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relativity’s modification of ideas of space and time. Even before relativity,
the painter Claude Monet was already fascinated by issues of simultaneity,
speed, time and the alteration of space. When physics offered a world of
non-Euclidean space-time and a fusing of temporality and spatiality, those
notions, or at least metaphorical analogues of them, fell on fertile ground.

Third, after the British astronomer Arthur Eddington’s eclipse expedition
of 1919 proclaimed that Einstein’s theory had correctly predicted the bend-
ing of starlight, Einstein became a cult figure standing all at once (at least
for his adoring fans) as individual genius, pre-war pacifist, post-war con-
ciliator and moral exemplar. Misunderstood, vilified and then lionized
beyond measure, Einstein became a symbol of hope for anyone doing any-
thing against the grain. For his enemies he was, of course, the anti-hero:
cosmopolitan, anti-nationalist, Jew, abstract theorist, democrat, cut off from
the so-called intuitions of earth, blood and nation. Even before World War
11, Einstein, and through him his most famous equation, stood for the mix-
ture of philosophy, physics and modernity that alternately seduced and
horrified the world around him.

With the long hot and then cold war stretching from 1939 to 1989, the
equation came to stand for something else — nuclear weapons — encapsu-
lating in its sparse symbols both power and knowledge. Here the ‘sextant
equation’ gained a fourth meaning, because these weapons seemed to com-
bine the most esoteric understanding with the most terrible destructiveness.
The equation came to signify an almost mystical force, embodying instan-
taneous and apocalyptic death.

It is in the confluence of these various cultural currents that we find the
lines of affect that cluster around this equation. At once philosophy and
genial fantasy, practical physics and terrifying weapon, E = mc? has become
metonymic of technical knowledge writ large. Our ambitions for science,
our dreams of understanding and our nightmares of destruction find them-
selves packed into a few scribbles of the pen.

The Rediscovery of Gravity

The Einstein Equation of General Relativity

Roger Penrose

Introduction

Einstein’s theory of general relativity provided an extraordinary revolution
in our understanding of the physical world. Yet it did not come about
through the findings of experimenters’ laboratories. It was purely a product
of one particular theoretician’s insight and imagination. It was thus a revo-
lution that stood in stark contrast with the conventional picture of how a
scientific revolution should take place. That picture would hold that a pre-
viously accepted scientific viewpoint would be overthrown only when there
is a sufficiently impressive accumulation of observational data in contra-
diction with it. The twentieth century indeed saw some extraordinary
revolutions in fundamental physics, each of which led to a thorough over-
hauling of basic principles and a shattering of previous views as to the
nature of physical reality. In the main, they were in accordance with such a
conventional picture. But we shall be seeing that general relativity was very
different.

In a broad sense, there were two quite distinct fundamental revolutions in
twentieth-century physics. The first was relativity, concerned with the nature
of space and time, and the second was quantum theory, concerned with the
nature of matter. But the theory of relativity itself involved what might be
called fwo revolutions, going under the respective names of ‘special rela-
tivity” and ‘general relativity’.
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Special relativity is concerned with the strange modifications that must
be made to Newtonian physics when bodies travel with speeds that
approach that of light, whereby space and time coordinates mysteriously
transform among one another, leading to the combined notion of space-
time. This theory essentially grew out of observational conflict with the idea
of an all-pervasive ‘ether’, which would have defined an absolute state of
rest. The most famous conflict with this notion of an ether came from the
Michelson—-Morley experiment (1887), which attempted to measure the
speed of the Earth through the ether; it produced a null result. That experi-
ment, among others, made it increasingly difficult to hold to a Newtonian
view of space and time. The revolution that was special relativity came
somewhat relentlessly through the work of several scientists: George
Fitzgerald, Joseph Larmor, Hendrik Lorentz, Henri Poincaré, Albert
Einstein and Hermann Minkowski. I believe that it should, accordingly, be
viewed as an example of a revolution of the ‘conventional” type, where it
was experiments, in the main, that drove the theorists to move away from
the Newtonian scheme of things (even though Einstein’s own route to the
special theory was not particularly experiment-based).

Quantum theory, also, was very experiment-driven. In fact this was true
to a far greater degree than in the case of special relativity. Physicists were
forced to introduce this new theory to cope with the behaviour of very
small-scale matter when they were faced with a vast body of observational
data that was in gross conflict with ordinary Newtonian ideas.

The general theory of relativity, on the other hand, with its description of
gravity as an effect of the ‘curvature of space-time’ rather than as Newton’s
gravitational force, seemed to have been pulled out of the blue by Einstein,
with no apparent need at all for such a revolutionary new viewpoint. At the
turn of the twentieth century Newton’s beautiful picture of universal gravita-
tion, acting according to an inverse square law of force between particles, was
in wonderful accord with observation, to an accuracy of something like one
part in ten million. There were still a few minor anomalies, but these all even-
tually turned out to result from errors of observation or calculation, or from
the fact that some disturbing influence had not been taken into account. Well,
not quite all — for there was still something not completely accounted for in
the tiny details of the motion of the planet Mercury. This was not unduly trou-
bling to astronomers at the time, however, and it was believed that a more
careful analysis of the situation would also resolve this apparently minor
problem within Newton’s scheme of things. Observationally, so it seemed,
there was no real expectation that Newton’s theory would not suffice.
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But Einstein had found himself to be guided to a very different percep-
tion of gravitation from that of Newton. It was not observational data that
influenced Einstein. Perhaps this is not quite fair. There was one piece of
observational data that he relied upon, but it was not of the twentieth century
nor of the nineteenth, nor even of the eighteenth or the seventeenth. What
troubled Einstein had been well established by Galileo in the late sixteenth
century (and had been noticed by others even earlier), and was a familiar
part of accepted gravitational physics. For more than four centuries the true
significance of Galileo’s observation had lain dormant. But Einstein saw it
with new eyes, and only he perceived its hidden meaning. It led him to
the extraordinary view that gravitation is a feature of curved space-time
geometry, and he produced an equation — now known as Einstein’s equation
— of unprecedented elegance and geometric simplicity. Yet, to calculate its
implications would present enormous technical difficulty, though the results
would be almost invariably indistinguishable from those of Newton.
Occasionally they would not be, however, and remarkable new effects
would come out of Einstein’s theory. In one case the precision of Einstein’s
theory could be seen to advance beyond that of Newton’s by another factor
of about ten million!

What is this paradigm of a beautiful equation, the Einstein equation that
governs general relativity? It is commonly written

Rah - é_R ga.’r =-8nG Tnb’
but what does this mean? Why should this conglomeration of symbols be
regarded as beautiful? Clearly, without the meaning that lies behind these
symbols, there is neither beauty nor physical significance. We shall come to
some real understanding of what this equation means shortly, but for the
moment we must settle for a brief interpretation. The quantities on the left-
hand side of this equation refer to certain measures of this mysterious
‘space-time curvature’; those on the right, to the energy density of matter.
Einstein’s E = mc” tells us that energy is essentially equivalent to mass, so
the right-hand terms refer equally to the mass density. Recall, also, that mass
is the source of gravity. Einstein’s field equation' thus tells us how space-
time curvature (left-hand side) is directly related to the distribution of mass
in the universe (right-hand side).

Before we begin, a few words about reading mathematical equations
may be helpful, as there are indeed some equations in what follows. If you
find these things intimidating, then I recommend a procedure that I
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normally adopt myself when I come across such an offending line. This is,
more or less, to ignore that line and skip over to the next line of actual text.
Well, perhaps one should spare the equation a glance, and then press
onwards. After a while, armed with new confidence, one may return to that
neglected equation and try to pick out its salient features. The text itself
should be helpful in telling us what is important about it and what can be
safely ignored. If not, then do not be afraid to leave an equation behind
altogether.

The Principle of Equivalence

Let’s see if we can appreciate what Einstein was striving to achieve in put-
ting forward his general theory of relativity. Why did he feel that there was
a physical need to go beyond Newton’s highly successful theory? Why did
Einstein introduce the notion of space-time curvature? What, indeed, is
space-time curvature?

The central principle that Einstein believed must be incorporated into
gravitational theory in a fundamental way was what he referred to as the
principle of equivalence. The essential ingredient of this principle was, in
effect, known to Galileo at the end of the sixteenth century (and before him
by Simon Stevin in 1586, and by others going back to Ioannes Philiponos in
the fifth or sixth century). Imagine that a large and a small rock, each of
whatever material composition may be chosen, are dropped simultaneously
from (say) the top of the Leaning Tower of Pisa. If we may ignore the
effects of air resistance, then the rocks will fall at the same rate and reach
the ground together. Let us picture a video camera placed on the large rock,
aimed at the small one. Since the two rocks fall exactly together, the image
that the video camera records is of a small rock just hovering, seeming to be
stationary and therefore apparently unaffected by gravity. To the rocks (until
they hit the ground), the Earth’s gravity seems to have completely vanished!

This observation contains the essence of the principle of equivalence. By
falling freely in under gravity, one can eliminate its local effects, so that
apparently the gravitational force has disappeared. Conversely, it is possible
to produce effects indistinguishable from those of gravity by referring things
to an accelerating reference frame. This apparent gravity due to acceleration
is a familiar feature of modern high-speed transport. As a car accelerates
forwards, the occupants are pressed to the backs of their seats as though a
new gravitational force had suddenly appeared, pulling the occupants to the
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rear. Similarly, if the driver suddenly applies the brakes, then the occupants
seem to be pulled forwards, as though there is a gravitational force pulling
them to the front of the car. If the car swings to the right, then there would
appear to be a gravitational force pulling the occupants to the left, and so on.
These effects are particularly manifest on an aeroplane, as it is often difficult
to tell which direction is actually ‘down’ — i.e. towards the Earth’s centre —
owing to the confusion of effects from the plane’s acceleration and the
Earth’s actual gravitation. The principle of equivalence tells us that this con-
fusion is a fundamental property of gravity. The physical laws that appear to
be operating if measurements are taken with respect to an accelerating ref-
erence frame are just the same as those that operate if the reference frame is
considered to be unaccelerating but where an appropriate gravitational field
of force is introduced, in addition to those forces already present.

It should be remarked that this ‘equivalence’ property is something that
holds only for the gravitational field, and not for any other type of force. It
certainly does not hold if we take an electric field in place of a gravitational
one. Consider, for example, a corresponding situation to that outlined above,
where rocks are imagined to be dropped from the Leaning Tower, but now
with electric forces replacing the gravitational ones. The acceleration rate at
which a body ‘falls’ in a background electric field is by no means inde-
pendent of its compositional nature. This acceleration depends upon what is
referred to as the body’s charge-to-mass ratio. To take an extreme case, we
could imagine that the two bodies have equal mass but their charge values
are opposite (so that one is positively charged and the other negatively).
Then the bodies would accelerate in the background electric field in oppo-
site directions! A video camera placed on one body would certainly not
register the other as being unaccelerated.

The issue with regard to the charged bodies in a background electric
field, as opposed to the massive bodies'in a background gravitational field,
is that the force on the charged body is proportional to its charge, whereas
its resistance to motion — i.e. its inertia — is proportional to its mass. What
is special about the gravitational case is that the force on the body and its
resistance to motion are both proportional to its mass. From the perspective
of Newtonian theory, this fact seems entirely fortuitous. The equality
between gravitational mass (controlling the strength of the gravitational
force on a body) and inertial mass (controlling resistance to change of
motion) is by no means an essential requirement for a dynamical theory of
the Newtonian type, but this equality in the case of gravity makes things a
little simpler, since one does not have two kinds of mass to worry about.
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Although these matters were known for a long time — basically since
Galileo’s early considerations and certainly appreciated by Newton — it
was Einstein who first realized the profound physical importance of the
principle of equivalence. What importance was this? Let us first recall
Einstein’s development of special relativity. He had then taken the ‘prin-
ciple of special relativity’ to be a fundamental principle. According to this
principle, the laws of physics are the same with respect to any uniformly
moving (unaccelerated) observer. Although Larmor, Lorentz and Poincaré
before him had had the basic transformation laws of special relativity,
none of them had adopted Einstein’s viewpoint that this relativity princi-
ple should be fundamental and therefore respected by all the forces of
nature. Einstein’s fundamentally ‘relativistic’ attitude on this matter had
led him to ponder upon whether there is really anything particular about
the restriction to uniform motion in the statement of the relativity princi-
ple. What about the way in which physical laws are perceived by an
accelerating observer?

At first sight, it would appear that accelerating observers simply perceive
laws that are different from those perceived by uniformly moving observers.
In Newtonian language, one needs to introduce ‘fictional forces’ (i.e.
‘unreal’ forces) to cope with the effects of acceleration. Here is where the
principle of equivalence comes in. According to Einstein, such fictional
forces are no less real (and no more real) than the gravitational force that we
all seem to feel pulling us downwards to the centre of the Earth. For the
force of the Earth’s pull can appear to be eliminated if we fall freely with it.
Recall our imagined video camera attached to one of Galileo’s falling rocks.
In the accelerating frame of the video camera, the Earth’s field seems to
have disappeared. It seems to have been rendered ‘fictional” by the simple
procedure of referring things to a reference frame at rest with respect to the
video camera.

With Einstein’s viewpoint, an accelerating observer perceives the same
laws as those of the unaccelerated one provided that an appropriate new
gravitational field of force, arising from the acceleration, is introduced in
addition to all the other forces involved. In the case of the falling video
camera, this additional field would be a gravitational field directed
upwards which just cancels the Earth’s downward field. In the video
camera’s reference frame, therefore, the gravitational field has been
reduced to zero.

In a speech Einstein gave in Japan in 1922, he recalled the moment at
which he happened on this idea, which occurred to him late in 1907:

The Rediscovery of Gravity ﬂ

I'was sitting in my chair in the patent office when all of a sudden a
thought occurred to me: ‘if a person falls freely he will not feel his
own weight’. I was startled. This simple thought made a deep impres- |
sion on me. It impelled me toward a theory of gravitation.

Elsewhere, Einstein referred to this realization as ‘the happiest thought of
my life’. For it contained the seeds of his wonderful general theory of
relativity.

Yet the reader may be forgiven for worrying that Einstein seems to have
eliminated gravity altogether with this point of view. Surely there is an
effect that we call gravity! The planets surely do move in ways that are
beautifully accounted for by Newtonian theory. And there surely does seem
to be something that holds us to our chairs! The Einsteinian view would
appear to be telling us that there is no such thing as gravity, since we can
always eliminate the gravitational force by simply choosing a frame of ref-
erence that is in free fall. Where has gravity gone in this Einsteinian view?
In fact it has not gone away, but is concealed in some subtleties that T have
glossed over. In the next section, we shall see where the gravitational field
is indeed hiding.

Tidal Forces

The considerations of the previous section are essentially local. T have
ignored how Newton’s gravitational field of force might be varying from
place to place. The direction ‘down’ is not quite the same here in Oxford
as it is in London, owing to our differing locations on the globe. If I try
to eliminate the gravitational field.where I sit here at my desk, by con-
sidering my descriptions relative to a rigid reference frame that falls
freely to the ground here in Oxford, then this frame will not quite do the
job for someone in London. Thus, the ‘elimination’ of the gravitational
field by adopting a freely falling frame is not really a straightforward
matter.

To make the situation a little more specific, let us imagine an astronaut
called Albert - but we shall refer to him simply as ‘A’ for short — who falls
freely in the vicinity of the Earth. We could imagine that A simply drops
towards the ground, but this might be considered to a little inhumane. We
are concerned just with accelerations and not velocities directly, so it is just
as good to suppose that Albert is safely in free orbit about the Earth. Let us
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suppose that A is surrounded by a small sphere of particles, initially at rest
with respect to A. Each particle will have an acceleration towards the
Earth’s centre C, and this will be in accordance with Newton’s inverse
square law. The two particles P, and P, that lie on the straight line CA will
have accelerations in the direction of C, but the acceleration of the lower
point P, will be a little greater than that at A, and the acceleration at the
higher point P, a little less than that at A. Thus, relative to Albert, P, will
be accelerating slowly down towards the Earth’s centre C but P, will be
accelerating up away from C. Both P, and P, will appear, to A, to be
accelerating away from A. On the other hand, any particle P, on the hor-
izontal circle of particles centred at A will accelerate slightly inwards, as
it is pulled towards the Earth’s centre C, since C is a definite finite dis-
tance from A, with a slightly different ‘down’ direction. Relative to A, the
acceleration of such a point P, will appear to be inwards towards A. The
entire sphere of particles will become distorted into a prolate (cigar like)
ellipsoidal shape, moving inwards towards A in horizontal directions rel-
ative to A, and moving outwards along the line from A to the centre C.
(See Figure 1.)

This distortion effect is referred to as the fidal effect of gravity. The
reason for the description “tidal’ is that it is precisely this same effect that
is responsible for the tides of the Earth’s oceans, as governed by the loca-
tion of the Moon. To see this, let us now imagine that A represents the
centre of the Earth and that the sphere of particles represents the surface of
the Earth’s oceans. Let C now represent the location of the Moon. Again
there will be slightly differing accelerations towards the Moon’s centre C
at all the points on the ocean’s surface. The resulting effect, relative to the
Earth’s centre A, will be to cause a prolate ellipsoidal distortion of the
ocean surface, which bulges in a direction towards the Moon (C) and also
in the opposite direction. This is precisely the main effect that gives rise to
the tides. (Subsidiary influences are the Sun’s similar, but smaller, tidal
effect and the frictional and inertial influences on the actual motion of the
water in the oceans.)

It is a particular (defining) feature of Newton’s inverse square law that
the volume of the sphere of particles remains initially constant in its momen-
tary distortion into an ellipsoid. (What this amounts to saying is that the
outward acceleration at P, and P, is twice the inward acceleration at the
horizontal points like P,.) This fact depends upon there being no mass den-
sity within the sphere itself. If there were a significant amount of massive
material within the sphere, then there would be an additional inward
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Figure 1 The tidal effect. Open arrows show relative acceleration.

acceleration that would serve to reduce the volume of the sphere in its ini-
tial motion. The amount of this (initial) volume reduction is, quite generally,
proportional to the total mass surroundéd by the sphere. In fact, Newton’s
magnificent gravitational theory is effectively encompassed within the
simple facts that I have just described.

A particular example of this volume reduction would occur if we con-
sider our sphere of particles to surround the Earth completely, in the vicinity
of the Earth’s surface, where we are now concerned with the Earth’s gravi-
tational field itself, rather than the small corrections due to the Moon which
are (mainly) responsible for the tides. The distortion of our sphere is now of
the pure volume-reducing type. This is an inward acceleration all around the
Earth, and it supplies us with the familiar gravitational field that indeed
holds us to our chairs.
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Space-Time Curvature

Although the idea of space-time has not yet featured in these considerations,
and we shall be coming to this more fully in the following section, it is useful
to get some feeling for why the above way of looking at Newtonian gravity is
actually telling us that Einstein’s perspective on gravitational theory, where
the principle of equivalence is regarded as fundamental, leads naturally to the
notion that gravitation is manifested in a form of space-time curvature. Let us
try to imagine that the history of the universe is laid out before us as a four-
dimensional continuum. We are not, for the moment, trying to depart from
Newtonian physics; we are merely looking at the Newtonian universe in an
unusual way — as a piece of four-dimensional geometry! In addition to having
three spatial coordinates, say x, y and z, we shall also introduce the time
coordinate 7 describing a fourth dimension. Of course the visualization of the
full four dimensions creates difficulties, but such a complete visualization is
not really necessary. Let us temporarily ‘forget’ the space coordinate y, so that
we now have a three-dimensional space-time coordinatized by x, z and 7.
Figure 2 gives us some idea of what is involved. An individual point particle
is now represented as a curve in the space-time; this curve, describing the par-
ticle’s history, is called the world-line of the particle.

We shall try to understand the history of the sphere of particles sur-
rounding Albert (from Figure 1) and see what this has to do with the notion
of space-time curvature. At the right-hand side of Figure 2, I have tried to
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Figure 2 Space-time (Newtonian case). Geodesic deviation (tidal effect)
is illustrated on the right.
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depict the history of the evolution of this sphere, with one of the spatial
dimensions (namely the horizontal dimension coordinatized by y) sup-
pressed. The sphere (in this reduced dimensionality) now appears as a
circle, and as time evolves it gets distorted into an ellipse. Note that there is
a bending outwards of the world-lines of the vertically displaced particles P,
and P, (major axis of the ellipse), this bending being outwards away from
Albert’s central world-line. On the other hand there is an inward bending for
the world-lines of the horizontally displaced particles P, and P;" (minor axis
of the ellipse).

We are to compare this ‘bending effect” with the behaviour of geodesics
on a curved surface. A geodesic is a curve of minimal length on such a
curved surface. We may think of a piece of string stretched taut over the sur-
face. It will describe a geodesic on that surface. If the surface has what is
called positive curvature (like the curvature of an ordinary spherical surface),
then slightly displaced geodesics that start out parallel to each other will
begin to curve in towards each other. If the surface has what is called nega-
tive curvature (like the surface of a saddle), then slightly displaced geodesics
starting out parallel will begin to diverge away from each other. (See Figure
3.) This manifestation of curvature is referred to as geodesic deviation.

In our space-time picture of the tidal distortion, as illustrated at the right
in Figure 2, we see a combination of these two kinds of curvature. There is
positive curvature (inward-bending) for the horizontally displaced world-
lines of P, and P,’, whereas for the vertically displaced world-lines of P, and
P, we have negative curvature (outward-bending). This interpretation of the
distortion of world-lines that occurs in the tidal effect as a geodesic deviation
of some kind becomes justified when we are able to think of the world-lines
of particles, freely moving under gravity, as geodesics in space-time. For this

(a) (b)

Figure 3 (a) Positive curvature causes convergence of geodesics — like the
surface of an orange
(b) Negative curvature causes divergence of geodesics — like a saddle.
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we shall need to have an appropriate notion of ‘distance’ in space-time. We
shall be coming to that in the next two sections. We shall be seeing that the
tidal effect is indeed an instance of geodesic deviation, and it is thus a direct
measure of space-time curvature.

We observe that the notion of curvature in higher dimensions is a more
complicated thing than it is in the two-dimensional case. In two dimensions,
we find that the curvature at any point is given simply by a single number,’
which would be a positive number in the sphere-like case of positive cur-
vature and a negative number for the saddle-like case of negative curvature.
In more than two dimensions the curvature is described by several numbers,
called components of the curvature, these basically measuring the two-
dimensional type of curvature in various different directions. In the example
just considered we have seen, in effect, a positive curvature component
referring to the horizontal direction from A to P; and P, and a negative cur-
vature component referring to the vertical direction from A to P, and P,. In
fact, in the four dimensions of space-time, there are twenfy independent
components to the curvature, and these can be collected together to describe
a mathematical entity referred to as the ‘Riemann curvature tensor’. I shall
defer discussion of the notion of a tensor until a later section, but it is worth
pointing out here that the Einstein equation is itself a tensor equation, and
the little indices (such as the @ and b on R ,) simply provide a labelling for
such components in different directions.

So far, we have not really been doing general relativity, but merely
Newtonian gravitational theory from the Einsteinian perspective.’ In order to
move forward to full general relativity, we shall have to understand a little
more about special relativity: why is it really a four-dimensional space-
time theory, and what is the appropriate notion of ‘distance’ in this
space-time geometry? Let us come to all this next.

Minkowski’s Notion of Space-Time Geometry

Einstein based his 1905 special theory of relativity on two basic princi-
ples. The first was already referred to earlier; for all observers in uniform
motion the laws of nature are the same. The second was that the speed of
light has a fundamental fixed value, not dependent upon the speed of the
source. A few years earlier, the great French mathematician Henri
Poincaré had a similar scheme (and others, such as the Dutch physicist
Hendrik Lorentz, had moved some way towards this picture). But Einstein
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had the clearer vision that the underlying principles of relativity must apply
to all forces of nature.

Historians still argue about whether or not Poincaré fully appreciated
special relativity before Einstein entered the scene. My own point of view
would be that whereas this may be true, special relativity was not fully
appreciated (either by Poincaré or by Einstein) until Hermann Minkowski
presented, in 1908, the four-dimensional space-time picture. He gave a now
famous lecture at the University of Gottingen in which he proclaimed,
‘Henceforth space by itself, and time by itself are doomed to fade away into
mere shadows, and only a kind of union of the two will preserve an inde-
pendent reality.”

Einstein seems not to have appreciated the significance of Minkowski’s
contribution initially, and for about two years he did not take it seriously.
But subsequently he came to realize the full power of Minkowski’s point of
view. It formed the essential background for Einstein’s extraordinary later
development of general relativity, in which Minkowski’s four-dimensional
space-time geometry becomes curved.

The physical interpretation of this curvature is basically that which has
already been given, but there is still an essential missing ingredient, namely
the interpretation of the world-lines of particles moving freely under grav-
ity as geodesics in space-time geometry. Examples of such geodesics would
be the world-lines of our astronaut A and of the surrounding sphere of par-
ticles. To understand this interpretation, it will be important first to
appreciate the flat four-dimensional mathematical structure that Minkowski
actually introduced in order to describe special relativity.

For this it is helpful to start by considering familiar three-dimensional
Euclidean geometry. It is convenient to introduce Cartesian coordinates x, y,
z to label points in Buclidean 3-space. Then the distance [ from the origin
(with coordinates x = y = z = 0) to the point (X, ¥, Z) (i.e. coordinates
x=X,y=7Y,z=2)is given by the Pythagorean relation

P=X>+Y+2Z°

(The reader will recall the Pythagorean theorem, which states that the
squared length of the hypotenuse of a right-angled triangle is equal to the
sum of the squared lengths of the other two sides. This would be the two-
dimensional formula 22 = X2 + ¥2, since the distance between two points in
the plane is the hypotenuse / of a triangle whose other two sides’ lengths are
X and Y. The extension to three dimensions is a two-step consequence of
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this.) We can also use the above formula to express the Euclidean distance
between any two points, where now X represents the difference between the
x-coordinate values of the two points, and similarly for ¥ and Z.

It is easy to generalize the formula to four dimensions and obtain the
squared distance from the origin to the point w=W,x=X,y=Y,z=Z in
Euclidean 4-space as

P=W+X*+Y+Z%

However, Minkowski’s space-time geometry differs subtly but importantly
from this. Although space and time coordinates indeed get mixed up with
one another in relativity theory according to a kind of rotation (a ‘Lorentz
transformation’), the way that an ordinary Euclidean rotation mixes up the
(w, x, y, 7)-coordinates does not give us quite the correct prescription. There
is a qualitative distinction between the space and time coordinates in
Minkowski’s description, which shows up as a sign difference in the above
distance formula.

In place of the fourth spatial coordinate w we introduce a time coordinate
t. How do we modify the above formula so as to obtain the correct
Minkowskian measure of ‘distance’ 77 In fact, in order to arrive at the most
directly physical such measure, it is appropriate to reverse the signs of all
the spatial contributions, leaving the one temporal coordinate r = T to con-
tribute with a positive sign:

R=P-X -V -2

Here I am using units of distance and time so that the speed of light comes
out as unity. Thus, if we were to use the year as the time unit, then we
should have to use the light year as the unit of spatial measure; if we use the
second as the time unit, then we must use the light second as the unit of spa-
tial measure (about 186,000 miles).

What kind of ‘distance’ is then defined by the quantity 7? It is better to
think of 7 as a measure of time. It is what is called the proper time. If the
space-time point P with coordinates r=T,x=X,y=Y,z= Z is such that the
quantity on the right-hand side of the above expression is positive, then P is
timelike separated from the origin O, which means, physically, that it is
theoretically possible for the world-line of a particle to pass from O to P (if
T is positive) or from P to O (if T is negative). If this particle moves uni-
formly in a straight line from O to P, then the quantity 7 (taken with the
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positive sign) is the time (proper time) actually experienced by the particle
between O and P as measured by an ideal clock situated on the particle. (The
fact that this time is not simply the Newtonian 7, but involves the spatial coor-
dinate differences also, is an expression of the ‘relativity of time’ that occurs
with special relativity.) As with Euclidean geometry above, these consider-
ations apply also when the origin O is replaced by some arbitrary point P,
but where now the quantities T, X, Y, Z refer to the differences between the
respective 1, x, y, z coordinates of the two space-time points P and P’, and
where ¢ is the time experienced by the particle moving inertially from P to P.

Minkowskian geometry has the curious property that the ‘distance’
between two points P and P’ can sometimes be zero even though P and F
do not coincide. This happens when a light ray can contain both P and P’
(which we think of as a ‘particle of light’, or photon, travelling with the
speed of light). Thus, noting the above interpretation of ‘Minkowski dis-
tance’ as proper time, we find that a photon would not experience any
passage of time at all (if photons could actually experience anything!). For
fixed P, the locus of such points P’ constitutes the (future) light cone of P.
The light cones are important because they determine the causality proper-
ties of Minkowski space, but I shall not be much concerned with them here.
The one essential point that will be needed is that the world-line of a parti-
cle with mass must lie within the light cone at each of its points. This
simply expresses the fact that the particle does not exceed the speed of
light anywhere. Such a world-line is referred to as a timelike curve. Any
massive particle’s world-line must be a timelike curve.

Now any timelike curve (i.e. allowable particle world-line) has a
Minkowski ‘length’ whether or not the curve is straight. A curved world-line
describes an accelerating particle. This ‘length’ is, physically, simply the
(proper) time that is experienced by the particle. To obtain this length math-
ematically, we just do the same thing that we would do in ordinary
Euclidean geometry, except that we must take into account the sign differ-
ences, noted above, that are involved in passing from Euclidean to
Minkowskian geometry. To do this explicitly, we need the infinitesimal
expression for the length that measures the ‘distance’ between two infini-
tesimally separated points. We then ‘add up’ (technically: integrate) all
these infinitesimal separations along the curve to get the total length. In
Euclidean three-dimensional geometry, this infinitesimal separation ‘d/’ is
related to standard Cartesian coordinates x, y, z by the formula

dP? = dx* + dy* + dz°.
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In the Minkowski case, we must modify this to
dr? = df* — dx* — dy* — d7,

but the interpretation is completely analogous. (Those unfamiliar with the
relevant calculus notations can imagine df to stand for t’~f and dx to stand
for x’—x, etc. where P’ lies infinitesimally close to P within the light cone of
P.) The total lapse of time (proper time) between two points on a world-line,
as measured by an ideal clock, is the total ‘length’ of the world-line between
these points.

An important feature of length in Euclidean geometry is that among all
the curves joining two points, the length is minimum when the curve is
straight. (‘The shortest distance between two points is a straight line.’)
There is a closely analogous property in Minkowskian geometry, except that
things are the other way around. If we select a pair of timelike-separated
points, then among all timelike curves joining them, the proper time is a
maximum when the curve is straight. Physically, this provides us with what
is sometimes referred to as the ‘clock paradox’ (or ‘twin paradox’), whereby
a traveller to a distant star and back ages less (because of a shorter
“Minkowski distance’) than his twin sister whom he leaves behind on Earth.
The Earthbound twin has a straight world-line, and therefore she experi-
ences a greater duration of time than does her space-travelling brother,
whose world-line is curved because of the acceleration. It is very mislead-
ing, however, to think of this as a paradox. Admittedly it takes some getting
used to, but it is not actually paradoxical, and many experiments have now
confirmed this effect to great accuracy. Minkowski geometry makes the
time difference between the two twins seem almost ‘ordinary’.

Why was Einstein led to modify Minkowski’s beautiful space-time
geometry and introduce curved spacetime? We have seen that in special rel-
ativity, particles moving freely in the absence of forces — i.e. inertially
moving particles — have straight world-lines in Minkowski space. Einstein’s
desire to incorporate the principle of equivalence into physical theory led
him to the view that a new concept of ‘inertial motion” was required. Since
the gravitational force can be locally eliminated by use of a freely falling
reference frame, we are not to consider the gravitational force as ‘real’
according to Einstein’s viewpoint. So Einstein found that he needed to
introduce a different notion of inertial motion, namely free fall under grav-
ity, with no other forces acting. Because of the tidal effects that we
encountered above, we cannot think of the ‘inertial” particles (in Einstein’s
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sense) as having straight (i.e. geodesic) world-lines in Minkowski's geom-
etry. For this reason we need to generalize this geometry so that it becomes
curved. Einstein found that, indeed, the world-lines of his inertial particles
could now be geodesics in this curved geometry — locally maximizing the
‘length’ rather than minimizing it, in accordance with the above — and the
tidal distortion is indeed an instance of geodesic deviation, providing a
direct measure of space-time curvature. Let us try to understand this curva-
ture a little more fully.

Curved Space-Time Geometry

In the nineteenth century two great German mathematicians, Carl Friedrich
Gauss and Bernhard Riemann, introduced the general notion of ‘curved
geometry’. To get a feeling for this kind of geometry, think of the surface of
a tennis ball divided in half. It can be flexed in various ways, but what is
called its intrinsic geometry remains unchanged under such deformations.
Intrinsic geometry is concerned with distances measured along the surface.
It is not concerned with the space (here our ordinary Euclidean three-space)
in which the surface may be pictured as embedded. Distances measured
directly across from one point to another taken outside the surface are not
the concern of intrinsic geometry. The length of a curve drawn on the half
tennis ball is unchanged by the flexing, however, and such lengths are the
basic concern of intrinsic geometry.

Gauss introduced this idea of intrinsic geometry in 1827 in the two-
dimensional case, like our tennis-ball surface just considered. He showed that
there is a notion of curvature in this geometry that is entirely intrinsic, so that
it is completely unaffected by changes in the way that such a surface might
be embedded. This curvature can be calculated from the length measures
along the surface, where we think of the lengths of curves on the surface as
obtained by integrating an infinitesimal measure of length dl along the curve,
just as above. In practice, one introduces some convenient system of coor-
dinates on the surface, say u, v, and we find an expression for d/ in the form

dP =Adu? +2Bdudv+ Cdu?
where A, B and C are functions of u and v (this expression being locally the

same as the infinitesimal ‘Pythagorean’ expression for distance dI* = dx’ + dy*
that we had earlier but now written in terms of the general coordinates u, v).
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In 1854 Riemann showed how to generalize Gauss’s intrinsic geometry
of surfaces to higher dimensions. The reader might be puzzled about the
motivations here. Why might mathematicians be interested in higher-
dimensional intrinsic geometry? Ordinary space has just three dimensions
and it is hard to see how to make sense of ‘flexing’ a three-dimensional
‘surface’ — let alone a higher-dimensional surface — within it. The first
point to make is that this picture was helpful only for getting us started in
understanding the notion of ‘intrinsic geometry’. We should really be
thinking of the intrinsic geometry of our surface as being something that
stands on its own, without the need for an embedding space at all. Indeed,
one of Riemann’s original motivations was that the physical three-space
within which we actually find ourselves might have a curved intrinsic
geometry, without it having to ‘reside’ within some higher-dimensional
space.

But Riemann also considered n-dimensional intrinsic geometries, and
one might question the motivations for that. Two considerations are rele-
vant here. It turns out that the mathematical formalism that has been
developed for handling curved three-spaces is basically the same as that for
handling curved n-spaces in general, so there is nothing to be gained by
restricting attention to the case n = 3. The other consideration is that curved
(intrinsic) n-geometry is important in many contexts where the n does not
refer to the number of dimensions of ordinary space, but to the number of
degrees of freedom of some system. There are abstract mathematical
spaces known as ‘configuration spaces’, a single point of which repre-
sents the entire arrangement of parts of some physical structure. The
dimension n of such a space can be very large indeed, when the system has
many parts, and Riemann’s higher-dimensional geometry can be of great
relevance to these spaces.

The notions of ‘metric’ and ‘curvature’ in the n-dimensional case are
natural generalizations of those introduced by Gauss for ordinary two-
dimensional surfaces, but because of the large number of components
involved, we need a suitable notation in order to handle them all. In place of
the three ‘metric components’ A, B and C that occur in the above expression
for dI* in the two-dimensional case, we need six such quantities for three
dimensions. These are the components of the metric tensor, generally
denoted g ,. This quantity serves to define the appropriate notion of a ‘dis-
tance’ between neighbouring points, frequently denoted by ds.*

In Riemann’s geometry, we obtain the length of a curve in the space by
integrating ds along the curve in just the same way as in the flat-space case
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already discussed. A geodesic in a Riemannian manifold is a curve that
(locally) minimizes length (so it describes ‘the shortest distance between
points’, in an appropriate sense). The curvature of the Riemannian space is
the quantity that describes the amount of geodesic deviation in all the vari-
ous possible directions in the space (as indicated above). Not surprisingly,
there are many components to the curvature, there being lots of possible
directions in which this geodesic deviation may be measured. In fact, all this
information can be collected together in the quantity called the Riemann
tensor. The Riemann tensor (or its collection of components) is commonly
written R , ,, where those little indices refer to all the different possible
ways in which the geodesic deviation might be measured.”

Einstein’s general relativity is formulated in terms of a concept of curved
four-dimensional space-time which bears the same relation to Minkowski’s
flat space-time as Riemann’s concept of curved geometry bears to flat
Euclidean geometry. The metric g, can be used to define curve lengths, but
as in Minkowski’s flat space-time geometry, this ‘length’ is best thought of
as defining the time, as measured by a particle along its world-line. Those
world-lines that locally maximize this time measure are the geodesics in
space-time and are considered to be the world-lines of inertially moving
particles (where ‘inertial’ is taken in Einstein’s sense of ‘freely moving
under gravity’, as already described).

Now we recall that the geodesic deviation in space-time that is caused by
gravitation (in Newtonian theory) has the property that in vacuum there is
initially no volume change, whereas when there is matter present in the
vicinity of the deviating geodesics, the volume reduction is proportional to
the total mass that is surrounded by the geodesics. This volume reduction is
an average of the geodesic deviation in all directions surrounding the cen-
tral geodesic (this central one being the astronaut A’s world-line). Thus, we
need an appropriate entity that measures such curvature averages. Indeed,
there is such an entity, referred to as the Ricci tensor, constructed from
R, . Its collection of components is normally written R ,. There is also an
overall average single quantity R, referred to as the scalar curvature.® We
recall that R , and R, together with g ,, are precisely the things that appear
on the left-hand side of Einstein’s equation.

The quantities g ,, R ., and R, are (sets of components of) entities
called tensors, and tensors are fundamentally important in the study of
Riemannian geometry. The reason for this has to do with the fact that in this
subject, one is not really interested in the specific choice of coordinates that
happen to be used for a description of the manifold. (This is an implication
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of a strict adherence to the principle of equivalence.) One set of coordinates
may be used, or another set may be used equally well. It is just a matter of
personal convenience. The tensor calculus was a marvellous technical
achievement, developed in the late nineteenth century by several mathe-
maticians as a means of extracting invariant information about the
manifold, its metric and its curvature, where ‘invariant’ essentially means
‘independent of any particular choice of coordinates’.

In Einstein’s deliberations about how to incorporate the principle of
equivalence fully into a physical theory of gravitation, he eventually real-
ized that he needed a formulation that is ‘invariant’ in the sense referred
to above. He called this requirement the principle of general covariance.
The space-time coordinates that refer to two differently accelerating
frames of reference can be related to each other in some (often compli-
cated) way, and neither is ‘preferred’ over the other. Einstein had to enlist
the help of his colleague Marcel Grossmann to teach him what he needed
to know of the ‘Ricci calculus’ (as the tensor calculus was then called).
The only essential difference between the curved space-time geometry
that he required and the Riemannian geometry that the Ricci calculus
was designed for (in the four-dimensional case) was the change in ‘sig-
nature’ that was needed in passing from the locally Euclidean structure of
Riemannian spaces to the locally Minkowskian structure needed for a
relativistic space-time.

Full General Relativity

Let us return to Albert, our astronaut A surrounded by a sphere of particles.
All these particles, as well as A, are moving inertially, in Einstein’s sense (i.e.
freely under gravity), and he postulated that inertially moving particles
should have world-lines that are geodesics in space-time.” We recall that the
initial volume reduction of this sphere is proportional to the mass enclosed,
in Newtonian theory, and that it is the Ricci tensor that measures this volume
change. Accordingly, we may expect that the appropriate relativistic gener-
alization of Newton’s theory would be one in which there is an equation
relating the Ricci tensor of space-time to a tensor quantity that appropriately
measures the mass density of matter. The latter quantity is what is referred to
as the energy—momentum tensor, and its family of components is normally
written T ,. One of these components measures the mass-energy density; the
others measure momentum densities, stresses and pressures in the material.

There is a factor of proportionality, in Newton’s theory, between the inward
acceleration and the mass density, that is Newton’s gravitational constant G.
This led Einstein to anticipate something like the equation

R, =-4rGT,.
The 4 comes from the fact that we are dealing with densities rather than
individual particles, the minus sign coming from the fact that the accelera-
tion is inwards, where my own conventions for the sign of the Ricci tensor
are such that outward acceleration counts positively — but there are innu-
merable different conventions about signs etc. in this subject.

This equation is indeed what Einstein first suggested, but he subse-
quently came to realize that it is not really consistent with a certain
equation,® necessarily satisfied by T ,, which expresses a fundamental
energy conservation law for the matter sources. This forced him, after sev-
eral years of vacillation and uncertainty, to replace the quantity R , on the
left by the slightly different quantity R , -+ Rg_, which, for purely mathe-
matical reasons, rather miraculously also satisfies the same equation as
T ,! By this replacement, Einstein restored the necessary consistency of the
resulting equation, which is his now justly famous and very remarkable
Einstein equation®:

R %Rg =-8aGT

ab ~ ab — ab*

This ‘volume reduction” in the geodesic deviation that this equation gives
rise to is just slightly different from what we expect from Newtonian theory,
because of the additional term ‘— é—Rguh’ that now occurs in the left-hand
side of the above equation. Instead gf the ‘source of gravity’ (i.e. source of
volume reduction) being simply 4G multiplied by the mass density (in the
sense of the mass-energy term in T ), it now turns out to be 477G multiplied
by the mass density plus the sum of the pressures in the material, in three
mutually perpendicular directions (coming from other components of 7,,).
For ordinary materials, like that composing ordinary stars and planets, the
pressures are very small as compared with the mass densities (because the
constituent particles of such bodies move slowly in comparison with the
speed of light), so agreement with Newtonian theory is very precise. There
are, however, certain circumstances (such as with the instability of super-
massive stars, as they collapse to become black holes) in which this
difference actually has important effects.
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Classical Tests of General Relativity

It might seem from the preceding discussion that Einstein’s general relativ-
ity is simply a technical modification of Newtonian theory, the latter having
been rephrased so that it is in accordance with relativity and the principle of
equivalence. Indeed, this could be said to be the case, although the way in
which I have presented the comparison with Newtonian theory is not the
way in which this was originally done. By concentrating on the tidal force
of Newtonian gravity as something that cannot be eliminated in free fall, we
have been able to see more directly its relationship to space-time curvature
and, therefore, to the framework of Einstein’s general relativity.

In fact, it is remarkably hard to find clear-cut observational differences
between the two theories. Originally, there were the so-called ‘three tests’
of general relativity. The most impressive of these three was the explanation
of the perihelion advance of the planet Mercury in its orbit around the Sun.
It had been known from work in the nineteenth century that there was a curi-
ous discrepancy with Newtonian theory in Mercury’s motion. When the
perturbing effects of all the other known planets are taken into account,
there is still a slight extra component to Mercury’s motion, amounting to a
swing in the axis of its orbital ellipse of 43 seconds of arc per century. This
amount is so tiny that it would take about 3 million years for the ellipse of
Mercury’s orbit to swing completely around owing to this effect alone.
Astronomers had tried various explanations, including the prediction of
another planet within Mercury’s orbit, which they had christened Vulcan.
None of these ideas worked, but Einstein’s theory exactly accounted for the
discrepancy, and provided a rather impressive test of the theory. 10 The other
two tests concerned the slowing of ideal clocks in a gravitational field and
the bending of light by the Sun’s field. The clock-slowing effect was con-
vincingly confirmed by an experiment by Pound and Rebka in 1960,
although it was recognized that this was a rather weak test of general rela-
tivity, being a direct consequence of energy conservation and the equation
E = hf for the energy of a photon.

The light-bending effect has a more interesting history. Before he had
found the full general relativity, Einstein had used considerations from the
principle of equivalence to predict, in 1911, that the Sun would bend light
by an amount that is only one half of what the full theory actually predicts.
This effect should be observable during a favourable solar eclipse and it was
proposed to make an expedition to the Crimea in 1914 to test Einstein’s
1911 version of his theory. From Einstein’s point of view, it was fortuitous
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that World War I prevented the expedition from taking place. By the time
Arthur Eddington led a corresponding expedition to the Island of Principe
to view light bending during the eclipse of 1919, Einstein fortunately had
found, in 1915, the correct theory, and the observations were hailed as a tri-
umph for that theory. In the light of modern analysis, these observations
may be regarded as less convincing than they were thought to be at the time,
when they were taken as a resounding success for Einstein’s theory.
Nevertheless, modern observations of this effect, and of a related time-
delay effect noted by Shapiro, supply convincing support for Einstein’s
prediction.

Einstein’s light bending is now so well established that it is used as a very
impressive tool for observational astronomy and cosmology. Distant galax-
ies provide complicated lensing influences on even more distant light
sources. This can give important information, not reliably obtainable in
any other way, concerning the distribution of mass in the universe.
Einstein’s prediction has been turned around to provide a superb probe of
matter in the distant universe.

Gravitational Waves

One of the most striking predictions of Einstein’s theory is the existence of
gravitational waves."! Maxwell’s theory of electromagnetism had led to the
prediction that waves of oscillating electric and magnetic field should be
able to propagate through space at the speed of light, and Maxwell had pos-
tulated, in 1865, that light itself is an effect of this nature. Maxwell’s
prediction is now thoroughly confirmed in many experimental situations.
Einstein’s theory of gravity has many similarities with Maxwell’s theory of
electromagnetism, one being the existence of corresponding gravitational
waves, these being distortions of space-time that propagate with the speed
of light. Such waves would be emitted by gravitating bodies in orbit about
one another, but the effect is generally very small. In our solar system, the
largest emission of energy in the form of gravitational waves comes from
the motion of Jupiter about the Sun. The amount of this energy loss is only
about that in the light of a 40-watt light bulb!

In fact (perhaps partly owing to the influence of his colleague the
esteemed Polish physicist Leopold Infeld) Einstein seems to have wavered in
his belief that a freely gravitating system might actually lose energy in the
form of gravitational waves. In the early 1960s, when I was first becoming
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actively interested in Einstein’s theory, there was a debate raging concerning
this issue. At about this time, some important advances were beginning to be
made in general relativity. For many years earlier, even stretching back to
the time of the theory’s conception, little interest was shown by serious
physicists, and the subject was thought of as rather a playground for pure
mathematicians. But in the early 1960s something of a renaissance of inter-
est in general relativity occurred. In particular, the work of several
theoreticians provided what to me was a convincing demonstration of the
existence and generation of gravitational waves as a real physical phenom-
enon, the energy loss due to these waves being in accord with a formula that
Einstein had put forward much earlier, in 1918.

In more modern times Einstein’s theory has acquired an extraordinary
boost from the observations (and theoretical analysis) of Joseph Taylor and
Russell Hulse. In 1974 they first observed pulsar signals from the double
neutron-star system PSR 1913+16. The variations in these signals give
detailed information about the masses of the stars and their orbits, and one
can cross-check this information with what general relativity predicts. There
is an extraordinary overall agreement between theory and observation. Over
the twenty-five-year period during which this system has been observed,
there is a precision in the timing of the signals to roughly one part in 1014
that is, one part in one hundred million million. To a first approximation, this
gives a check on the Newtonian orbits of the stars. To a second, there is
detailed confirmation of the general-relativistic corrections to the orbits ( of
the nature of that which occurs with the perihelion advance of Mercury).
Finally, the loss of energy from the system in the form of gravitational
waves, which is predicted by Einstein’s theory, is seen to be in precise agree-
ment with the theory. In 1993 Hulse and Taylor were awarded the Nobel
Prize for Physics for the discovery and analysis of this remarkable system.
From its uncertain beginnings, when general relativity had seemed an out-
landish and rather flimsily supported theory, it now stands in extraordinary
agreement with observation. In this one instance at least, a physical theory
appears to be in detailed accord with nature to a precision greater than that
which has been ascertained for any other individual physical system.

The existence of gravitational waves seems very well established in the
PSR 1913+16 system. But such waves have not yet been convincingly
observed directly here on Earth. There are several detectors in various stages
of construction which should be able to observe such waves in the future.
Moreover, the totality of these detectors, at different locations about the
globe, should, within a few years, provide us with a remarkable Earth-scale
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gravitational-wave telescope able to obtain information about cataclysmic
events (such as collisions between black holes and the like) occurring in
very distant galaxies. This should give a completely new kind of window on
the universe in which gravitational waves replace the usual electromag-
netic ones. As with the light-bending effect, Einstein’s prediction of
gravitational waves may thus be turned around to provide a wonderful new
observational tool to tell us something important about the distant universe.

Some Difficulties with General Relativity

We have now seen something of the extraordinary successes of general rel-
ativity. What about its limitations? The traditional view of the subject has
been that its equations are notoriously difficult to solve. Indeed, despite the
relatively very simple appearance of the Einstein equation, it hides a very
considerable complication that is revealed when the expression Rah—%Rgab
is written out explicitly in terms of the components g, and their first and
second partial derivatives with respect to the coordinates. For many years
only few solutions of the equations were known explicitly, but more
recently numerous mathematical devices have been employed to find hosts
of different solutions. Many of these are of mainly mathematical interest
and do not directly relate to situations of particular physical relevance.
Nevertheless, quite a lot is now known from the nature of exact solutions
concerning, in particular, rotating bodies, black holes, gravitational waves
and cosmology.

This notwithstanding, it is still hard to find particular exact solutions that
describe situations that one may be interested in. Most notorious among
these issues is the ‘two-body problem’: find an exact solution of Einstein’s
equation describing, say, two stars in orbit about one another. The difficulty
here is that owing to the emission of gravitational waves, the two would
spiral in towards one another, whence the situation possesses no symmetry.
(The presence of symmetry is a great help in solving equations generally.)
In fact, the difficulty in finding exact solutions to equations in physics is not
now regarded as a particular limitation on a physical theory. With the advent
of modern high-speed electronic computers, physicists can often get a much
better picture of the evolution of the equations from a numerical simulation
than they might obtain from an explicit exact solution. Considerable efforts
have been devoted to developing computer techniques in general relativity,
and some very good progress has been made.
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Some of the main problems involved in solving the Einstein equation are
of a rather different kind from sheer complication, however, and arise from
an ingredient that is specific to general relativity: the principle of general
covariance. Thus, when a solution is found, by computation or by analyti-
cal methods, it may not be clear what the solution means. Many features of
the solution might merely reflect some aspect of the particular choice of
coordinates, rather than expressing something of interest concerning the
physics of the problem. Techniques have been evolved for answering such
questions, but much more needs to be done in this area.

Finally, there is the profound issue of singularities in solutions of
Einstein’s equation. These are places where the solution ‘diverges’, thereby
giving infinite answers rather than something physically sensible. For many
years, there was great confusion in the subject because such singularities
may turn out to be ‘fictional’; that is to say, they may be merely the result
of some inappropriate choice of coordinates rather than of some genuinely
singular feature of the space-time itself. The most famous example of this
kind of confusion occurred with the renowned Schwarzschild solution — the
most important of all solutions of the Einstein equation. It describes the
static gravitational field surrounding a spherically symmetrical star, and
was found by Karl Schwarzschild in 1916 as he lay dying from a rare dis-
ease contracted on the eastern front in World War I, the same year that
Einstein published his first full account of general relativity. At a certain
radius, now known as the Schwarzschild radius, a singularity appeared in
the metric components, and this region of the space-time used to be referred
to as the *‘Schwarzschild singularity’. People did not tend to worry much
about this singularity, however, because the region would normally lie far
beneath the surface of the star where, owing to the presence of a matter den-
sity (the T, of Einstein’s equation), Schwarzschild’s solution would cease
to hold. But in the 1960s, the discovery of quasars led astronomers to
wonder whether some highly compressed astrophysical bodies, as small as
the scale of their Schwarzschild radii, might actually exist.

In fact, as early as 1933, Monseigneur Georges Lemaitre had shown that
with an appropriate coordinate change, the singularity at the Schwarzschild
radius can be seen to be fictitious. Accordingly, this non-singular region is
now not called a singularity, but is referred to as the Schwarzschild
horizon — of a black hole. Indeed, any body that is compressed down to
smaller than its Schwarzschild radius must collapse inwards towards the
centre and a black hole is the result. No information can escape from within
the Schwarzschild radius, which is why it is now referred to as a ‘horizon’.
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Space-Time Singularities

At this point it may be appropriate to relate how I myself became profes-
sionally involved with general relativity. In the late 1950s I was a young
research fellow at St John’s College, Cambridge. My official area of inter-
est was in pure mathematics, but a friend and colleague of mine, Dennis
Sciama, had taken it upon himself to acquaint me with many of the exciting
things that were going on in physics and astronomy. I had had a significant
but amateur interest in general relativity, since that subject was something
that could be comprehended, and its beauty appreciated, by someone such
as myself, with merely a love of geometry and an appreciation of the rele-
vant physical ideas. Although Dennis had fired my interest in physics, I had
not thought of general relativity as a subject into which I would research in
a serious way, mainly because I had thought of it as somewhat peripheral to
the main concerns of the fundamental quantum physics of the small-scale
universe.

Nevertheless, probably some time in 1958, Dennis persuaded me to
accompany him to attend a seminar given in London by David Finkelstein.
This was on the extension of the Schwarzschild solution through its
Schwarzschild radius. I remember being particularly struck by this lecture,
but I had been troubled by the fact that although the ‘singularity’ at the
Schwarzschild radius had been eliminated by a change of coordinates, the
singularity at the centre (zero radius) still remained, and could not be
removed in this way. Might it be, I had thought to myself, that there is some
underlying principle that prevents the complete elimination of singularities
from a broad class of solutions of the Einstein equation, including that of
Schwarzschild?

Upon returning to Cambridge, I tried to think about this problem, though
I was completely inadequately equipped to tackle it. At the time, I was
concerning myself with a formalism known as the 2-spinor calculus, which
has application to the study of spinning quantum particles. My pure-
mathematical work had led me to study the algebra of tensors in a rather
general way, and I had become intrigued by 2-spinors, because they seemed
to be, in some sense, the square roots of vectors and tensors. In a certain
clear sense, 2-spinors constitute a system that is even more primitive and
universal in the description of space-time structures than that provided by
tensors. Accordingly, I tried to see whether the employment of spinors
might provide novel insights into general relativity, and whether these might
be of use for the singularity problem.
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Although I did not find that spinors told me much about singularities, I
did find that they meshed extraordinarily well with the Einstein equation
itself, providing unexpected insights that are not easy to come by, by other
means. The elegance of the resulting expressions was striking, and I was
hooked! For the ensuing forty-two years, general relativity has been one of
my deepest passions, particularly in relation to its affinity to certain unusual
mathematical techniques.

In 1964 I became interested in the singularity problem again, largely
because John A. Wheeler pointed out that recent observations of those
objects now known as quasars indicated that the Schwarzschild radius is
being approached by actual astrophysical objects. Could the singularity
that arises as a result of the collapse of a body down through that radius —
the one at the centre that I had worried about in Finkelstein’s lecture —
actually be avoided? The exact solution of such a collapse (now referred to
as a black hole), as found by Oppenheimer and Snyder in 1939, indeed pos-
sessed a genuine singularity at the centre. But a crucial assumption of their
model was exact spherical symmetry. It could well be imagined that with
irregularities present, the infalling matter might not simply be focused to an
infinite-density singularity at the centre, but might instead pass through a
complicated central configuration to be flung outwards again, and no actual
singularity might be the result.

My earlier worries that such singularities may be inevitable had led me to
doubt such a possibility, and I began to wonder whether some ideas that I had
been more recently playing with, involving qualitative topological consider-
ations — rather than the usual direct attempts at exact solution of Einstein’s
equation — might be able to resolve this issue. In due course, this unorthodox
line of thinking led me to the first ‘singularity theorem’ of physical relevance
in general relativity, which showed that, under some very reasonable general
assumptions, any gravitational collapse to within a region that qualitatively
resembles the Schwarzschild radius (but with no special assumptions of
symmetry) results in a genuine space-time singularity.

Later work by Stephen Hawking, and by the two of us together, gener-
alized this result, showing that in addition to the black hole situation, such
singularities are also inevitable in the Big Bang origin of the universe, irre-
spective of any symmetry assumptions. The standard cosmological models
derive from the original cosmological solutions to Einstein’s equation found
in 1922 by the Russian Alexander Alexandrovich Friedmann. Here, exact
spatial homogeneity and isotropy is assumed, and the solution expands
away from the initial Big Bang singularity. What the singularity theorems
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show is that we cannot eliminate the Big Bang singularity just by dropping
the symmetry assumptions of homogeneity and isotropy.

All this is dependent upon the validity of Einstein’s equation (and upon
some physically reasonable assumptions concerning T ,,). Some people
regarded these singularity theorems as revealing a profound shortcoming in
Einstein’s general relativity. My own attitude is somewhat different. We
know, in any case, that Einstein’s theory cannot be the last word concerning
the nature of space-time and gravity. For at some stage an appropriate mar-
riage between Einstein’s theory and quantum mechanics needs to come
about. What the singularity theorems reveal is an inner strength in Einstein’s
classical theory, in that it points clearly to its own limitations, telling us
where we must look for an extension into a quantum world, and telling us
also something of what to expect from an eventual quantum/gravitational
union. We shall try to glimpse something of this in the next section.

The Beginning and Ends of Time

In the discussion above, we have caught sight of two situations in which
space-time singularities arise in Einstein’s theory: in gravitational collapse
to a black hole and in the Big Bang origin of the universe. It seems clear that
Einstein was very unhappy about both of these seeming blemishes to his
theory. He appears to have been of the opinion that realistic departures
from the high symmetry that is assumed in the standard exact solutions
ought to lead to non-singular solutions. Unfortunately we shall never know
what his reaction to the singularity theorems would have been, but appar-
ently one of his reasons for trying, in his later years, to generalize general
relativity to some kind of ‘unified field theory’ was his attempt to arrive at
a singularity-free theory.

Initially he favoured a spatially closed-up universe that is static — so it
would remain unchanged for all time. He found that he could achieve this
only by introducing (in 1917) a cosmological constant A into his equation,
which then becomes

R,-iRg, +Ag,=-81GT,.

ab
Later, he regarded this modification as his ‘greatest mistake’. If he had not
insisted on a static model, but just let his original equation carry things
along so as to obtain the Friedmann picture of a universe expanding away
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from a ‘big bang’, then he would probably have predicted the expansion of
the universe, which was actually discovered observationally by Edwin
Hubble in 1929.

There is much discussion today of whether the observational evidence
now actually favours the existence of a (very small) cosmological constant.
Some cosmologists (especially the proponents of what is referred to as the
‘inflationary scenario’) claim that such a constant is necessary in order to fit
recent observations. Yet there are some seeming contradictions as things
stand, and it will be better to wait until the dust settles before coming to any
clear conclusions about this.

According to my own perspective on these issues, while we must be cau-
tious about claims concerning the observational status of the large-scale
universe, we must accept that the Big Bang and black-hole singularities are
indeed part of nature. Rather than shrinking from them we must try to learn
from them something of the ‘quantum geometry’ that should ultimately
replace them. What can we learn? Although little is known in detail about
the nature of singularities, some general comments can be made.

The first is that although unstoppable gravitational collapse must some-
times occur (such as with a supermassive star or collection of stars at a
galactic centre), we do not know for sure that a black hole would be the
result even though the singularity theorems tell us to expect space-time
singularities. There is a still unproved assumption, referred to as ‘cosmic
censorship’ (that I pointed out in 1969), which asserts that the resulting sin-
gularity cannot be ‘naked’, which means in effect ‘visible from the outside’.
If naked singularities do not occur, then a black hole must indeed be the
result. (In any case, naked singularities would be, in a clear sense, ‘worse’
than black holes!) A black hole swallows material in its immediate vicinity
and (cosmic censorship being assumed) destroys it all in the singularity at
the centre. To the infalling material, this singularity represents the ‘end of
the universe’, and it plays a role like a big bang reversed in time.

Despite this particular unpleasant feature, the exterior space-time to a
black hole has a large number of very elegant properties. Moreover, large
black holes appear to lie at the centres of virtually all galaxies, and the
extraordinary physics that sometimes goes on in their immediate neigh-
bourhoods seems to be responsible for the stupendous energy output of
quasars, which can easily outshine entire galaxies. They also represent the
regions of highest entropy known in the universe, and a famous formula due
to Bekenstein and Hawking tells us exactly what that entropy should be in
terms of the surface area of the hole’s horizon.
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In effect, cosmic censorship may be interpreted as telling us that there are
just two kinds of space-time singularity in the universe, the past type (in the
Big Bang) and the future type (in black holes). Matter is created at the
past-type singularity and it is destroyed at the future-type ones. At first
sight, these two types of singularity would appear to be simply time-
reverses of each other. However, when we examine this in a little more
detail, we find a gross distinction between these two types of singularity.
This is related to the enormously large entropy of black holes. In everyday
terms, ‘entropy’ means ‘disorder’, and the famous second law of thermo-
dynamics tells us that the entropy of the universe increases with time. It
turns out that the physical origin of the second law can be attributed to this
gross asymmetry between past- and future-singularity structure, where the
past-type singularities are particularly special and simple, whereas the
future-type ones are general and extraordinarily complicated. Using the
Bekenstein—Hawking formula for black-hole entropy, one can conclude
that the ‘specialness’ of the Big Bang was quite stupendous, namely to one
part in at least 1010,

Quantum Gravity?

Where does this gross time-asymmetry in space-time-singularity structure
come from? The issue continues to stir up much controversy, but my own
view is that there is a clear implication that the ‘quantum gravity’ that is sup-
posed to account for the detailed nature of space-time singularities must be
time-asymmetrical. I am continually amazed by the fact that so few workers
in the area of quantum gravity seem to have come to the seemingly obvious
conclusion that whatever the nature of this still-missing ‘quantum gravity’
theory may be, it must be a fundamentally time-asymmetric scheme. It is true
that Einstein’s equation is symmetrical under reversal of time, and so also is
the Schrodinger equation which governs the evolution of a quantum state.
Accordingly, any ‘conventional” application of the rules of quantum mechan-
ics to Einstein’s theory ought to lead to time-synumetrical conclusions. In my
own opinion, this provides a clear indication that the sought-for ‘quantum
gravity’ must be an unconventional quantum theory, according to which the
rules of quantum mechanics must themselves be expected to change. This is
in addition to changes that must in any case be expected to take place in the
classical rules of Einstein’s general relativity. Thus I agree with Einstein in
his belief that quantum mechanics is incomplete.
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However, this is not the position of the great majority of those who
attempt to combine quantum theory with general relativity. Despite the
wealth of unusual and fascinating ideas that have been put forward as can-
didates for a ‘quantum gravity’ theory — such as ‘space-times’ of ten, eleven
or twenty-six dimensions and ideas involving supersymmetry, strings, etc. —
none of these candidates takes on board the possibility that the very rules of
quantum mechanics may have to change. In my own view (and in the view
of a sizeable minority of researchers into the foundations of quantum
mechanics), changes in the rules of quantum theory are to be expected in
any case, because of what is known as the ‘measurement problem’.

What is the measurement problem? For this, we need to understand a
little of the actual rules of quantum theory. There is a mathematical quantity
referred to as the quantum state (or wave function), frequently labelled ¥,
which is supposed to contain all the necessary information defining the
quantum system under consideration. The time-evolution of the state ¥ is
governed by Schrodinger’s equation until a measurement is made on the
system, whereupon the state jumps (randomly) to one of a set of allowed
possibilities defined by the specific measurement being performed. This
‘jumping’ does not take place in accordance with Schridinger’s equation,
however, and the measurement problem is to understand how this random
jumping comes about, given that the state is supposed actually to evolve by
the deterministic Schrodinger equation.

I believe that a strong case can be made that the pure Schrddinger equa-
tion does not apply rigorously at all scales, and needs modification when
gravitational effects begin to become significant. Accordingly, such a mod-
ification would necessarily be part of the correct ‘quantum gravity’ theory.
Moreover, the measurement problem would find its resolution within this
‘correct quantum gravity’ theory. One of the main reasons for believing this
comes from strong arguments that point out a fundamental conflict between
the principle of general covariance and the basic principles of standard
Schridinger wave function evolution. According to this reasoning, quantum
jumping (which I take to be a physically real phenomenon rather than the
“illusion’ that it is often assumed to be) comes into play as a feature of the
resolution of this conflict.!> Now whatever form this modification of
Schrodinger’s equation would take, it would have to be time-asymmetric,
and a gross asymmetry between past and future singularities would be
expected, in accordance with the arguments I have given here.

As things stand, no plausible such modification of Schrodinger’s equa-
tion has yet come to light, so a unification of quantum theory with general
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relativity along these lines remains as elusive as a unification along any of
the more conventional lines that have so far been suggested. Finding the cor-
rect unification presents the twenty-first century with one of its greatest
challenges. If this challenge is successfully met, then it will have profound
implications running far beyond those that we can directly perceive at the
moment. It will not be met, however, if the strange and wonderful principles
underlying Einstein’s beautiful equation are not thoroughly respected.
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Notes

1 It is a common modern practice to refer to this equation in the singular rather than

the plural, as had been usual originally, because it is better to think of it as a single

equation on the entire tensors that are involved (see the section on curved space-time
geometry below), rather than on the family of components of those tensors.

Technically this number is called the intrinsic curvature, or Gaussian curvature, of

the surface. We shall be coming to the notion of ‘intrinsic’ a little more fully later on.

3 The full mathematical theory of the type of four-dimensional geometry that is
involved for Newtonian theory was first worked out by the outstanding French
mathematician Elie Cartan in 1923/24.

4 The previous Euclidean expression for d/> now generalizes to the well-known form
ds? = gﬂbdf‘dx" (our “d/’ being written ‘ds’ in most literature). For an n-dimensional
space we need n independent coordinates, here denoted x', X%, ..., x" This may be
a bit confusing, because the notation ‘x*’ does not now stand for “x squared’, nor does
‘x3 stand for ‘x cubed’, etc. The notation ‘x*’ (or *x*’, etc.) is a generic symbol for
one of these coordinates. Similarly, ‘g _," is a generic symbol for one of the quanti-
ties g5 §yas - - -+ &, these being n(n+1)/2 independent functions because g, = g,,,.-
The Einstein summation convention is being adopted here, according to which
repeated indices get summed over. Hence the expression ‘g, dx"dx” stands for
‘g, dx'dx'+g,dx'dx®+ . . . +g,, dx"dx". In our two-dimensional case, g, = A, g, =
g, = B and g,, = C are functions of the two coordinates u and v, where x' = « and

3
xXE=

5 There are explicit but complicated expressions telling us how to calculate the R, ,
from the g, and their first and second partial derivatives, with respect to the coor-
dinates x“.

6 Using Einstein’s summation convention we can define, R , and R by the relations
R, =R, g 9and R =R, g", where g” is the inverse of g, in the sense of matrix
algebra.

2

7 In fact Einstein later showed that this postulate can be deduced from his field equa-

tion, together with some other reasonable assumptions.

The vanishing of the ‘covariant divergence’ of T .

9 The mathematician David Hilbert also came upon this equation at a similar time to
Einstein, but by a different route, in the autumn of 1915. This has resulted in an uncom-
fortable priority dispute. But Hilbert’s contribution, though technically important, does
not really undermine Einstein’s fundamental priority in the matter. See, in particular, .
Stachel (1999), New Light on the Einstein-Hilbert Priority Question in Journal of
Astrophysics and Astronomy, Volume 20, Numbers 3 and 4, December 1999, 91-101.

10 There was a curious ‘scare’ in 1966 when Robert Dicke claimed that careful observa-
tions of solar oblateness by himself and Goldenberg showed that the Sun possessed a
quadrupole moment of such a magnitude that it would thoroughly spoil the agreement
of Mercury's perihelion advance with general relativity. Fortunately, subsequent obser-
vations and theoretical considerations showed that Dicke’s conclusion was wrong.

11 Interestingly, although he did not have the basic ideas of general relativity, Poincaré
had already predicted the existence of gravitational waves in 1905, based on analo-
gies with Maxwell’s theory of electromagnetism.

12 I have proposed a technically difficult but apparently feasible experiment, one ver-
sion of which would have to be performed in outer space, for testing whether or not
this proposal is correct.
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