 
Quantum Mechanics, the magnitude of L , too, is quantized with a new quantum number l, and the 
formula for |L| is somewhat more complicated: 

|L| = (h/2 ) (l(l + 1))1/2 (l = an integer) 

where we introduce the more conventional quantity, \hbar = h/2 . To understand the orbital angular 
momentum in the atom, and the above formula, one really has to work through the full solution of the 
Schroedinger equation, which is beyond the scope of this article (we refer you to the standard book by L. 
Schiff [2] or any other reasonable book on Quantum Mechanics; it requires a basic understanding of 
ordinary and partial differential equations, and their special function solutions). We'll just state the 
results presently. The angular momentum quantum number, l , in an orbital of principle quantum number 
n , can take on values from zero to a maximum value which is n-1 . one less than the principal quantum 
number. For example, if n = 1 , then l = 0 . If n = 2 , the l can take on values of 0 and 1 ; if n = 3 then l 
can take on values of 0 , 1 and 2 , and so on. 

Angular momentum is further complicated by the fact that, because it is a vector, it can therefore can 
point in some direction in space. In Quantum Mechanics the question of measuring the direction of a 
vector like angular momentum is subtle and is posed somewhat philosophically, i.e., in any experiment 
the experimentalist chooses a direction in space, e.g., the "z'' direction, and asks: What is the value of the 
angular momentum pointing in this direction? Again, the answer is always quantized: For any value of l , 
the measured value of angular momentum along, e.g., the z-direction is 
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Lz = m \hbar where (m = -l, -l+1 -l+2 , . . ., +l - 1, +l ) 

For example, an orbit can have angular momentum l=1 , hence the magnitude of the total angular
momentum is |L| = \hbar (1(1+1))1/2 =\hbar(2)1/2 . Then the experimentalist picks a direction, e.g., the 
y-axis, and she will measure a value of either \hbar , 0 or -\hbar along this axis, corresponding to the 
three allowed values of m, of (1,0,-1). Only when l becomes very large do we approach the classical limit. 
For example, with l = 1000 , we can have a measured value (a "projection'') in the z-direction of m=5
(this is like having a classical angular momentum vector nearly perpendicular to the z-direction); 
alternatively we can have l=1000 m=-998 (this is like having the classical vector nearly pointing exactly 
in the -z direction), etc.

Finally, of quintessential importance, the electron itself has internal angular momentum, called spin. Spin, 
which sounds like what a top does, is really spooky; it is an intrinsic angular momentum which is simply 
a part of the electron. We can never stop an electron from spinning. We know the value of the electron
spin angular momentum has le = 1/2 , which is always a fixed value, and never changes. Then, the 
measured value of electron spin along the z-direction can be only one of two values (which we denote by 
s , the analogue of m: either s = +1/2 (often called "spin up''), or s=-1/2 (often called "spin down"). If all 
this is somewhat unsettling to you, join the quantum crowd. We physicists become comfortable
(eventually) using Quantum Mechanics, because it is true and it works, but we never really become 
comfortable that we fully understand it. 

Thus, in the quantum world of an electron in an atom, there are four quantum numbers: 

n, l , m, s 

Let's hold the many questions and accept that these four quantum numbers completely define the state of 
motion of an electron in an atom. From these quantum numbers and the mathematical solution of the 
quantum equations, we get a complete description of where the electron is in its various states. 

As we mentioned above, in the full quantum theory, we can only compute the wave-function,  , which, 
when squared, gives the probability of finding an electron in some small volume somewhere at some time
in the space of the atom.  is a complicated function of position, (x,y,z) and time, t . This is written as 
(x,y,z,t) . Each orbital is specified by n,l,m,s , so we write the wave-function for any given orbital as 

n,l,m,s(x,y,z,t) . In general, in quantum mechanics, the description of any physical system e.g. a quark, 
atom, molecule, two particles undergoing a collision, etc., are described by some kind of "wave function"
in analogy to  . This function will in general depend on all the coordinates of all the particles in the
system and will contain whatever other relevant properties exist of the particles, e.g., charges, spins, etc.
To obtain predictions as to the results of measurements, we must take the absolute value squared of 
which gives the probability of obtaining results from the measurements. 

This is half of what we need to know to construct the Periodic Table. There's more, and it revolves 
around the fact that all electrons are exactly identical in all respects. Let's proceed. 

Enter Symmetry 
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Now that we have given a very limited view of how quantum theory works, we want to use the concept of 
symmetry to understand how nature builds up the chemical elements, atoms, from the simplest: 
Hydrogen with one nuclear charge (Z = 1) and one electron, all the way to Uranium with (Z = 92) 92 
electrons and beyond. 

We have noted that there are states of discrete energy, the lowest energy (n = 1) being the most stable. 
For an atom of nuclear charge Z , e.g., Z = 2, 3, 4 . . . (i.e. Helium, Lithium, Boron, ...) we must add 
electrons in order to balance the nuclear charge. Like a marble on a sloping floor which rolls down to the 
potential energy minimum, the electron will roll down to the lowest energy state of allowed motion --- so 
too will the next 10 marbles. Where do they go? 

We now have to understand the rules. The rules emerge from the concept of symmetry. We define 
symmetry as follows: a system exhibits symmetry when it does not change even though you perform 
some operation on it. A perfect cylinder can be rotated through any angle around the symmetry axis 
leaving the system identical to how it was before the rotation. A sphere exhibits an even more perfect 
symmetry; it doesn't change if you rotate it about any diameter through any angle. We call this rotational 
symmetry. A 3-bladed propeller, or an equilateral triangle, has a more restricted symmetry; they doen't
change if you rotate the through 120o about the center symmetry axis. 

The fancy language is that the system is "invariant'' (doesn't change) when subject to some symmetry
operation. Any physical system is described by certain mathematical equations, e.g., we have x2 + y2 +
z2 = R2 for the points defining a sphere of radius R in an (x,y,z) coordinate system. We can perform a 
rotation on the coordinate system about the origin. After the operation of rotation, each of the coordinates 
change x --> x' , y --> y' , and z --> z', but the symmetry of a sphere implies that after the rotation we still
get: x'2 + y'2 + z'2 = R2. The mathematical description of the sphere hasn't changed, or is "invariant'' 
under the rotation. 

The symmetry we want to discuss presently has to do with two electrons, one located at x1 and the other 
located at x2. There is a hypothesis that all electrons are identical in every detail. Thus, if we interchange 
the locations of the two electrons in space, x1 <---> x2 the system looks the same, indeed, it is the same!
This is a symmetry: it is called "exchange symmetry.'' 

How do we describe exchange symmetry mathematically? The description of our two electrons is given
by a wave function (x1,x2, t) (we'll henceforth not write t ). If we interchange the two electrons, we
interchange x1 and x2 we will get the new wave-function (x2,x1) . But, The result of this interchange,
according to our hypothesis, must be an identical system! So, there must be no change in the probability 
of observing the two electrons, one at x1 and one at x2 , i.e., 

| (x1,x2)|2 = | (x2,x1)|2 

At the wave-function level there are two ways of satisfying this equation: 

either (A): (x1,x2) = (x2,x1)

or (B): (x1,x2) = - (x2,x1) 
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(this is just the fact that 41/2 has two solutions, +2 and -2 ). Solution (A) says that  is an even function 
under the swapping of the positions of the two particles, sometimes called a symmetrical function.
Solution (B) says that  is an odd function under swapping positions, called anti-symmetric. So what? 

It turns out that nature makes a really big fuss about even vs. odd behaviors under exchange of identical 
particles. A broad class of particles, including electrons, protons, neutrino's and quarks, obey Solution 
(B), i.e., they are anti-symmetric under interchange of any two particles. Yet, another class of particles, 
photons, pions, W's, Z's, . . ., behave as in Solution (A) and are even functions under exchange. There is 
a very deep connection: the first list all have a spin equal to 1/2, 3/2, 5/2, . . . i.e. odd half integer spins. 
The second class have spins 0, 1, 2, 3 . . . integral spins. These two groups behave very differently. The 
half integer particles are collectively called "fermions,'' the integer spin objects are called "bosons.'' 

Now here is how they behave differently. The odd particles have the property that if all of their quantum 
numbers are the same (charges, spins, etc.) and we attempt to set x1 = x2, i.e. the two particles are 
pushed to the same point in space at the same time, then (4) tells us that 

(x1,x1) = - (x1,x1) 

which can only be satisfied by (x1,x1) = 0 . Therefore, the probability of identical electrons co-existing
at the same place in space at the same time, is zero (their spins must be aligned in this case, i.e., s1 =s2 )!
It is as if some powerful force prevents them from co-existing at the same point in space. Lest you say: 
"of course, it is just the electrical repulsion of negative charges," we remind you that the prohibition 
against co-existing in the same point in space simultaneously also applies to neutrons and neutrinos! 

The particles of the boson group, on the other hand, have no problem co-existing at the same point in
space (again, for identical spin states, charges, etc.) because (x1, x2) doesn't have to vanish at x = y for
the even symmetry. In fact, when many many particle states of bosons are created there is an enhanced 
probability of all of the bosons going into exactly the same state of position, or momentum. You may 
have read about Einstein-Bose condensates, i.e. clusters of boson particles that form a very compact and 
dense coherent state; laser beams are coherent states of many photons in the same exact state of motion,
while superfluids are coherent states of bosonic He4 marching together in bosonic lock-step. 
The apparent attraction of bosons to each other and the apparent repulsion of fermion particles give rise 
to the descriptive term "exchange force," even though there really is no force acting here, only the curious 
behavior of the wave functions respecting the symmetry of identical particles. The exchange force, which 
is not a real force, requires some justification. The wave function and its square, the probability of a given 
arrangement of two electrons, gives us some feeling for this. If we consider a situation which has a high 
probability, e.g. throwing a seven in a pair of dice, the behavior is as if the "3" and the "4" have an 
attraction for each other, or, in general, the dice are much more "attracted" to the "7". Similarly, they are 
least attracted or even repelled from the "2" and the "12", the least probable numbers. 

So very probable outcomes i.e., | (x,x)|2 close to unity, appears to act like an attractive force, whereas |
(x,x)|2 close to zero appears as a repulsive force. Physicists call this the exchange force (which is not a 

force!). 

Wolfgang Pauli & the Elements
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Now comes the question of building up the elements in the Periodic Table. We can discuss this by 

considering a nucleus of Z = 2 (Helium). We need to add a second electron to the atom whose nucleus 
has charge +2. One would naturally assume that the electron would go to the lowest energy orbit, n = 1. 
However, we know that two negatively charged electrons repel each other and thus, it may come out that 
the second electron is happier (the total energy is lower) if it goes into the n = 2 orbit. After some 
analysis, however, it turns out that there would have been plenty of room for more electrons to pile into 
the the n = 1 orbit, as Z is increased, minimizing the total energy. Thus Helium will have two electrons in 
the n=1 orbits. As we increase Z , then, are all atoms just fatter and fatter Hydrogen atoms, with all 
electrons in the n=1 orbit? For example, does the Iron atom with Z=56 have 56 electrons squashed into 
the n=1 orbit? 

The answer is no! We have just seen that here is an "influence" in nature, much stronger than the
Coulomb force, which determines where the second, and third, and fourth, .... electrons cannot go. It is
just the odd property of the wave-function under exchange of two electrons, and it implies the dramatic 
result: 

No two electrons can co-exist in the same identical quantum state. 

This "influence" is called: The Pauli Exclusion Principle, after Wolfgang Pauli, the Austrian genius who 
did most of his research at the Swiss University, ETH, in Zurich, and helped to build the modern 
quantum theory in the early 20th Century. This crucial principle determines why The Periodic Table is 
what it is; it also determines the future of stars and planets and protons and people. Pauli's discovery 
ultimately gives rise to the strict set of rules as to how we go from the simplest element (Hydrogen of Z = 
1), to the complex elements with Z = 2, 3, ... 92, ... 110 ... . In German, it is the word "Aufbauprinzip"; in 
English translation, it is the "Principle of Building Up (the Elements)''. 

In the full quantum theory description of an electron in an atom, the electron is completely described by 
its four quantum numbers: n, l, m, s . The Pauli Principle then says: "no two electrons in an atom can 
have the same four quantum numbers.'' This explains the Periodic Table of Elements. It prevents all the 
electrons from going to the lowest energy state, as they would in a world ruled by classical physics. It 
also influences the chemical activity of an atom by determining whether or not electrons can be shared 
between atoms. Thus, the columns of the Periodic Table of elements, which represent the common 
chemical properties of the atoms within a given column, is controlled by the exclusion principle. 

As the simplest example, the electron in atomic Hydrogen goes to the n = 1, l= 0, m = 0, s = 1/2, state. In 
Helium we need to add another electron. It too can go into the n = 1 state (which forces l=0, m = 0 ) only 
if its spin is s= -1/2 , i.e. opposite to the first electron. This exhausts all the possibilities of the n = 1 state. 
We thus have a "closed shell.'' Lithium has three electrons, the first two huddle in the n = 1 state, i.e., the 
closed shell structure of Helium. The third electron must go into the n = 2 state.

Beyond Lithium, how many electrons can go into the n = 2 state? First we fill the l = 0 subshell with two 
electrons, one with s =+1/2 , one with s =-1/2 . This shell has m = 0 Then we fill the l = 1 , m = -1 state 
with 2 electrons. Next, we can put 2 electrons in the l = 1 , m = 0 , state and finally 2 electrons in the l = 1 
, m = -1 state. The total number of electrons allowed into the next n=2 shell is 8. This takes us from 
Lithium through Beryllium, Boron ... to Neon with Z = 10 . All of this is illustrated in table I. 

Not only do we build up all the elements this way, but we get to understand the chemical properties of 
the elements. Hydrogen has room for one electron in the n = 1 state. It therefore forms compounds with
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elements that have a spare electron it can share in the n=1 shell, e.g., H2 or Li H , Lithium Hydride. Once 
a shell is completely filled, as in n=1 Helium, or n=2 Neon, or n=3 Argon, etc., we have an inert or noble 
gas. 

To follow the "aufbauprinzip" in detail requires a knowledge of the rules which connect the various 
quantum numbers. These emerge from the solution of the quantum theory equivalent of Newton's Laws, 
the Schrodinger equation. The rules are not important for one to grasp the central idea, electrons will try 
to go to the lowest energy state, but they must be consistent with the Pauli rule. 

Although we noted that the various n-states differ from each other in energy, there are smaller energy 
differences between different l-values and even m-values. The problems get pretty complex when we are 
deciding how electrons are shared between atoms in a molecule. Larger molecules require computer 
solutions and quantum computational chemistry is a hot subject these days. 

The exchange forces (which are not real forces) play a major role in the theory of molecular bonds ---
the heart of chemistry. The Pauli Exclusion Principle also shows up in the detailed construction of 
atomic nuclei, a crowded little volume of space filled with spin-1/2 neutrons and protons. It shows up in 
such astronomical processes which govern the life cycle of stars, from supernova, neutron stars to black 
holes. You did good, Professor Pauli! 

It is rather remarkable that the identity of particles gives rise to the 100 or so chemical elements, which in 
turn give rise to billions of possible molecules and gives our world variety and richness! 

As we have seen, the patterns of atoms, the properties of chemistry, indeed much of the stability of matter 
itself, is governed by the Pauli principle. Where does it come from? We have only asserted, but not 
proved, that odd half-integer spins, 1/2, 3/2, 5/2, ... , (known as "fermions'') obey the odd solution under 
exchange of position, of eq(17), while the integer spins, 0,1,2,... (known as "bosons'') go with the even 
solution.

Indeed, the Pauli exclusion principle actually follows from deeper symmetries of physics, in particular, 
the symmetry of "rotational invariance.'' Sometimes the Pauli principle is called the "spin and statistics 
theorem.'' 

Spin and Statistics 
We will sketch the idea here. 

As we saw for the electron, all elementary particles have spin, and are described by wave-functions that 
depend upon position in space. The wavefunctions generally change under rotations of the coordinate 
system. For simplicity, let us assume that two electrons occupy the same orbital, and the position 
dependence of the wave-function of the orbital is spherically symmetric about the origin, (this means l =0 
, hence m=0 ) so rotating the spatial location of the particle has no effect on the wave-function. There 
remains, however, an effect from the spin of the particle. 

The change of a spherically symmetric wavefunction of a single particle under rotation is given by the 
spin quantum number s (recall that s is the spin projection in the z -direction of space). 

The wave-function, s(x1), changes as we make a rotation through an angle  about the z axis by an
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amount: s(x1) --> ei s s(x1') where i=(-1)1/2 . Suppose our particle is a boson with s=1 and we rotate
the wavefunction through 360o or 2 radians. Then: s --> ei s s = e2 i s = s That is, since s=1 ,
then e2 s i = e2 i = 1 . This is not surprising; when we rotate any classical object through 2 we expect 
it to come back to its original position. 

What happens to an electron? An electron is described by a weird mathematical object called a "spinor." 
A spinor can be thought of as the "square-root of a vector." Consider an electron which also describes 
spin pointing along the z -direction. Let us rotate its spinor through 2 about this axis. The spinor has 
s=1/2 , and we find: 

1/2 --> e2  s i 1/2 = e  i
1/2 = - 1/2

The spinor changes into minus itself when we rotate through 2  ! This is seemingly impossible! We
have to rotate the spinor though 4  to bring it back to itself. Thus, intrinsically through the sign of the
wave-function every electron knows if it has been rotated through one cycle of 2  . Is this effect 
observable? Certainly, the probability of finding the rotated electron is the same as the unrotated electron,
since the probability is just the square of the wave-function and (-1)2 = +1 . So, the behavior of the
spinor is really happening at the quantum level, and goes beyond classical physics! Yet, this effect is
observable and underlies the Pauli exclusion principle, and is therefore profoundly observable! 

Now, suppose we consider two identical electrons with equal spin values of s1 = s2 = s , one located at
x1 = (x,0,0) and the other at x2 = (-x, 0, 0) , both is the same spherically symmetrical orbital at the same
time. This state is described by a wave-function (x1, x2)s,s . Since the electron's spins are identical, it
must be possible to exchange the electron's positions and get back the same wave-function with the
positions interchanged without exchanging the values of spins: 

(x1, x2)s,s --> (y,x)s,s 

But, if we think about this interchange for a minute, we see that we can get the same result by rotating the
system by 1800 or  radians about the z axis, which interchanges x and y . This wave-function then
changes by

(x1, x2)s,s --> e  s1 i e  s2 i (y,x)s,s = e2i (s) (y,x)s,s = - (y,x)s,s

where each factor of e  s i takes care of the rotation effect on each spinor. So, we find that under the
interchange of the electrons, the wave-function has changed sign: 

(x1, x2)s,s = - (y,x)s,s 

Our electrons with half-integer spins are therefore fermions! And, if we try to set x=y we must get  = 0 
. 

If our particles had integer or zero spin we would get: 

(x1, x2)s,s --> e  s i e  s i (y,x)s,s = ei2s  (y,x)s,s = + (y,x)s,s

This is the essential statement of Pauli's exclusion principle. 

This kind of argument only works in certain special configurations, e.g., above we specialized to two
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identical s_i , and spherical orbitals. It can be generalized, however: Since the spin and interchange 
symmetry must work in the special case of s_1=s_2=s , then it must also be true for the general case of 
arbitrary s_1 and s_2 , because we can rotate one electron relative to another if only weak forces act 
between them, and this should not disrupt the symmetry of the overall wave-function. The relative 
exchange symmetry must also hold for any number of particles making up the overall state because, in 
the absence of strong forces, we can always consider any pair of electrons in the system to be in 
approximate isolation from all the others. The only unsettling feature of this "proof'' is that really strong 
forces might undermine it. Indeed, people used to fret about whether or not quarks obeyed the normal 
Pauli exclusion principle. Even the strong forces, however, that bind quarks are relatively weak at short 
distances, so quarks too obey the Pauli Exclusion Principle. 

Finally, you might find it unsettling that we disallow a state which becomes minus itself under an 
exchange (e.g., two electrons with the same spins at the same point in space), while do allow single 
electrons, which are spinors and which become minus themselves under rotation through 2 ! One can, 
however, get very philosophical about this, argue that single electrons don't really exist, invoke Mach's 
principle and rotate the Universe around the electron, etc., etc. It is best, however, to simply accept the 
Pauli principle at face value: it is a fact about nature that is verified by billions and billions of atoms and 
many thousands of experiments. 

[1] See for example, D. Ebbing, General Chemistry, (Houghton Mifflin Co., Boston 1984)

[2] L. Schiff, Quantum Mechanics , (McGraw-Hill, 1968).

[3] R. P. Feynman, The Feynman Lectures on Physics, (Addison-Wesley Pub. Co., 1963).

[4] For limits on time dependence of fundamental constants see, e.g., F.W. Dyson, in: Aspects of
Quantum Theory , eds. A. Salam and E.P. Wigner (Cambridge Univ. Press, Cambridge, 1972) 213; in:
Current Trends in the the Theory of Fields eds. J.E. Lannutti and P.K. Williams (American Institute of
Physics, New York, 1978) 163. See also, C. T. Hill, P. J. Steinhardt, M. S. Turner Phys.Lett.,
B252,1990, 343, and references therein.

[5] see, e.g. Women in Mathematics , L.M.Osen, MIT Press (1974) 141.
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Emmy Noether 

Symmetry in Physics: 
Portraits of Emmy Noether 
There are many interesting websites that feature biographical information about Emmy Noether. Here are 
some of our favorites: 

Emmy Amalie Noether and other famous mathematicians and scientists are decribed in these 
biographical sketches provided by The School of Mathematics and Statistics of the University of St. 
Andrews, Scotland. This site includes a very nice photo album of Emmy Noether throughout her life. 

The Emmy Noether Lectures feature distinguished women mathematicians and are presented by The 
Association for Women in Mathematics. A biography of Emmy Noether can be found from this page. 

See the associated link at the homepage of Sunsook Noh . This is a graphically beautiful site, featuring 
photographs of past lecturers. 

The best of Math News at Waterloo College features an article about Emmy Noether by undergraduate 
Marni Mishna. 

A must see is the Emmy Noether Society of the Math Club of Bowdoin College. 

Prof. of Mathematics, Clark Kimberling, of Evansville College provides a group photograph of Emmy Noether, 
Mentors and Colleagues and a brief biographical synopsis. 

There are, of course, numerous other sites worth seeing which can be found in any search engine under 
"Emmy Noether". 

We also recommend the monograph: "Women in Mathematics", by L. M. Osen, MIT Press (1974) 141. 

The authors for this website emmynoether.com (Teaching Symmetry in the 

Introductory Physics Curriculum) are  

Prof. Christopher T. Hill, 
Theoretical Physics Department, 
Fermi National Accelerator Laboratory, 
MS. 106, P.O. Box 500, Batavia, Illinois, 60510, USA email: hill@fnal.gov . 

Prof. Leon M. Lederman, 
Illinois Math and Science Academy 
Resident Scholar 
1500 W. Sullivan Rd. 
Aurora, Ill. 60506-1000  email: lederman@fnal.gov . 



Emmy Noether 

Symmetry in Physics: 
Proving Noether's Theorm 

I remember sitting in the seminar room at Caltech in the early 1970's, waiting for the speaker to arrive. 
Richard Feynman was there, and an assembly of students and faculty, and an impatient silence permeated 
the room. A graduate student, an experimentalist I believe, broke the silence and, showing no temerity, 
asked Feynman: "How do you prove that your Path Integral formulation of Quantum Mechanics is 
correct?'' Feynman replied: "You don't have to `prove it' because it is true! Nature doesn't know about
`proof'!'' 

This shows how physicists differ philosophically from mathematicians. Nature is the ultimate arbiter; the 
Path Integral works, and Quod Erat Demonstratum! A "proof'' is a refinement of the statements we make 
about nature for the human linguo-conscious logical system. This is not to disavow scientific reasoning, 
or western scientific philosophy, but just a quip that hand waving arguments are often good physics, and 
you shouldn't get too hung up on the precise mathematical foundations (unless, of course, you want to be 
a mathematician). Of course, Feynman did then elaborate about the physical content of the Path Integral, 
and it was fun and illuminating, and I don't even remember the seminar or the seminar speaker we had 
that day. 

Now we turn to the question of "proving'' Emmy Noether's theorem. We won't give any kind of
"official proof,'' but rather a kind of proof by example.... or .... as we often say in physics .... a
hand-waving proof. We apologize that the following discussion requires some basic understanding of
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Calculus. Calculus was invented by Newton and Leibnitz to describe physics. After a while, the only way 
to describe the French experience is to learn French. Likewise, after a while, the only way to describe 
nature is to learn a little Calculus. [It would, we think , be better if the subject of Calculus was taught 
side-by-side with physics in the High School curriculum. Separating them does a disservice to both 
subjects. (IMHO; actually this is CTH talking; I'm not sure what Leon thinks about this issue) ] 

Consider a free particle of mass m. The energy of the particle in Newtonian mechanics is just given by: 

E = m v2/2 = m(dx/dt)2/2 

We might ask if there is enough information in the energy formula to determine the equation of motion, 
where the equation of motion is: 

0 = m(d2x/dt2) = m (dv/dt) 

where v is the velocity, v = dx/dt . Essentially we are asking: "what is the relationship of the equation of 
motion to the energy formula?" Of course, we can derive the energy formula from the equation of motion 
easily enough. We just multiply the EOM by the velocity, 

0 = mv(dv/dt) = m (d(v2)/dt)/2 

and we integrate this to prove that mv2/2, the energy, is a constant of the motion. 

However, mathematicians and physicists like to see if arguments can be run in reverse. Starting with the 
energy formula, can we reverse engineer the equation of motion? This is a matter of principle. What is 
truly more fundamental, the energy, or Newton's equation? This requires setting up a slightly different 
way of thinking about nature. The new way is called the "Action Principle." In fact, it is the best way to 
think about how nature works. 

We begin by introducting the idea of a trajectory, or a path. We say that the particle moves on a
trajectory, x(t), starting at x0 at time t0, and ending at x1 at time t1, that is: 

x0 = x(t0) and x1 = x(t1). 

Now, the trajectory is completely arbitrary. It can zig-zag, twist in a helix, roll, or do anything that we can 
draw or imagine. 

We now introduce the concept of the action. The action is defined, for a free particle and for any 
trajectory, as the time integral of the energy (this definition change below when we include interactions): 

dt (1/2)m(dx(t)/dt)2 

where the integral runs from t0 to t1, and our trajectory, x(t), runs from x0 to x1. We emphasize that you
can compute the action for any path that satisfies the intial and final conditions. You should try this for a
few sample paths, and play around with it. You are not restricted to the special path that describes the true
motion from x0 to x1, the one that satisfies Newton's equation (i.e., uniform motion). The path can have
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wiggles, stops and starts, and so forth. The Action Principle selects the true path for the motion. 

The Action Principle: The free particle will move along the particular trajectory from x0
to x1 that has the minimum value of the action. 

First, we emphasize "free particle '' here. The action principle has to be stated more carefully when we 
include forces and things, and we replace energy by something called the Lagrangian (see below). 
Moreover, in general, we say the motion "extremalizes'' the action, i.e., it could also be a maximum of the 
action. However, a minimum is an extremal value, and happens to be the correct answer for a single free 
particle. Ok, but where does Newton's equation come from? 

Suppose that we had found a particular trajectory x(t) that has the smallest value of the action. Let us 
slightly change the trajectory by a tiny amount. Let us add an arbitrarily small change z(t), so the
trajectory is now x(t) + z(t). Furthermore, z(t) is so small that we will always neglect (z(t))2, which is 
even smaller. If we substitute the new trajectory into the formula for the action we get the original result 
plus a small correction: 

dt [(1/2)m(dx(t)/dt)2 + m(dx(t)/dt)(dz(t)/dt)] 

The expression can then be rewritten: 

dt [(1/2)m(dx(t)/dt)2 + m d(z(t)(dx(t)/dt))/dt - z(t) m d2x(t)/dt2 ] 

hence we get: 

dt [(1/2)m(dx(t)/dt)2 - z(t) m d2x(t)/dt2 ] + mv(t1) z(t1) - mv(t0)z(t0)

The new path also starts at x0 and ends at x1 so we need to fix z(t0) = z(t1) =0. If we do that, then the last
two terms are automatically zero and we have: 

dt [(1/2)m(dx(t)/dt)2 - z(t) m d2x(t)/dt2 ] 

Now we said that the path x(t) was a minimum of the action. At a minimum of any function, F(x), the 
change in the function for a small change in x is zero. Therefore the action must not change when we 
make the small change of shifting by z(t), for any z(t)!!! Hence, it must be true that: 

0 = m d2x(t)/dt2 

This is Newton's equation, and we see that it is just the statement that the action is minimal (or more 
generally, extremal) for the true physical trajectory, x(t). 

Now comes Emmy Noether. Suppose that we make a uniform shift in our coordinate system. This 
means that we replace out trajectory x(t) by the new trajectory x(t) + z, where z is a constant. Now, even
the endpoints of the trajectory, x0 and x1, must shift to x0 + z and x1 + z. 

"The physics cannot depend upon such a shift"; this is the principle of translational invariance. What 
does this statement mean? It means that the action for the trajectory x(t) must be the same as for the 
trajectory x(t)+z. Well, we have already done the work in computing the shift in the action for any z(t)
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above. We know that under such a shift the action changes into: 

dt [(1/2)m(dx(t)/dt)2 - z m d2x(t)/dt2 ] + mv(t1) z - mv(t0)z

and we already know that Newton's equation must hold, so we find: 

dt [(1/2)m(dx(t)/dt)2 ] + mv(t1)z - mv(t0)z

The statement that the action cannot change with our shift therefore requires that: 

0 = mv(t1) - mv(t0) 

This says that there is a quantity, called momentum, given by mv(t) = m dx(t)/dt which must be the same
at time t1 as it was at time t0. 

The statement that the Action cannot depend upon a translation of the coordinate
system implies that there is a conserved quantity, called momentum. 

Voila!!! Noether's theorem! 

This gives you an idea of how it works in the simplest case. Now for some hand-waving. It can easily be 
generalized to any number of free particles, and you would find that the total momentum is conserved. 
To include forces requires a significant new idea, however. Instead of integrating the energy to define the 
action, we integrate something called the "Lagrangian''. The energy of a single particle in a potential V(x)
is (1/2)m(dx(t)/dt)2 + V(x) . The Lagrangian is the the difference between the kinetic and potential 
energy: 

L = (1/2)m(dx(t)/dt)2 - V(x) 

The action is defined as the time integral of the Lagrangian: 

dt [(1/2)m(dx(t)/dt)2 - V(x(t))] 

and the action principle now states: 

The Action Principle: The action is the time integral of the Lagrangian. The system
moves along the particular trajectory that has an extremal value of the action. 

Now again we can choose a particular trajectory, x(t), which extremalizes the action, and again we can
add a small shift z(t), and repeat our derivation as before, and we will again obtain Newton's equation, but
now in the form: 

F = m d2x(t)/dt2 , where F is the force, F = -dV/dx. 
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The momentum will change for the single particle in the potential, because we are not allowing
translational invariance anymore, i.e., the potential is fixed in space, and as far as the single particle is
concerned, there is a prefered place in space, e.g., the minimum of the potantial, etc. We thus find: 

mv(t1) - mv(t0) = Impulse 

where the impulse is just: 

dt F(t) 

If we consider N particles, and have an arbitrary potential interaction between them, 

V(x1, x2... , xN) 

and we furthermore demand that the potential is translationally invariant: 

V(x1, x2, ... , xN) = V(x1+z, x2+z, ... , xN+z) 

Then we will find, indeed, that the total momentum of all the particles is conserved. All of this follows by 
the same kinds of manipulations we did above for the free particle. 

We can prove energy conservation by shifting the time endpoints of the action integral by a small 
amount, and demanding that nothing change. We can prove angular momentum conservation by 
performing a small rotation of all the rotatable things in the action. We use action principles to define 
field theories, and we get all of the usual conservation laws from them, and more (such as electric charge, 
and quark color, etc.). 

By the way, Feynman, following Dirac, formulated Quantum Mechanics in, perhaps, its most elegant and 
useful way. He said that a quantum system evolves along all possible trajectories, each trajectory having 
an amplitude given by 

Amplitude for trajectory x(t) = exp[ i Action(x(t)) / h-bar] 

To compute how the system actually does evolve, we are told to sum (or integrate) over all possible paths 
(``path" means "trajectory"). Then, the probability of the system getting to the final point on the 
trajectory is just the (absolute) square of the total amplitude. This is called the Path Integral. 

Isn't it spooky? A quantum particle doesn't follow just one trajectory; rather it follows all possible 
trajectories, each having its own "amplitude". If you block off some of the virtual trajectories the particle 
might take, you affect the probability that it arrives at its destination! Because Feynman's Path Integral is 
Quantum Mechanics, and because it involves the Action, the symmetries lead to conservation laws ala 
Noether, just as they do in Classical Physics! 

That's all for now folks (writing equations in HTML is really a pain; but over time we'll add more to this 
--- CTH) 
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