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CHAPTER 1

Introduction

ENTER SPIKES

Midafternoon is the devil’s time. The ebbing of your circadian rhythms
collides with the digestion of an ill-considered lunch of hot dog and
hummus to dull your mind and bring thoughts of a cheeky nap. But
there’s an all-hands meeting in the conference room in ten minutes, at
which you’ve discovered that snoring loudly enough to drown out the
CEO’s “always be coding” speech is a no-no. Eat something, says inner
you. On the desk abutting yours is the box for some homemade ginger,
pear, and chocolate cookies that Dietrich brought for the 10:00 a.m.
conference call with the South Africa office—strangely delicious,
definitely tempting, disappointingly gone.

No, wait. Your eyes glimpse a rounded, crumbly edge. There’s one
left. Your brain sparks to life, as you glance around to clock your
coworkers’ locations and think—could I take that? After a moment’s
hesitation, weighing the ethical dilemmas and more importantly
confirming that no one has line of sight, you extend a hand.

In those few moments your brain is abuzz with electricity. Vital,
surreptitious-cookie-obtaining electricity. Why?
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FIGURE 1.1. Basic anatomy of the human brain. Most of the outside of your brain is the
cortex.

Your brain uses electricity to communicate. Each nerve cell, each of
the eighty-six billion neurons in your brain, talks to other neurons by
sending a tiny blip of voltage down a gossamer thin cable. We
neuroscientists call that blip “the spike.” These tiny pulses of electricity
stream endlessly, ceaselessly across your brain. Spikes are seeing,
hearing, and feeling; thinking, planning, and doing. Spikes are how
neurons talk to each other. And neurons talking to each other is how you
do anything.

A LIFE IN SPIKES

The uniquely human things you do are thanks to the chatter of spikes in
your cortex (figure 1.1). This outer layer of the brain contains more
neurons in you than in any other animal, ever.1 So many in fact that we
have to divide the cortex into a constellation of areas, each with its own
name, to make sense of it all. (Few of these names are exciting—the area
with the most neurons that talk directly to the spine, and so has the most
control over movement, is called the primary motor cortex; the areas
next door are the premotor cortex and, wait for it, the supplementary
motor area. Inspired.) These areas all share the same types of neurons but
do wildly different things with the spikes sent between them.

Many of these areas are dedicated to seeing, from the areas breaking
down the world into its simplest components—edges and lines and
corners—to the areas dealing with motion, colors, objects, and faces.
Some areas do hearing and touch; some control your movement.

There are areas for uniquely human things, like reading, speaking, and
understanding the spoken word. And at the front of the cortex we find
areas that do mysterious things with information from the outside world,
somehow using it to plan, anticipate, and predict. All of it done by
spikes.

The numbers are vertiginous. Of the eighty-six billion neurons in the
adult human brain, about seventeen billion of those are found in the
cortex. Each of those sends at most one spike per second, on average.2

The United Nations tells us the expected lifespan of a human on this
planet is about seventy years. That’s more than two billion seconds, each
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of which contains about seventeen billion spikes in cortex. All told, your
lifespan is about thirty-four billion billion cortical spikes.

The cry you emitted on your appearance in the world. Your first
tottering, uncertain steps. The pain when Susan’s wildly swinging arm
knocked out your wobbly tooth in primary school. Recognizing that
cluster of trees in the distance, and the relief of knowing you’ll now find
your way across the damp, foggy hills back to the welcome warmth of
the car. Plucking up the courage to ask for a date, and blurting it all out
in a rush. The flush of embarrassment. The quiet euphoria of a yes.
Deciding you just have to do something about the clash between the
purple sofa and the lime green curtains. Remembering the smell of your
mom’s bread and dad’s roast chicken. Cradling your baby. Reading this
sentence. And this one.

All spikes.
From the magnificent to the mundane, everything you’ve done is in

those thirty-four billion billion spikes that have streamed across your
cortex. If I were to write the story of your life with one word for every
spike, your biography would be longer than the combined length of all
novels in English ever published.3 Yes, ever, since Gutenberg introduced
movable type to Europe in 1439. And not just a bit longer—seventy-six
million times longer. Even with the combined efforts of Tom Wolfe, Neal
Stephenson, and George R. R. Martin to deliver novels that are also
handy for weighting down small children in a storm, novelists still have
at least another 380 million years or so to publish as many words in
English as spikes in your cortex in your lifetime. And below the cortex,
billions upon billions more neurons, sending billions upon billions more
spikes.

You’ll excuse me if I attempt something a little less daunting.

THE JOURNEY OF A SPIKE

In this book, I’m going to tell you the story of just two of those seconds.
Of a simple act: you spot that last cookie in the office tray, and think—no
one will mind if I take that, right?

A spike’s journey from the eye that receives the light bouncing from
the cookie, through the seeing parts of cortex turning patterns of light
and shade into the edges, curves, crumbs, and colors of the cookie, on to
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cortical areas for perceiving, deciding, and remembering, plunging into
the depths of the motor system, and out, out through the spine and on to
the muscles, finally moving your hand to what your eye can see. A
journey from seeing to deciding to moving, from eye to hand.

This is the story of everywhere the spike was sent, and of everything
it saw on the way—the twinkling galaxy of neurons, the deep darkness
of the cortex, the loneliest neuron. Of splitting into a thousand clones. Of
spontaneous birth and instant death. An epic journey, all in but a moment
of time, a story replayed two billion times over.

THE GOLDEN AGE

That I can tell you this story at all is thanks to a remarkable convergence
of technologies.

One of these is brain imaging, especially functional MRI (fMRI).
Relied on heavily in popular accounts of neuroscience, fMRI can tell us
much about the broad picture, of how a group of brain areas may process
vision, but not hearing; create emotional responses to faces, but not
chocolate; or paradoxically only turn on when your mind goes blank. Yet
fMRI tells us nothing about how neurons work. Each tiny pixel on a
fMRI image, each dot of color, contains 100,000 neurons. fMRI
measures the flow of oxygen-rich blood around those 100,000 neurons, a
flow that increases as those 100,000 neurons send more spikes, for
making spikes needs energy, and creating energy needs oxygen. Each dot
of color shows us only where the demand for such energy-giving blood
has changed around 100,000 neurons. So fMRI cannot see or record
individual neurons, let alone the spikes emitted from them.

It is a wonderful technology, the only way to peer at the moment-to-
moment activity inside the living human mind, and with great potential
for our assault on neurological disorders, where diagnosis and treatment
perhaps take precedence over a deep understanding of what each neuron
is doing. But alone it is of no use to us here. Trying to understand how
neurons work using fMRI is like trying to follow a soccer match through
the roar of the crowd. The crowd’s crescendos and groans will tell you
when something exciting is happening, and with luck which part of the
crowd is baying will tell you roughly at which end of the field the
excitement is happening in. But you’ll be oblivious to the match itself, to
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the intricacies of what the players and the ball whizzing between them
have been doing for ninety minutes. To understand a match, we need to
watch the players. To understand the brain, we need to watch the spikes.

We caught our first glimpse of the spike from a single neuron in the
1920s.4 Since then, tens of thousands of neuroscientists have recorded
spikes from every imaginable part of the brain. And from almost every
imaginable brain, from the giant tentacle neurons of the squid, to the
deciding neurons of the rat, even to the neurons in an awake, chatty,
lucid human. But now we can go further, for we are in the midst of the
golden age of systems neuroscience, the pursuit of how neurons are
wired and work together.

For decades we could record the spikes of only one neuron at a time.
Now we can record the spikes of hundreds or thousands at the same time
with standard equipment, and the cutting edge is growing exponentially
year on year.5

We used only to be able to trace the broad outlines of where neurons
in one area of the brain sent their cables outward. Now we can trace the
wiring of each single neuron to find out precisely where spikes will be
sent.

We can now record not just the spikes coming out of a neuron but also
the tiny effect they have on the next neuron, at a connection smaller than
a bacterium. We can even do so at multiple sites on a single neuron at
once.

More than just record them, we can now turn neurons on and off with
light, either forcing them to send spikes on command, or stopping them
from sending spikes altogether.6 So we can at last test directly what
spikes are for, by seeing what happens when they are sent, or, just as
importantly, not sent.

Combined, these tools let us record the spikes sent from hundreds of
separate neurons, stop or start spikes at will, and give us some idea of the
destinations of the wires along which they travel. Combined, these tools
can now tell us the journey of spikes.

There’s a catch to this smorgasbord of technological triumphs. None
of them can be used in humans. Tracing the wiring between neurons
would mean injecting fluorescent chemicals directly into a region of your
brain, then taking out your brain, slicing it up, and sticking the slices
under a microscope to find out where the fluorescent chemicals ended
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up. Can’t do that to you. To turn neurons on and off with light we have to
make them sensitive to light in the first place, by inserting DNA from
light-sensitive plants or bacteria into the neuron’s DNA. Can’t do that to
you either. And to record the spikes from hundreds of neurons at the
same time means either filling your neurons with a toxic chemical that
glows according to how active the neuron is, or sticking tens of long
tungsten or carbon-fiber electrodes through your skull and into your
brain, attached to long wires. Ethically speaking, the slicing, gene-
fiddling, and electrode-poking are right out.

Except in fascinating rare cases. On rare occasion, we do get to record
spikes from electrodes implanted into a live human brain. Sometimes
these are from patients with Parkinson’s disease who are undergoing
surgery for deep brain stimulation. This treatment for Parkinson’s targets
electrical stimulation at regions deep in the brain (hence, “deep brain
stimulation”—neurologists are some of the most literal-minded people
on the planet). It requires a permanently implanted electrode, attached to
a battery pack installed under the collarbone. The surgery to implant the
electrode happens in two stages. The electrode is inserted first, into
approximately the right place, but its leads are left dangling outside the
skull so that the position of the electrode can be fine-tuned. During the
tuning, the neurologist will pass stimulation down these leads into the
electrode, and out into brain. If the electrode is in slightly the wrong
place, then slightly the wrong thing will happen: if the patient salutes
you, this is wrong, move the electrode a little; if the patient starts
weeping uncontrollably, this is wrong, move the electrode a little. If the
patient’s tremulous arm suddenly becomes still, this is right; so now the
electrode can be secured in place, and the second stage of surgery
commences to run the leads under the skin and down to the battery pack,
and to close up the hole in the skull.

But this slow fine-tuning means there is a window of time, about a
week, in which these leads hanging out of the skull can also be used to
record from the electrode, record the neurons next to it.7 Creative
researchers spend this week asking the patient to do a whole bunch of
tasks, which hopefully will involve the tiny deep brain structure in some
way. Along similar lines, people whose severe epilepsy is not responding
to drugs can also have implanted electrodes, targeting stimulation at the
small region of brain—typically in the hippocampus or cortex—where
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the seizure activity starts. Again, while getting the electrode into
position, the researchers can record from neurons next to those
electrodes during tasks in these patients.8 From both rare occurrences we
get precious rare recordings of single neurons from a live human. A
valuable resource, but one limited to a handful of brain regions in a
handful of people—and still no slicing or gene manipulation allowed.

With humans literally off the table in the quest to understand spikes,
neuroscientists gather much of their data from a wide range of
nonhumans. Some are our close cousins, evolutionarily speaking—the
rat and mouse, in particular, for their combination of smarts and well-
studied DNA. Others are studied for the unique ways they can tell us
about the fundamentals of how neurons talk to each other. Salamanders,
zebrafish, leeches, sea slugs, even the maggots of vinegar flies, will all
appear in the pages that follow. For neurons are extraordinarily preserved
from deep evolutionary time. Neurons are recognizably neurons in
practically everything with some kind of brain. If you can see it, and it
moves, it lives a life of spikes.

HOW WE CAN INTERPRET SPIKES

Our interpretation of these reams of data from nonhumans, data on
spikes and where and when they are sent, relies on casting it into what
we know about the human brain. From brain imaging we can get
confirmation that similar brain regions in humans are active, at similar
times and places, in response to similar things in the world, as the spikes
we record in nonhumans. From psychology and the cognitive sciences
we can get an understanding of what processes are happening in the
human mind when those spikes are observed in nonhumans.

The face code is a beautiful example of this interplay between
psychology, brain imaging, and spikes. Humans pay a lot of attention to
faces. Psychology tells us that our preference for looking at faces is there
from our earliest childhood, that as adults we can remember around five
thousand faces,9 and that we can recognize faces from exceptionally
impoverished information: from an extraordinary variety of angles, with
just a glimpse, and using the most basic of visual clues. Even this :-0. Or
this ;-). Our deep ability to process faces is perhaps not surprising when
you consider that recognizing faces and their expressions is the basis of
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many social interactions, for knowing who is kin and who is not, who is
above us and who below in the pecking order, and who is pleased to see
us—and who is really not. But the depths to which our minds process
faces implies our brains must dedicate some serious processing power to
the face problem.

Brain imaging showed us that indeed the human brain takes this
problem so seriously it dedicates a whole area just to faces. The now-
named “fusiform face area” lights up in humans when shown a face, at
whatever odd angle you choose, but not when shown objects or
scrambled faces. It really does care only about faces.10

Doris Tsao, Winrich Freiwald, and colleagues then sought out some
nonhumans that also care about faces—monkeys—to venture into this
area of their brains, record spikes, and find out the actual messages being
passed between neurons.11 They found a mass of dedicated neurons that
all sent spikes in responses to pictures of faces.12 There turned out to be
six separate patches of face neurons in this one area, and these patches
were linked together. Stimulation of one patch activated neurons in some
of the others,13 which suggested a face was represented by the joint
activity between neurons in different patches. That joint activity code
was revealed nine years later in 2017: each neuron sends spikes in
response to some abstract feature common to faces—like the curve
formed by the eyebrow and nose. The combination of neurons with
different abstract features sending spikes together adds up to a whole
face.14

Psychology tells us how much humans care about faces, and how
deeply they process them. Brain imaging shows us a brain region
dedicated to processing faces. Spikes show us the face code—how that
region sends messages about faces. Recording spikes alone in response
to faces would not tell us that these spikes correspond to “seeing” faces,
for “seeing” is a subjective human experience. We interpret spikes in
nonhumans through our own experience as humans.

WHERE WE WILL GO

In this golden age, cutting-edge technologies have only just begun to
draw back the curtain on the neuronal drama of the brain. Seemingly
every day of the past ten years brought new research that upended our
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understanding of how neurons talk to each other. And so upended our
understanding of what makes us tick—of how we see, of how we decide,
of how we move. But each cluster of neuroscientists working feverishly
on their favorite brain region or type of neuron cannot see the big
picture, cannot know all the ways in which our understanding of the
inner workings of the brain has radically changed. That’s my challenge.

By taking you on the journey of a spike from eye to hand, this book
will tell the story of what we know about spikes, about what they mean
for us as humans, and of what we have left to understand. Journeying
with the spike will let us rip apart misconceptions about how brains work
and about how they fail, many of these held by neuroscientists
themselves.

A textbook neuron has a defined function, a defined reason why it
sends spikes, based on some external cause in the world. But we will
meet the dark neurons, the literal silent majority, who sit unmoved by
anything and everything going on around them. They are invisible to
brain imaging and challenge our most deeply held theories of what
neurons do. Evolution tolerates no waste, so why would it allow there to
be billions of neurons that apparently do nothing?

And we will meet the spontaneous spikes. Spikes mysteriously
created by neurons without any input from the outside world; spikes
created solely by the myriad feedback loops between neurons that drive
each other to spike endlessly. They carry no message from the world, or
to the world through movement. Crazier still are spikes born without any
input even to the neuron that created them, spikes created solely by the
internal cycling of molecules inside a neuron. Yet on our journey from
seeing to moving, we will meet these spikes everywhere.

Meeting the spontaneous spikes leads to one of the new ideas I will
advance in this book: that spontaneous spikes are an inevitable
consequence of wiring up a big bag of neurons into a brain—and
evolution has co-opted them for survival. Rather than waiting for spikes
to make their journey through the myriad areas of cortex to work out
what is being seen, to decide what to do about it, and then to act—rather
than wait for all that, we have harnessed spontaneous spikes to give us
the power of anticipation. Spontaneous spikes predict what we’ll see
next, what we’ll hear next, what our next decision is likely to be. They
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prepare for our next movements. All so we can react faster, move
quicker—and survive longer.

Clinging to a spike as it speeds from your eye through your brain to
your hand, from seeing the cookie to deciding to nab it to reaching it, we
will trace torturous paths, be cloned, and fail badly. We will wander
through the splendor of the richly stocked prefrontal cortex and stand in
terror before the wall of noise emanating from the basal ganglia. All of
this is yet to come. For we start with the thing we understand best of all:
the spike itself.
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CHAPTER 2

All or Nothing

BINARY

Warren McCulloch made an untenable leap of faith in the early 1940s.
The kind of creative daring that only his bizarre mélange of psychiatrist-
neuroscientist-philosopher-theorist1 would attempt. The first fuzzy
pictures of spikes appeared in the late 1920s and early 1930s. Tiny
wobbles on an oscilloscope,2 showing electrical pulses so small they’d
be vaporized by a cough in the next room. Yet McCulloch was struck by
how each spike from the same neuron looked roughly the same shape,
the same size, every time it appeared. With just a handful of neurons then
recorded, he made a bold prediction: that every spike from every neuron
in the entire brain is all-or-nothing; the spike either appears in its
predetermined shape and size, or does not appear at all.

Decades of work have shown McCulloch was right. In this chapter,
we use his inspired guess to tackle the existential question: why spikes?

McCulloch turned out to be right because of the way spikes are made.
Like all cells, neurons have a membrane, a skin, that surrounds them,
keeping their innards within. In a neuron, this skin separates a lot of ions
on the inside from a lot of ions on the outside. And the difference
between the charge of the ions on the inside and outside means the
neuron has a tiny voltage that flickers up and down constantly.

But when the voltage of the neuron’s body reaches a tipping point, it
triggers a runaway, rapid-fire sequence of holes opening and closing in
the neuron’s skin, ions hurtling in and out, creating the electrical pulse
that can travel far beyond the furthest reaches of the neuron’s body. A
spike is born, sent screaming down the neuron’s axon, the cable
connecting one neuron to another, to reach the next, distant target (figure
2.1).



18

FIGURE 2.1. Important bits of a neuron. Spikes are made in the neuron’s body and sent
down its axon, there to arrive at the next neurons’ dendrites, a tree reaching out to

intercept the messages of spike-carrying axons.

The opening-and-closing sequence is always the same, so the spike is
always the same shape and size. There is a spike or not, and nothing in
between.

The journey to understanding the all-or-none nature of spikes started
in easily accessible places in easily kept animals: the bullfrog’s sciatic
nerve, the eye of a horseshoe crab, the eye of an eel.3 These spikes all
seemed to repeat their own exact same shape every time they appeared.
But starting from these recordings in the early 1930s it took over two
decades of painstaking work to find the answer to why this happened,
culminating when Alan Hodgkin and Andrew Huxley pulled all the
evidence together in 1952.

Hodgkin and Huxley recorded from the giant squid axon (an axon that
is giant in a squid; not an axon from the giant squid—getting Leviathan
onto the lab table proved a trifle difficult). Because this axon was so
massive, they could take it out, stick it in a bath, put an electrode inside
it, and record a spike directly passing along the axon. Their clever idea
was to then play with the ions in the liquid in which the neuron was
sitting, increasing or decreasing the concentration of particular types of
ions, in order to find out how this changes the neuron’s ability to send a
spike.

FIGURE 2.2. A spike. The neuron’s voltage (thick black line) fluctuates until it reaches
the tipping point. This triggers the cascade of holes opening in the neuron’s skin, ions

flooding in and then out, rapidly driving the voltage up, then crashing back down,
before returning to normality. The whole process takes about a millisecond.
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For you see, neurons sit in salty water—outside a neuron’s skin are
lots of sodium (which has a positive charge: +) and lots of chlorine
(which has a negative charge: −). But inside the neuron is a little sodium,
a little chlorine, and lots of potassium (another +). Because the
concentrations of each type of charged ion—particularly the potassium—
are different either side of the neuron’s skin, this creates a voltage across
the skin. By playing with the concentrations of ions outside the neuron,
Hodgkin and Huxley were thus mucking about with the neuron’s voltage.
And crucially they could find out which types of ions (sodium and
friends) affected what part of sending a spike.

What they unpacked with their squid axon in a bath of saltwater was
the remarkable birth of a spike (figure 2.2). When the neuron’s voltage
increases beyond its tipping point, suddenly holes that only permit
sodium open up in the neuron’s skin, and sodium ions rush in, rapidly
increasing their concentration on the inside, and voltage rockets. But
only briefly. For the onrush of sodium triggers the opening of a different
set of holes in the skin, which pump potassium back to the outside,
sending positive charge back out almost as quickly as it’s arriving via the
sodium ions. In turn, this outrush of potassium shuts off the sodium
holes, ions stop flowing, and just as quickly as it rose the voltage
becomes negative again. This rapid leap then crash of voltage is the
spike.

This wasn’t just a set of cool observations, but an ironclad law.
Hodgkin and Huxley created a mathematical model of this entire
process, of the opening and closing of the holes in the neuron’s skin—of
which holes opened, when, and for how long. Their set of mathematical
laws applies to virtually all neurons: they follow the same laws each time
their tipping point is reached.4 The fine details can differ between
different types of neuron, for example by small differences in how many
sodium or potassium holes they have, or for how quickly those holes
open and close. So the spike in a squid’s giant axon can have a different
shape from the spike of a neuron in a dormouse’s hippocampus. But
regardless of their subtle differences they are always spikes, always all-
or-nothing.

By his leap of faith that this all-or-nothing electrical pulse was true
always and everywhere, McCulloch realized we could radically simplify
how we think about the brain. Instead of worrying about the details of
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the shape of the pulse, or its width, or its sloppiness, we only need to
know that it was sent, or not sent. That a spike means “1” and the lack of
spike means “0.” That all messages sent from a neuron are binary.

And binary implies logic. McCulloch knew this much, but couldn’t do
the math alone. Fortune then placed in his path the otherworldly genius
Walter Pitts,5 a man who at age twelve corresponded with Bertrand
Russell on errors in Russell and Whitehead’s monumental Principia
Mathematica after having read it while hiding out from bullies in a
public library; ran away to the University Chicago at fourteen, working
menial jobs and sneaking into lectures on math and logic (if you’re
thinking this sounds strangely like the plot of Good Will Hunting, you’re
not alone); and whose one good friend, Jerry Lettvin, happened to know
Warren McCulloch—and to know that McCulloch needed the help of a
tall, awkward, high-foreheaded, otherworldly logician genius.

Together McCulloch and Pitts proved a deep theory that a group of
neurons sending 1s or 0s to each other could produce all of logic. That,
for example, a pair of neurons could compute AND: by both sending a
spike—a 1—if both received an input, and neither sending a spike—a 0
—for any other combination of their inputs. A different pair could
compute OR: by each sending a spike (1) when that neuron received an
input, but not sending a spike (0) if both neurons received no inputs or an
input at the same time. Adding more and more neurons, McCulloch and
Pitts showed, could compute all such statements of logic, no matter how
convoluted. And anything that can produce all the statements of logic
can compute. So it seemed that the answer to “why spikes” was: so the
brain can compute.

If you know anything about digital computers—the box on your desk,
the laptop on your knee, the tablet in your hand, the phone in your pocket
—you may be thinking at this point: ah! Binary! So the brain is a
computer! But that comparison has its history backward; rather, the
digital computer is a brain.

John von Neumann laid out the architecture for modern electronic
computer hardware in 1945.6 Von Neumann knew McCulloch well, and
read McCulloch and Pitts’s paper; he then used the ideas of encoding 0s
and 1s in elements of a circuit, and of how to combine these elements to
do logic, in his architecture for a computer. Indeed, throughout his report
laying out the EDVAC computer’s architecture, von Neumann talks of
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his computer as being modeled on how the brain works. Computer
hardware has some foundations in brain science, not the other way
around.

NO LOGIC HERE

To you, sitting at your desk, suffering the drowsiness of midafternoon,
craving a snack, the answer to “why spikes?” may seem more prosaic: to
get me food. On the desk across from yours sits Dietrich’s cardboard
box, its hinged lid half-open and half-turned-away from you, revealing
mostly the upside-down felt-tip scrawl of “Cookies” in a childish hand
on the lid top, obscuring much, but not quite all, of the box tray below.

As your eye wanders over this scene and falls on the last lonely,
tempting cookie in the tray, the light from it pours into your eye, crashes
into your retina, and excites the first neurons there. Here we find
something startling. The first two layers of neurons in the eye don’t use
spikes to talk to each other. They talk directly, constantly, in flickers of
voltage and diffusions of chemicals.

Light—photons bouncing off desk and box and cookie—hits the
cones at the back of your eye, the first layer of neurons in your retina.
Frankly, cones are a bit weird. In darkness they are constantly releasing a
stream of molecules onto the neurons of the second layer: these apparent
light detectors are constantly sending messages about the absence of
light. When a cone absorbs photons, its voltage drops briefly, and the
steady stream of molecules pauses for a moment. The second layer of
neurons, the bipolar cells, read out this pause and convert it into changes
of their voltage. Some bipolar cells prefer darkness, so they read out this
pause as a drop in their voltage; other bipolar cells want there to be light,
so they read out this pause as an increase in their voltage. These first two
layers of neurons turn light into voltage using chemistry, with nary a
spike to be seen.

The second layer passes the message on to the third layer of neurons.
They do this by inverting the same trick. Bipolar cells in the second layer
constantly release molecules onto the neurons in the third layer, but this
time the number released is proportional to the voltage of the bipolar
neuron—the higher the voltage, the greater the release. In turn, receiving
these molecules proportionally changes the voltage of the neurons in the
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third layer. The transmission from the second to the third layer turns
voltage into chemicals and back into voltage again. Many of the neurons
in this third layer are the ganglion cells, the neurons that talk to the rest
of the brain. And to do that these ganglion cells turn their voltage into
all-or-none spikes.

Clearly the retina is no mere passive collector of light, but a complex
minibrain, concocted from a rich cast of characters.7 The roll call
includes three types of cones (in humans), corresponding to the three
wavelengths of light that we call red, green, and blue, and the rods that
let you see in the dark, which far outnumber the cones. At least nine
types of bipolar cells in the second layer, plus the intricate web formed
by an internal neuron that controls the flow of molecules from cones to
the second layer, and more than forty types of amacrine neurons in the
third layer, whose job is to control the flow of molecules from the second
to the third layer. Of these fifty-plus types of neurons across both layers,
the vast majority do not use spikes to send messages.

(And this lack of spikes in the eye means the neurons there cannot be
doing the logical operations beloved of McCulloch and Pitts. When the
first solid evidence for this absence of binary logic was produced in the
1950s, by his friends at MIT no less, Pitts burned his PhD thesis in
disgust—it was, after all, on the logic of the brain.8)

If so many neurons in the retina don’t need to use spikes, why does
any neuron send spikes? Why convert the flexible, continuous, analogue
signal of molecules and voltage into a rigid, discrete, binary one—why
seemingly throw away useful information?

The answer is that spikes let neurons send information accurately,
fast, and far.

ACCURATE, FAST, AND FAR

Accurately
A spike is a time stamp that says “a thing happened just now.” That thing
might be the fractional change in the light falling on a frog’s retina from
the tiny motion of a small, curved, black object. It might be the sudden
ping of the microwave oven announcing the remnants of last night’s
curry are reheated. It might be the sudden ramping up of pressure on the
side of your tongue as you absentmindedly crush it between your molars.
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The thing that happened is almost certainly a change in the spikes
coming from other neurons into the neuron at hand—a torrid tale taken
up in the next chapter.

A spike takes less than a millisecond to make; so the timing of a spike
can be accurate to less than a millisecond. Spikes are then messages that
time-stamp events in the world with extreme precision.

A beautiful example of this extreme precision is how the rat’s brain
receives information from the rat’s whiskers. The whisker system of
rodents is a favorite of neuroscientists trying to understand how brains
deal with sensory information because it has so few parts to deal with. A
rat has just thirty to thirty-five main whiskers on each side,9 arranged in
five neat rows, compared to more than six million cones in a human eye.
We can follow the path from the nerve at the base of the whisker into the
brain and track exactly which neurons respond to which whisker. Having
found the very first neurons that get input from one specific whisker, we
can ping that whisker and see how the neuron responds.

Rasmus Petersen’s lab at the University of Manchester, with Michael
Bale leading the experiments, did just this in 2015 to find out how
accurately each of these first whisker neurons could send spike
messages.10 They used a tiny motor to wobble a whisker back and forth
rapidly in a random pattern, and repeated that same pattern over and over
again while recording from one of the neurons connected to the base of
that whisker. Each pass of the whisker-wobbling pattern caused the
neuron to send a stuttering sequence of spikes. If stuttering spikes were
sending messages about particular changes in the whisker—perhaps how
fast it is moving, or how much it is bending—then the sequence of spikes
should repeat pretty closely on each pass of that pattern.

It turned out the sequence of spikes repeated so precisely that the
Petersen lab ran up against the limits of even our most high-tech
recording kit. This is the digital age, so the machine recording from the
electrode stuck next to the whisker neuron was sampling at 24.4 kHz—it
took a reading 24,400 times every second. Even with this absurdly fine-
grained resolution of time there seemed to be some spikes in the
sequence that occurred at the exact same moment every time they
replayed the pattern of whisker-wobbles. The “exact same moment”
meaning the spikes happened within the same single sample made by the
machine, happened within 41 microseconds of each other. An absurdly
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tiny amount of time: if on the first pass of the pattern the spike occurred
at, say, 3.68092 seconds, then on many of the other passes a spike also
occurred somewhere between 3.68091 seconds and 3.68092 seconds.
Having run up against the very limits of their technology, the scientists in
the Petersen lab had to make a custom recording machine to sample at a
much higher rate—500 kHz, reading from the electrode 500,000 times a
second—to find out exactly how precisely the spikes were repeating.

They used this new recording machine to find the absolute limit of
how precisely the spikes could be sent. They videoed the rats using their
whiskers to find the fastest possible movement the whiskers ever made,
as the faster the movement the more accurate the spikes it evoked would
need to be. Using their tiny motor to now repeatedly move the whisker in
that single ultrarapid movement over and over again, they recorded the
time it took for the first spike to be sent each time the movement started.
Astonishingly, the most accurate neuron repeated that first spike within
about five microseconds on each pass. Thanks to spikes, a rat’s whiskers
can tell the rat’s brain what just happened to them with extreme
precision.

That spikes about rats’ whiskers are highly precise is not
happenstance. Whiskers are vital for rats.11 They forage in dim and dark
conditions, for which acute eyesight would be useless, and indeed a rat’s
eyes are a bit crap: the main job of a rat’s eyes is not to give a detailed
breakdown of everything in the world, but to tell the rat whether
something should be approached or run away from. Whiskers are how
rats find stuff, and tell what it is. Their whiskers wave back and forth
constantly, around eight times per second, finding walls and seeking
objects. Put a Lego brick in front of a rat, and it could not tell you what
color it is. But it will explore it thoroughly with its whiskers, bending
them down to the brick, and dabbing at it to understand its shape and
texture.12 A rat’s whiskers are in effect its version of our eyes; so much
so that when a rat really wants to study something, it will “stare” at it
with its whiskers: the rat folds its whiskers forward onto the object and
then waves them at up to four times the normal rate.13 Lucky, then, that
the spikes transmitted from the rat’s whiskers to its brain are so accurate.

Fast
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Fast things happening in the world require information about those
things to be transmitted quickly into, around, and out of the brain. Ping a
rat’s whisker, and it’ll immediately turn its head. Your glance around the
office alights on the crumbly cookie, and you need to make a snap
decision to pinch it. Spikes are the brain’s solution to the problem of
sending information quickly.

Almost all neurons in your brain have a single axon sprouting from
them, a specialized cable that conveys the neuron’s spikes onward to
their destinations. Some axons are custom built for speed. A spike can
travel about 200 millimeters per second along an axon in the cortex,
covering the distance from the back to the front of your cortex in less
than a second.14 Sensory axons in the spine are a hundredfold faster
still:15 the sciatic nerve in the shrew sends spikes at 42 meters per
second; in the elephant, at 70 meters per second. Or 156 miles per hour.
Elephants have Ferrari nerves.

Sending information between neurons any other way is much slower.
Spikes are twentyfold faster than if neurons relied instead on just
spreading their voltage alone, and a thousandfold faster than trying to
send messages by releasing molecules.16 Sending these kinds of
continuous messages between a pair of neurons would need them to be
pressed together, touching skins, so that the slowness of the signal is
compensated by the shortness of the distance to send it. This works in the
first layers of your retina, where the bipolar neurons are squashed right
up against the cones. But there are around seven hundred neurons
covering the distance from the back to the front of your cortex.17 So
sending messages by this bucket brigade of one neighbor to the next
would take impossibly long. Worse, with each passing of the message,
there is a chance it will be degraded or corrupted by noise, so hundreds
of such passings would ruin any message, turning “there is a cookie in
the tray” to “her a Wookie ray”—leaving you stumbling hungry, and not
a little confused, into your meeting. Sending spikes along fast axons
circumvents all these problems.

Speed is another reason why a rat’s whiskers send information to the
rat’s brain using spikes. When running in the dark, a rat’s whiskers touch
the ground ahead to make sure the way is clear—avoiding potholes,
bumps, and other rodents. Rats run quickly, so on each stride their front
paw will land on the same spot the whiskers were touching about 200
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milliseconds ago.18 Which means the rat’s brain has less than 200
milliseconds to take in information from the whiskers, make sense of it,
and react: adjust their paws and limbs, leap, or come to a screeching halt.
Spikes let the whiskers update the rat’s brain, and then the rat’s feet,
accurately and quickly.

Far
Big bodies—and big on the scale of neurons means anything visible to
the naked eye, like maggots—need their neurons to send messages over
distances far greater than the size of a single neuron. Like the distance of
the nerve from your fingertip to your spine, for the temperature and
pressure sensors in your fingertip to tell your brain it’s just put your
finger in something cold, slimy, and icky and could it stop now please it
feels like a slug it is a slug—urgh. Spikes are the brain’s solution to the
distance problem too.

A spike can travel along meters of axon. Axons connecting nearby
neurons are thin; those connecting distant neurons are fat. The longer the
axon, the thicker it is, and the faster the spike travels. Many far-reaching
axons are covered in evenly spaced sheaths of fatty goop, myelin, that
insulate the axon. This has two jobs: it allows the spike to travel fast
through the goop-covered bits, and in the gap between the goop sits
another set of those same holes in the skin that repeat the open-and-close
cycle, regenerating the spike. They are relay stations, boosting the signal
to make sure it gets to the end intact.

Sending messages between distant neurons any other way is doomed
to failure. Releasing molecules can send information over tiny gaps, as
we saw in the retina, and we’ll see again in the next chapter. But the
molecules newly released into the ocean of saltwater that surrounds
neurons would get rapidly lost, as they diffuse away from where they
were released; so releasing molecules is useless beyond a few
micrometers. The neuron’s voltage alone decays rapidly with distance, so
it would become indistinguishable from noise within 1 to 2 millimeters.
But sending a spike down an axon can let a neuron send a signal farther
than 100,000 times its own body length. If the neuron connecting a
giraffe’s spine to the muscles of its back foot were the size of the Earth,
its axon would stretch past the Sun.19



27

The Giraffe
Giraffes are ridiculous animals. That they are a viable animal at all is
entirely thanks to spikes sending information accurately, fast, and far.
Those absurdly long necks mean their brains are up to five and a half
meters from their feet (OK, hooves). This presents a rather extreme
control problem. When a giraffe is gamboling across the open savanna,
how does it not crumple into an undignified heap every time its hoof
clips a rock or branch or sleeping painted dog minding its own business?
Its brain needs to react to all this.

For a giraffe not to stumble into a heap, minimally a message needs to
be passed from the touch sensors in its hoof to the spinal cord, integrated
with messages coming down from the brain, and then together they
correct the control of the giraffe’s gait by changing the signal being sent
to the leg muscles from the motor neurons. So when the giraffe clips its
hoof, spikes from multiple sensory neurons are sent immediately and
together. The sensory axon connecting a giraffe’s hoof to its spinal cord
sends spikes at over 50 meters per second. The axon carrying the signal
from the spine to the leg muscles is just as fast. And a single cable
carries it those long distances, without tens of time-wasting stops along
the way.

Accurate, fast, and far: so that when a giraffe stubs its toe, it can pull
its hoof back and adjust its gait within tens of milliseconds despite the
reflex neurons in its spine being meters from the ends of its legs.

EYE TO BRAIN

The need to be accurate, fast, and far is why the eye sends spikes. To get
from your eye to your brain, information must cross a vast distance, from
the back of the eye to a way station in the middle of the brain, a distance
more than 250,000 times farther than the distance chemicals cross
between neurons within your retina. A distance that only spikes can
travel. And that information must get to the brain quickly and accurately,
so that the ball flying toward your face can be parried, that the glass
tipping from the edge of the table can be caught, that the glimpse of
stripy orange fur in the tall grass just ahead of you can be identified as
not the overweight tabby cat you originally took it for, nor a bloke on his
way to a Winnie-the-Pooh-themed party, but a hungry, prowling tiger—
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and you can run. The eye turns its number crunching of the cookie into
spikes and blasts them out into the vastness of your cortex.20 Millions of
them per second.

What the eye tells the brain is a complex detailed breakdown of
everything that is out there. Far from just collecting light and turning it
into spikes, the retina has already done much to collate, simplify, and
process the image of the world.

We know much about what the ganglion cells in the third layer of the
retina are telling the brain. The most basic information is “where.” Light
reflected from the cookie edge falls on cones at a particular location in
the retina; light from the chunky chocolate chip just next to the edge will
fall on cones just next door. Meaning that the activity of the cones
encodes the location of the sources of light in the outside world. And this
location information is preserved across the layers of neurons in the
retina—cones close together connect to neurons close together in the
second layer, which connect to close together ganglion cells in the third
layer. Which all means that the spikes from the ganglion cells
automatically tell the brain about location. (Admittedly that location is
upside down and mirror-imaged with respect to the world, because light
travels in straight lines through the pinhole lens in your pupil, so light
from the bottom of what you can see hits the top of the retina, and vice
versa; and light from the left hits the right of the retina, and vice versa.)
Each ganglion cell is responsible for sending spikes about what is
happening to the light in a particular location in the world.

Those spikes say that the box tray is under the cookie; the desk is
under the box; and the box lid is hanging at an angle above the cookie.
Well, eventually they will mean that—but not when they are sent. When
they are sent, they just mean “there is a different pattern of light in this
location, and this location above it and to the right, and all along this
direction in a straight line.” Your eye knows nothing of cookies, boxes,
and desks. Your brain will work out all of that later, when the patterns of
light are brought together into objects, their names are dug out of
storage, and their meaning becomes apparent. The eye just knows about
light, where it is, and the patterns it makes.

But there is much the retina has to say about the patterns. The next
most fundamental bit of information sent by the ganglion cells is when
light is on or off at a particular location. This job is split between three



29

types of ganglion cell—ON, OFF, and ON-OFF. The ON type send
spikes when the light increases in the part of the world they are
responsible for. About the same number of cells are the OFF type, who
send spikes when the light decreases in their location. The rarer ON-OFF
type send spikes to both increases and decreases of light in their location.

While investigating what the frog’s eye tells the frog’s brain, Jerry
Lettvin—Walter Pitts’s friend at MIT—helped prove these three types
existed and showed that the frog’s retina had at least one more type of
ganglion cell.21 This was the “convex detector,” a type of cell that sends
spikes when there is light from something standing out against the
background that is small and curved and moving. Or, as Lettvin and his
colleagues speculated in their 1959 paper, a bug detector.

If the first three types were not enough (and they were), this “bug
detector” was the killer blow to McCulloch and Pitts’s ideal of the purely
logical brain. For even in this first bit of brain, way out in the eye, spikes
are sending messages tuned to things of relevance to the animal, tuned to
its ecological niche, driven by evolution. And those spikes must be the
result of a lot of processing of the light by the retina’s own neurons,
pooling information as they put together that the locations of light being
on and light being off fall on a curve. A lot of computation, but no logic.

It gets worse. We now know that these three basic types of ON, OFF,
and ON-OFF ganglion cells are themselves umbrella terms for a
menagerie of neurons that actually care about vastly different things.
Tom Baden, Philipp Berens, Thomas Euler, and their colleagues recently
updated Lettvin’s study of the frog’s eye for the twenty-first century by
asking what the mouse’s eye tells the mouse’s brain.22 They had
available tools Lettvin couldn’t have imagined. Where Lettvin had one
crude electrode jammed into the optic nerve, the thick bundle of ganglion
cell axons carrying their spikes to the rest of the brain, Baden and friends
recorded directly from each one of hundreds of ganglion cells at the
same time, and recorded over 11,000 in total. Where Lettvin showed his
frogs a collection of randomly chosen objects and his “bug,” a black dot
moving across a metal dome by a magnet held by Lettvin himself, Baden
and friends subjected every one of their ganglion cells to a barrage of
computer-controlled light displays, each different element of the display
designed to test one aspect of the possible changes in light—where it is,
how fast it changes, what pattern it changes in, and what color it is.
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By grouping their 11,000-plus set of neurons into those with similar
responses to that barrage of input, Baden and company revealed at least
thirty-two different types of ganglion cell. Some respond to the sudden
onset or sudden offset of light. Some to different frequencies of change;
some to different amplitudes of change. Some care about the direction of
the light’s movement, and some do not. Some respond in dim light, and
some in bright. Some respond to the thing they care about with a brief
burst of spikes; some respond with a continuous train of spikes. And
whatever they respond to, each type of ganglion cell tiles the retina, so
its very particular processing can be done on light coming from
anywhere in the world that the eyes can see.

What are all these different types for? They each exist for one of two
reasons. Either they are very selective about what they respond to in the
world, and so exist to send messages that solve very specific problems.
Or they are not selective, and each type of ganglion cell takes care of one
aspect of the world that is very common.

A sterling example of a very selective type is the ON cell that only
responds to light coming on quickly and moving in a specific direction,
like left to right. While these ON responses are very useful for detecting
when your mate is using a flashlight to send Morse code messages across
a festival campsite when their phone has died (“G-e-t m-e a b-e-e-r”),
unsurprisingly this is not why these types of cell evolved. One of the
reasons the direction-selective ON type did evolve is to cope with your
wobbly head. For example, if you want to keep looking at something
while walking, your brain has to move your eyes down then up to correct
for the up then down motion of your head, which is moving your eyes.
How much your head is moving your eyes is worked out using the
signals coming from these direction-selective ON cells:23 as the eye
moves up with the head, so the light coming into the retina from the
object you’re staring at will move down; so when those up-and-down
selective ON cells farther down the retina start sending spikes, the brain
knows how much the eye has moved and can then correct this eye
movement by sending signals to the eye muscles to move the eye
downward (and vice versa for when your head comes back down again).

Most ganglion cells types are not selective to narrow combinations of
things needed to solve specific problems of coordinating the body.
Rather, they each take care of a feature of the world that is common to
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everything we look at: small or large, fast or slow, edges and curves,
color, and brightness. And the features of the world retinal neurons will
care about depends on what animal they call home.24 Different species
are, well, different in some way: small or middling or large, hunter or
hunted, active in the day or night or dawn and dusk, at home in the cold,
tepid, warm, or hot, denizens of forest, grassland, desert, tundra,
snowfield, mountain, river, shallow sea, or deep ocean. And each of
those different ways of living demand different information reaches the
brain via the eyes. It’s no good having a retina full of neurons excellent
at spotting green leaves of the forest canopy when you live in the deep
ocean and eat plankton.

While we know the features ganglion cells like best from studying the
retina of the mouse, we also know your retinas must be gathering more
and different information. For example, we know you have a few types
of ganglion cells that mice don’t because your eye has three types of
cones (which we call red, green, and blue), and mice have two, so your
retina has ganglion cells that deal with information simply not available
to the mouse’s eye. But we also know that if we define types of ganglion
cells by what genes they express, rather than the features of the world
they care about, then you have fewer than mice: just twenty compared to
the mouse’s mighty forty (how these genetic types match up to the 30-
plus feature-types found by Baden and friends is unknown).25 Another
big difference is that you have a fovea, an ultradense patch of cones, and
mice don’t. When you “look” at something in the world, that’s you
moving your head and eyes so that the photons fall on the cones in your
fovea. This ultradense patch needs ultradense processing, which means
both a dense clustering of ganglion cells there compared to the rest of the
eye, and some types of neurons unique to the fovea. Compared to mice,
your eyes send a few crucially different bits of information about the
world to your brain.

All this means that as your eye falls on the cookie, the retina is
splitting that cookie and its surroundings across tens of separate channels
of information, each carrying different messages of cookie bits—the
roundness of the cookie’s edge, the brownness of the chocolate chips, the
angle of the cookie box lid—to your cortex. And carrying messages of
where the bits are in relation to each other; and messages of what
direction they are in—for as you scan your head from left to right, and
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take in the cookie box, so the ganglion cells that respond to light moving
from right to left are most excited (with me?—the light moves across
your retina in the opposite direction to which your head is moving). That
tumult of messages is shot down the ganglion cell axons, at least one
million of them, all bundled together into the big white rope that is the
optic nerve. To find out what happens to that message, we grab a spike as
it shoots past, clinging on as it speeds along the axon to the distant
shores of cortex.
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CHAPTER 3

Legion

THE GAP

Our spike bursts into the first vision area of the cortex, V1, the first of
the many areas dedicated to seeing that make up one-third of your entire
cortex.1 Its message—about one small pixel of crumbly chocolate
temptation—needs passing on upward through all these areas, combining
with all other messages carried by the millions of other spikes to create
the perception of “cookie.”

First we have to make landfall. Your cortex is a delicately layered
cake, six layers in all, five layers crammed with juicy neurons, the first,
top layer bereft of them. We’re about to hit axon’s end in the fourth layer
of this V1 area. Above us the packed neurons of layers two and three;
above them layer one, a smattering of rare small neurons, but mostly
filled with axons going elsewhere and brain cells that aren’t neurons, the
glia cells, who are the scaffolding, the moppers-up, the below-stairs
workforce. Below us, we can make out the larger, hulking neurons of
layers five and six.

Their bodies may be packed into layers, but the bulk of the neurons
are not. Around us it’s a forest. A vast tree sprouts from the body of
every neuron in sight. The tree’s branches are thin but divide, ramify,
contort. They fill a volume that dwarfs the neuron’s body. This tree—the
dendrite—is how a neuron collects its inputs from other neurons and
funnels them all toward its body. Axon terminals from seemingly
countless other neurons pepper the gnarled trees of neurons all about us.
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FIGURE 3.1. A pyramidal neurons of layer five of the cortex. So-called because its body
is roughly pyramid shaped (in three dimensions).

The shape of the tree, and how many trees, tells us a lot about what
that neuron is trying to do. Indeed, historically, it was often how we
could tell neurons apart. Our trip from the retina is about to land us out in
the compact, starburst tree of the first neuron in the cortex.2 Below us,
the poster-child neuron of the cortex, the pyramidal cell of layer five
with its two types of dendritic trees—one sticking out of the top, a single
long slender stem stretching up almost to the cortical surface, the rest
sticking out below the body, fat and squat (figure 3.1). Above us, in
layers two and three, a more modest pyramidal cell, its tree compact and
surrounding the body, less attention-seeking than its big brother in layer
five. Whatever shape and size,3 all these dendrites are covered in inputs
from other neurons.

But just as we plunge deep into layer four and hit axon’s end, the
spike’s journey comes to a screaming halt. Between the spike and the
next neuron is a gap, which it cannot cross. How can the spike’s message
be carried onward? How do we cross that gap and make a new spike in
the next neuron to regenerate the message?

Our spike’s arrival rips open bags of molecules stored at the end of
the axon, forcing their contents to be dumped into the gap, and diffuse to
the other side (figure 3.2). When these molecules lock into the neuron on
the other side, they change its voltage a little. But only a little, a
smidgen. And that little blip of voltage happens way out on a distant
limb of the next neuron.
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FIGURE 3.2. Sending a spike across the gap between neurons.

Exactly what effect each arriving spike has on the dendrites depends
on what type of molecule is sent across the gap. A neuron has the same
bags of molecules at each of its axon ends. And all neurons of the same
type have the same bags too. But different types of neurons have
different bags of molecules—and the kind of molecule determines
whether the voltage will flicker up or flicker down in the target neuron.

Our cookie-pixel spike crashing into axon’s end rips open bags of
glutamate molecules. Bags split, the glutamate molecules tumble out of
the terminal, diffusing across the micrometer-sized gap and bumping up
against glutamate-shaped receptors on the other side. If by chance a
glutamate molecule is oriented the right way around, it will lock snugly
into the receptor—the whole process reminiscent of a two-year-old
solving a puzzle by randomly mashing together the pieces and
occasionally getting a nub sticking out of one piece to fit into a cutout of
another. Random as it is, locking into the receptor triggers the opening of
holes in the neuron’s skin around it. The ions allowed through those
holes create the blip of voltage in that bit of the target neuron’s dendritic
tree. And because it’s a receptor that wants glutamate, the flow of ions
creates a small increase in the voltage at our location on the target
neuron. Excitation, we call it.

Nearby, farther down the tree, closer to the target neuron’s body, we
can see axon ends that have not come from the retina. Rather, they have
been sent from small, rare neurons nearby. And these send across the gap
a different molecule, GABA. When GABA locks into the GABA-shaped
receptors on the same tree, the voltage flickers downward, decreasing.
Unsurprisingly, we call this “inhibition.”

When the blip of voltage goes up or down at a particular gap between
axon end and target tree, that blip passes down the tree from the gap to
the target neuron’s body. There, decaying in size as it goes, this blip adds
to the many flickers of voltage at the target neuron’s body that contribute
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to making a spike: a blip up makes the target neuron more likely to
create a new spike, a blip down, less likely.

The whole process seems a bit bonkers. Your brain went to all that
effort to make a spike—a process that costs a lot of energy—to get
around the fact that sending messages long distance can’t be done just by
dumping molecules or spreading flickers of voltage. And then it turns the
spike back into dumped molecules, which cause flickers of voltage.

There are good reasons for doing this. For example, spreading voltage
and chemistry are much cheaper in terms of energy—in tiny brains,
everything is sent by spreading voltage and diffusing molecules, not
spikes. But perhaps the key reason is flexibility. Transforming spikes
back into chemistry then voltage gives the brain options for how to
interpret the all-or-nothing spike.

This flexibility comes from the gaps having different strengths. Gaps
of the same type, using the same bags of molecules, do not cause the
same size blip of voltage. The blip is larger at some gaps than others, all
other things being equal. This variation in blip size can arise by tweaking
things either side of gap. For example, the target neuron across the gap
can have more receptors that accept the molecules: the more receptors
that get locked in, the more holes will open, and the bigger the voltage
blip. And to the astute reader it should thus be obvious that we can also
get a bigger voltage blip by simply dumping more molecules in the gap,
to increase the number that are the correct way around by chance, and so
increase the number of receptors they lock in to. Which all means the
arriving spike can be transformed from its all-or-nothingness into a range
of effects on the target neuron, from weak to strong.

But there are strict limits to how strong one gap can be. The whole
shebang—the axon end, the gap, the receptors on the other side—is a
mere few micrometers across. In that space there can only be so many
receptors; the axon end can only store so much of the molecule. Those
strict limits mean that one arriving spike is not enough to make a new
spike.4 For this is why we arrived on but one of millions of spikes
streaming from the retina: we need a legion of spikes to make a new one.

THE MANY
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The creation of a single new spike is the result of many other spikes
arriving at a neuron, each little blip they cause adding up, accumulating,
combining, until, finally, that neuron reaches its tipping point and spits
out one spike. If you were a neuron in the cortex, spikes would seem
legion. An endless barrage arriving, dumping their chemical load, and
flickering your voltage up or down. This legion is essential, the many
spikes to make one new spike, to carry the message forward.

How big is the legion? How many spikes exactly are needed to make
a new spike?

We can get some ballpark answers by counting the number of inputs
to a neuron. In the 1980s, Valentino Braitenberg and Almut Schuz
painstakingly counted the number of inputs onto cortical neurons in a
mouse.5 They came up with a figure of about 7,500 inputs onto one
cortical neuron. Clearly each of those inputs could not cause a spike by
itself, otherwise the cortex would drown in spikes. But more than one
and fewer than 7,500 spikes is still a pretty broad answer.

Thinking about the type of inputs lets us narrow the numbers down a
bit. Remember, the inputs at some gaps cause the neuron’s voltage to go
down, not up. They inhibit the neuron, making it less likely to birth a
spike. So we are really asking about how many of the inputs that excite
the neuron we need to make a spike. Braitenberg and Schuz
painstakingly counted those too—dedicated, admirable scientists, but
ones who’d monologue at you for three hours on the best way to slice a
mouse brain into wafer-thin bits and count its synapses with nary a pause
to sip the steadily warming beer on the table leaving you trapped, beer-
less, in an etiquette nightmare. They counted: about 90 percent of the
inputs to a cortical neuron excite it; only about 10 percent inhibit it.
We’ve brought our upper limit of the number of spikes down a bit to
6,750. Woohoo. I did say “a bit.”

You’d think this would be an easy question—just tot up the number of
arriving spikes needed to make the neuron’s voltage reach the tipping
point. But it’s a hard question to pose to real neurons, because we have
no feasible way of monitoring the thousands of inputs to a single neuron
at the same time. Some have tried to get around this problem. In an
elegant experiment, scientists in Michael Häusser’s lab recorded from
one cortical neuron while forcing one of its input neurons to fire a spike.6
By doing this over and over again, they found that the single extra input
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spike increased the chances of the target neuron making its own spike by
about 2 percent. Implying that if we wanted a cast-iron guarantee of
making a spike, we’d need about 50 extra input spikes. Extra—on top of
the inputs the neuron was getting anyway. We’ve raised our lower bar to
about 50 spikes, and the top is still 6,750. Can we do any better?

Totting up input spikes is an easier question if we instead pose it to a
pretend neuron. We have many flavors of pretend neurons we can write
down in math terms and simulate on computers. Hodgkin and Huxley
wrote down one of the foundational models to prove that the opening and
closing of holes in a neuron’s skin would indeed create the voltage spike
in an axon (and simulated that model—four complex and coupled
equations—using a hand-cranked calculator and a pencil). Their 1963
Nobel Prize was as much for bloody-minded perseverance as genius. So
we can take one of our pretend neurons, send it pretend spikes as inputs
to its pretend gaps, and ask: how many inputs do you need to fire?

And they tell us: it depends. Roughly? 100 to 200. Roughly, if we
take a complex pretend cortical neuron, one with full pretend trees, and
full pretend receptors for the pretend transmitted molecules, and make all
the spikes turn up at the about same time, then about 180 arriving spikes
are needed to guarantee one new spike.7 But that’s if we ignore a lot.
Like exactly when the spikes arrive relative to each other—spread out in
time, or all bunched up. And that there will be spikes arriving all the
time, so when we should start counting is unclear. And spikes arriving at
the gaps that inhibit the neuron. And what the relative strengths of all
these gaps are, for the stronger they are, the fewer will be needed. And
whether the voltage blip produced at the gap lasts a short or long time.
All for just one particular type of neuron in the cortex, the pyramidal
neuron.

Because in truth “how many spikes?” is a deep, hard question whose
answer depends on myriad factors. And these myriad factors tell us a lot
about how the brain uses spikes to make things happen. Three stand out:
the balance of excitation and inhibition arriving at a neuron, the
synchrony of the inputs, and where they land on the tree itself.

THE GOLDILOCKS ZONE



39

The legion of inputs is dangerous. A few hundred spikes is enough to
birth a new one, but these are spread over thousands of input lines.
Worse, across these inputs, excitation outnumbers inhibition by at least
five to one. Even just a few extra spikes across these thousands of inputs
leads to a runaway loop—of spikes triggering spikes triggering spikes—
that would crash the brain. Epilepsy is one such crash: massive waves of
spikes across the cortex, so many spikes that every neuron on the
receiving end of a wave immediately reaches its tipping point—each
birthing a spike at the same time, and making the next wave.

But such crashes are rare. They’re rare because the brain is kept in its
Goldilocks zone—not too active and not too quiet, but just right.8 And it
stays in this zone by keeping the perfect balance between excitation and
inhibition.

We uncovered the brain’s balancing act from a simple puzzle about
the spaces between spikes. In 1992, William Softky and Christof Koch
reported something was amiss in the spikes being sent by neurons in the
first visual area of cortex,9 the exact same kind of neuron we’re making a
spike in right now. Wading through hundreds of recordings of single
neurons, they noticed the spikes coming out of each neuron were created
at remarkably irregular intervals. A short interval between spikes could
be followed by another short interval, or a medium interval, or
sometimes a long interval. Or any combination thereof. Indeed, for some
neurons the ordering of the intervals was almost perfectly random, so
that if you took the intervals between their spikes and shuffled them into
a different order, you couldn’t tell which was the original set of spikes
and which was the shuffled set of spikes.10

As theorists, they instantly realized something was amiss. Our best
models for how neurons make spikes don’t have randomly different
intervals between those spikes. No matter how irregularly spaced the
spikes these models receive, the spikes they make are evenly spaced, the
intervals between them far more regular than Softky and Koch saw in the
cortex. To grasp why, think about the total number of spikes arriving at a
neuron. Even though each of the individual inputs has highly irregular
spikes, there are thousands of such inputs. So when we sum over them to
get the total number of spikes arriving, then we find the sum is pretty
constant in time. So if a model neuron needs, say, 175 input spikes to
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make one new spike, then a total of 175 input spikes turns up regular as
clockwork, thus making a new spike regular as clockwork (figure 3.3).

According to our best models, spikes coming in irregularly would be
made into an output of regular, well-behaved, evenly spaced spikes. But
this creates a paradox: if neurons make regular-spaced spikes, where then
do the random, irregularly spaced spikes of cortex come from in the first
place?

Theorists love paradoxes. Paradoxes in science show us where there
is a gap in our understanding, and hold out the promise that solving the
paradox will create a new view of how the world works. Fittingly, the
irregular-spike paradox invoked a pile-on of theorists, and a raft of
proposals for what could be making irregular spikes.11

From this churn, the balanced-input theory emerged dominant. Once
the paradox was posed, Michael Shadlen and Bill Newsome quickly
pointed out that irregular spikes would be guaranteed if the total amount
of excitation and inhibition into the neuron varied randomly but were
about the same on average.12 That is, if excitation and inhibition were
balanced: some neurons delivering irregular spikes that excite their target
neuron, and some delivering irregular spikes that inhibit the same target
neuron. Which cancel out, but not exactly. Because the flickers up and
down of voltage will be random, sometimes the flickers up will be big
enough to reach the tipping point. And, randomly, a spike is born, giving
random, irregular gaps between spikes.

FIGURE 3.3. How randomly spaced input spikes make regularly spaced output spikes.
Imagine we were sitting on a neuron receiving inputs from four other neurons. Each of
their trains of spikes is shown above: each tick is a spike, each row of ticks the spikes

from that neuron sent to the one we are sitting on. Each row is quite random: the spaces
between spikes are long and short, with no clear order. Now imagine that our neuron

needed seven spikes in total to make it spike. We count up the spikes arriving from the
four neurons and mark an output spike every time we get seven in total (the gray lines).

The resulting output spike train is regular, because a total of seven spikes across the
four individually random inputs is a regular occurrence.
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Great theory. But we’ve just learned that excitatory inputs vastly
outnumber inhibitory inputs. So for this theory to work, it makes some
really strong predictions. Canceling out excitation means that either
inhibitory neurons send far more spikes (so the total number of spikes to
exciting and to inhibiting inputs is balanced); or that the inhibitory inputs
should have a greater effect per spike (so the total amount of voltage is
balanced); or some combination of both. There is now evidence for
both.13 Local neurons in cortex that make the inhibitory inputs onto our
neuron fire two- to threefold more spikes. And the gaps where these
spikes arrive can be four- to fivefold stronger than those of excitatory
inputs. So the balanced-input theory explains why your cortex doesn’t
crash: the cortex is set up so that the total amount of inhibition is just
right to cancel out the total amount of excitation.

But so far that’s just the input to one neuron. To know that the brain is
indeed in balance, we need to know if a network of neurons can be kept
in balance. That if we wire a bunch of pretend neurons together, many
excitatory some inhibitory, then they can all make irregular spikes and so
be each other’s irregular inputs. It is not obvious this will work. For
example, imagine that a neuron’s output spikes are irregular but just a
little more regular than the input. If each neuron’s output is always a
little more regular, then the whole network will eventually collapse into a
state where all spikes are sent regular as clockwork. The victory for
theory here was showing not just that such balanced networks can
exist,14 but that they can bring themselves into existence, can self-
organize.15

The math is fierce, but the idea is simple. We’ve got our pretend
neurons, most excitatory and the rest inhibitory, and we’ve randomly
wired them together. Then all we need to do is guarantee that the input to
each neuron is more than the neuron needs to make a spike. For this then
creates a web of negative feedback loops, of neurons trying to make a
spike, but being held back. It works like this. Say some of the excitatory
neurons send a lot of spikes. This will drive inhibitory neurons to make
spikes—that are fed back to those excitatory neurons and turn down their
spikes. But they can’t turn all the excitatory neurons down too much,
because then the inhibitory neurons themselves will lose their input and
stop firing. But they have to be firing, because the excitatory neurons are
firing. This paradox implies there is a self-consistent state for the whole
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network, where the inhibitory and excitatory neurons are sending just the
right amount of spikes each, so the push-pull of the excitation and
inhibition in the network is balanced. And we all know by now what
balanced excitatory and inhibitory inputs means: irregular spikes. Better
still, this theory showed balanced networks are robust old things: you
don’t need fine-tuning of the exact strengths of inhibitory and excitatory
inputs; nor do you need to fiddle with the details of how the neurons
make spikes. Just make the total input to each neuron a lot, add a dash of
feedback, and voilà: balance.

Experimental data then poured in to test these ideas. Recordings
inside neurons from across different bits of the cortex, from the bit that
deals with a rat’s whiskers,16 to the bit that deals with seeing in ferrets,17

to the bit that deals with hearing,18 all showed the same thing: that the
total amount of excitation and inhibition coming into a cortical neuron
was roughly in balance.

These difficult, exquisite experiments threw up an unexpected twist,
kicking the ball back into the theorists’ court. The theories were about
balance in general; that, on average, the total amount of inhibition and
excitation across a circuit of neurons cancels out. But the data show that
the balance seems to be maintained at the input to each and every
neuron. Not just maintained, but absurdly precise: that as the amount of
excitation shrinks or grows, so the amount of inhibition tracks it
exactly.19

The tale of the irregular-spike paradox is a lovely example of science
in full swing, a dialogue between theory and experiment, a burst of
creative theories brought forth by a clearly posed problem. A dialogue
that revealed the brain’s Goldilocks zone. So we know that our spike,
arriving from the retina and making its small upward blip of voltage,
joins hundreds of other spikes arriving on the same tree, together
evoking a torrent of blips up and blips down, kept in balance to make a
new spike.

NEURAL ORCHESTRA

If you really want to make a neuron fire a spike, nothing is more
effective than having its excitatory inputs all turn up at once. The more
synchronized those inputs, the faster the voltage blips will accumulate,
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and the fewer you need to make a new spike. If you sat down to design a
foolproof way for spikes to send important messages across the brain,
you’d stick synchrony into your blueprint first. Synchronize the spikes
coming into a neuron, and their message will be carried onward in the
newborn spike.

If evolution followed the same blueprint, the brain should be a neural
orchestra.20 There should be choristers, neurons spiking together in
harmony, carrying their message together. And perhaps soloists, neurons
spiking in blissful isolation, elaborating on the central theme.

Wonderfully, there are. If we record lots of neurons at the same time,
we can ask of each neuron its role in the orchestra. The joint lab of
Matteo Carandini and Kenneth Harris at University College London,
with Michael Okun taking the lead, came up with a disarmingly simple
way to assign these roles.21 They simply asked of each neuron: how
much does your firing look like the average firing of the population
you’re sitting in? They found a continuum: choristers at one end,
slavishly copying the population’s rise and fall in activity; soloists at the
other, following their own path, playing from the heart.

The orchestra metaphor implies harmony, implies that the soloists are
in the same key as the chorus. But no: in the cortex, the soloists are
unrelated to the chorus. Think Miles Davis cutting loose. And the
choruses are not related to another. Indeed, at times the cortex is closer to
Ligeti than Handel, to the awesome noise of Kyrie erupting at our first
sight of the monolith in 2001, piles upon piles of voices, choruses in
separate harmonies, soloists drifting in and out untethered.

Choristers can come in different flavors. Some choruses of neurons
are created by them responding to the same thing. When your eye falls
on that squidgy round bit of pale pear sticking out the top of the cookie,
you want that message to get from your eye to your brain intact. Neurons
from the retina that care about that pattern of contrasting light in that
location of the world will be sending spikes together. A chorus of spikes
screaming “mmmm pear!” in C sharp.

Our spike is then part of a transient chorus, of spikes shot en masse
from the retina, from the same type of ganglion cell, in the same location
in the retina, arriving at the same first neuron in the cortex. And as you
might imagine, if that chorus turns up at our single neuron in cortex, that
neuron’s spike will reflect that message.
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Which is why the neuron our spike landed on is called a simple cell.
For they like simple things.22 They like light and dark patches of the
world to fall next to each other at a particular angle. Or “edges” as we
call them—some will like the edge created by the light brown of the
cookie against the dark brown of the lid; some the dark brown of the lid
against the diffuse light of the office; some the diffuse light of the office
against Graham’s hideous black and purple striped shirt that he insists on
wearing every single Tuesday apparently to remind everyone the
weekend is a long, work-drenched way off. A simple cell sends its spikes
when it sees what it likes. And what it likes is defined by the hundreds of
inputs arriving from the retina. For simple cells to respond to one
particular thing means that their inputs must be mostly about this thing,
must be a chorus.

There are two reasons the chorus we’ve arrived in is important. It’s
important that the chorus harmonizes information. Remember that the
varied types of ganglion cells split into those sending spikes to patches of
dark (OFF cells) and those sending spikes to patches of light (ON cells).
The simple cell responds to a particular combination of dark and light
patches, so its chorus must contain the contributions from OFF cells in
one location and ON cells in another location next door.

It’s also important that the chorus arrives roughly together, for inputs
from the eye are vastly outnumbered by those from other neurons in
cortex. There are far fewer inputs feeding direct information from the
eye than there are inputs feeding back spikes from other neurons in
cortex. So for the simple cell to respond when information comes from
the eye, those spikes from the eye need to come at about the same time,
to drive the voltage up to the tipping point.

Other types of chorus we’ll see more of as we hurtle into the deeper
reaches of the brain. One—further torturing our musical metaphors—is
an ensemble, a collective of neurons who always send spikes together.
And not just because something out in the world made them do it. They
send spikes together even when recorded in a slice of brain stuck in a
dish. Another flavor of chorus sends spikes en masse occasionally,
unreliably—like a primary school choir with poor concentration skills,
different members piping up at any one time.

All types of chorus dramatically increase the chance of producing a
new spike in a neuron on the receiving end.23 Which is why a chorus was
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also proposed as a solution to the irregular spike paradox. In this
solution, irregular gaps between the spikes sent by a neuron came
because its inputs were irregular but synchronized, so each “ahhhh” of
this input chorus, whenever it randomly turned up, would create an
equally randomly spaced set of output spikes.24 Indeed there is some
truth to this; it turns out that self-balancing networks automatically create
some synchrony to the inputs of a neuron.25 But, just like balance itself,
the synchrony has to be just right: too little, and no effect; too much, and
we crash the brain.

Balance and synchrony also intersect to create precise spikes.
Neurons in cortex reliably see a few milliseconds delay between an
increase of their excitatory input and the matching, balancing increase of
their inhibitory input.26 A delay that seems tailor-made for allowing a
chorus of excitatory inputs, like the barrage we’ve arrived in from the
retina, to make a single, precise spike, before being shut down by
inhibition.

But the precise effect of the choristers is not guaranteed. For it
depends where on the neuron their axons join.

“TO SUM UP”

Balance and synchrony are properties of the inputs to a neuron. But the
neuron’s own dendritic tree also plays a key role in the birth of its own
spike. Where each arriving spike lands on the neuron can control
precisely how big a voltage blip it will make and so determine exactly
how many spikes we need to make a new one.

Befitting the cliché of location, location, location, there are three ways
the tree influences how many spikes we need. The first is how far away
from the neuron’s body the spike lands; the second is how bunched
together on the tree are inputs from a chorus of neurons; the third is what
lies ahead on the path between that input and the body.

Spikes leaping gaps to land on the tree of a neuron can be far out from
body, up to a millimeter away. But a voltage blip all the way out there
decays rapidly as it travels down the tree to the body, decaying to almost
nothing by its destination, contributing little if anything to the neuron
reaching its tipping point. Blips created by spikes arriving at gaps close
to the body decay little, so can have a big effect on moving toward—or
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away from—the tipping point. Bit of a head-scratcher from evolution
there; it seems a tad pointless to have inputs way out on tips of the tree,
yet there they are.

Bunched-together inputs come to the rescue here. Big neurons in the
cortex, like the layer five pyramidal neurons just below us, rudely jutting
their trees past our simple neuron in layer four right up to the ceiling of
cortex in layer one, those ignoramuses, have a trick up their sleeve. They
add up wrong.27

One or two spikes arriving close together on a single branch of these
neurons make a standard, small blip of voltage. But three or more spikes
arriving together on the same branch make a massive voltage blip. A blip
bigger than simply adding up the separate blips made by each spike
arriving alone.

This supralinear sum is a sudden jump of voltage in the branch where
the inputs land. Enough inputs arriving together opens up new holes in
the neuron’s skin, allowing extra ions to flow into the neuron, driving up
the voltage in that bit of branch. And if you’re thinking that sounds like a
spike, you’d not be far off. While not a pretty, peaky thing, this sudden
jump in voltage in the tree has the same job: get information from the far
reaches of the tree down to the neuron’s body intact. So if a bunch of
inputs turn up at same time, they evoke this superblip that rushes down
the tree and makes a major contribution to the neuron reaching its tipping
point.

We can plug this superblip into our pretend neurons to ask exactly
how much it contributes to making a spike. To do that, we make each set
of inputs carrying synchronous spikes bunch up together on one distant
branch of the tree. Each volley from a chorus will then tend to make a
superblip, in one branch of the tree. With this bunching, even with the
inputs far out on the tips, we need as little as a third of the spikes to make
a new one, compared to the spikes arriving spread out over the tree.28

Location and synchrony working together can dramatically increase the
chances of making a new spike.

Inhibition is the key player in the third part of the location trilogy. For
ahead be dragons. On the path between where our spike landed on the
tree and the neuron’s body lie many other inputs. Many of these are other
exciting inputs, invoking more upward blips of voltage. Friends to help
us in our way. Some though are inputs from neurons swilling GABA,
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each of their spikes making downward blips of voltage. Big downwards
blips. If those GABA inputs between us and the body are evoked just
before we pass them, our blip would be canceled out, annihilated.29 We’d
never reach the neuron’s body.

Worse, we might never see it coming. Inhibition has a ninja mode:
silent, unseen, deadly. You see, the size of a voltage blip made by an
input also depends on the voltage already in the branch where it lands.
This is particularly true for GABA-driven inputs, for there is a level of
voltage, the “reversal potential,” well within a neuron’s usual range, at
which the GABA input creates no voltage blip at all. For at the “reversal
potential” no ions are flowing through the opened holes in the neuron’s
skin. But the GABA is still there, locked into the receptor, holes open,
ready to make ions flow. So when an excitatory, upward blip of voltage
tries to pass by, it drives the local voltage away from this reversal
potential—and the ions start to flow through the already open holes. The
GABA input, invisible to voltage, drains the passing excitatory blip as
the ions ebb away, and shunts it to nothing. Come to think of it, perhaps
ninja is the wrong metaphor—vampire is more apt.

These location, location, location dependencies of a single neuron
have deep implications for artificial intelligence (AI). AI-brand neural
networks are all constructed from the same kind of pretend neuron, a
simple thing that just adds up its inputs from other pretend neurons. And
once added up, an AI-brand pretend neuron checks if they sum greater
than zero, and if so then sends that sum on to all its targets (or else sends
zero). The deepest of deep networks are all constructed from millions of
these elementary things. But I’ve just spent five thousand and more
words telling you that a single neuron in your cortex does not just add up
its inputs. How a neuron deals with its input depends on a plethora of
things that all interact: the balance and synchrony of its inputs, where
they land and how they bunch, whether they sum up wrong, what the
voltage is when the inputs land, and what is on the path between the
input and the neuron’s body. Current AI networks have barely tapped the
surface of what brains do.

Indeed, detailed pretend models of neurons have shown us that a
single neuron can itself be a two-layer neural network.30 If each branch
of the tree has the ability to do those supralinear sums, each branch acts
as single AI-brand pretend unit. So their outputs (layer one of the
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network) converge at the neuron’s body (layer two of the network). And
with this comes the ability for single neurons to compute alone many of
the functions of logic.31 So each individual neuron is close, in the set of
computable functions, to the laptop sitting in front of you, cursor
flashing on the empty first page of the monthly reports, its tilted
overbright screen thankfully not obscuring the flat, squarish box holding
the just-noticed cookie conundrum. Each neuron in cortex is,
approximately, a computer.32

It turns out that making a new spike is a fiendishly convoluted
business. Our spike from the eye jumped the gap, transmuting from an
all-or-nothing wave of voltage to chemistry and back to a small blip of
voltage. With us, many more spikes arrive from the eye, whose blips
drive the neuron toward its tipping point. Our spike is one tiny part of a
brash chorus singing the praises of cookie-in-a-box-on-the-desk. Outside
our chorus, a legion of other spikes arrive, from local neurons spewing
GABA, whose voltage blips drive down the neuron, away from its
tipping point. Sweeping down the tree toward the neuron’s body, the
convergence of up and down blips is in balance to keep the brain just
right. Yet as they sweep down the tree, we’ve watched some of our
fellow travelers fade and die, others killed suddenly by GABA ninjas.
Through the maelstrom, suddenly, randomly, a series of upward blips
arrive together, driving the voltage to the tipping point, and a new spike
is born from the first neuron in the cortex. To go—where?
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CHAPTER 4

Split Personality

DIVIDE AND CONQUER

Spikes go where axons go. Each axon erupts as a gossamer-thin cable
from its neuron’s body, opening the line of communication from one
neuron to the next. When we think of connecting two neurons, the axon
may seem a single strand of wire, tying one neuron to another, a private
line of communication, two tin cans on a string. But the axon is not one
dedicated line, carrying the spike’s message in private from one neuron
to an intimate partner.

The axon is a tortuous structure, splitting again and again, branching
furiously, winding and twisting and tumbling. Ahead of us, the simple
cell’s axon twists and turns, dividing in two over a hundred times.
Branches upon branches, but not evenly spaced: some are next to the
body, some in the layers above and below us, some far distant. And
hardly unique to our simple cell—most neurons in the cortex sprout
torturous rivers of axon, covering a volume that dwarfs the parent neuron
and its tree. Indeed, towering over our simple cell, we can see above us
the massively branched axons of the pyramidal neurons in layer three,
dividing hundreds of times, one long branch cascading down past us to
then itself split again and again below us in the fifth layer. We barely
have time to take this in as our spike hurtles into the first fork in the river
of axon before us.

At every split our spike is copied, cloned, sent down every new
branch to carry its message onward. Down hundreds of branches. So
from one spike shot from a neuron’s body are created hundreds of
clones. Clones that trigger the release of molecules at gaps all along the
branches. For gaps between our axon and the tree of another neuron are
strewn along its entire length. In some places we flash past these gaps
every five micrometers, packed as tightly as their molecular machinery
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will allow, each one primed to dump its molecular load and trigger the
blip of voltage on the other side. Other long stretches of axon flash by
with no branching and no connections to another neuron, often weirdly
straight, these Roman roads of axon dedicated to getting the spike to
another place, to another wild burst of dividing and twisting.

By axon’s end, our spike has made contact with thousands of other
neurons. On the other side of most gaps is a different neuron each time.
So most of the roughly 7,000 excitatory inputs onto one cortical neuron
are made by different axons, arising from different neurons. Meaning
that each excitatory neuron in cortex connects via its axon to roughly
7,000 different targets, a wide sampling made feasible precisely by the
twisting, turning, tumbling course of the axon, as it kinks and spreads to
move away after each contact, to hit a new target.

By twisting, branching, and cloning, a neuron’s axon broadcasts a
single spike to thousands of listeners across the cortex. Who those
listeners are and where they sit in the brain tell us a lot about that
neuron’s job. To fully understand what message our spike is carrying we
need to know two things of the neuron that created it. We need to know
what the neuron responds to, what created that spike in the first place—
this is the legion. And we need to know where it sends that spike, to
whom it is being transmitted. For an axon can feed the spike it carries
everywhere in the cortex. Nearby, to recruit more neuron kin to amplify
and clarify the message. Far, to carry its message across cortex to other
areas, there to be combined with other message-laden spikes, creating
ever-more-complex representations and computations. And farther,
across the hemispheres, to keep the brain in sync.

NEAR

The first target of our spike is other simple cells. Simple cells surround
us here, where we’ve landed in the middle layer, layer four, of the first
vision area of the cortex. The axon of our simple cell snakes out,
branching repeatedly around its own body, each branch brushing past the
tree of another simple cell. But as we follow each cloned spike down
those branches and across the gaps, we find many simple cells on the
other side are strikingly similar to the one we just left. They like the
same thing.
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Belying their name, simple cells are an eclectic bunch. For one thing,
they keep the orderly map of the visual world that came from the retina,
so nearby simple cells respond to similar positions in the world. For
another, tens of channels of information from the retina have slammed
into the simple cells that surround us. Thirty-plus channels for every
location in visual space, for the middle, the left, the right, up and down,
everywhere. So collections of simple cells bunched together are
interested in different things about the same location in the world: some
in edges at 90 degrees, some at 120 degrees, some at 41.3 degrees; some
in edges created by a patch of light above and dark below, some
reversed. And all combinations in between.

So if our simple cell just stuck out its axon at random, then our spike
should be equally likely to find its way to any of this eclectic bunch. But
it isn’t. We know this because researchers in Thomas Mrsic-Flogel’s lab
at University College London have been tracking the local destinations
of single spikes in this first bit of visual cortex, in exceedingly clever
experiments.1 They recorded hundreds of neuron at the same time from
the visual cortex of mice sat down in a mouse cinema, watching slide
shows and movies, all so they could work out from the recorded activity
where and what each neuron liked about the stuff happening in the visual
world.

Now knowing what each neuron liked—the neuron’s tuning—the
scientists in Mrsic-Flogel’s lab needed to work out the connections
between them. They switched to a delicate, difficult technique for
recording every flicker of voltage from a handful of neurons, four at
most, at the same time. Delicately positioning an electrode directly onto
the skin of each neuron’s body, a microscopic dot ten times narrower
than the width of a human hair, they sought solid evidence for a direct
connection from one of those neurons to another by evoking a spike from
one neuron and checking for a subsequent blip of voltage in the others.
No blip, no connection, but reliable blips in neuron Bertha after evoking
a spike in neuron Aleph are pretty damn convincing evidence that neuron
Aleph connects directly to neuron Bertha. Having found a connection,
Mrsic-Flogel and team could then go back to their mouse cinema data
and ask: what did these neurons care about in the visual world?
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FIGURE 4.1. How neurons in V1 connect nearby. Each circle is a neuron in V1; each
arrow between them is a connection from one neuron to another. Within each circle
there is a line showing the angle and position of the edge that the neuron most likes.
Neurons that like similar edges have stronger connections (thicker arrows) and more

connections to each other. Connections between neurons that like dissimilar edges are
weaker and fewer.

Complex work, with a simple conclusion: the probability of finding a
connection between two neurons with similar tuning is vastly greater
than chance. Neurons that like very similar things at very similar
positions in the visual world also like to connect together. And not just
connect. Connect strongly. For the strength of the connection between
two similarly tuned neurons, measured by the size of the voltage blip, is
also vastly greater than chance would predict2 (figure 4.1).

Our spike came from a simple cell that responds to edges at an angle
of 30 degrees in the top right of your view of the world, where the tip of
the lid of the cookie tray happens to be, conveyed by many channels of
retinal outpourings. The local branches of the axon send the clones of
our spike straight to simple cells with the same tastes, the same love of
30-degree edges in the top-right corner of the world. And those neurons
will do the same in return, sending one of their cloned spikes back to the
neuron we just left.

The work of those in Mrsic-Flogel’s lab tells us how we’ve ended up
at neurons that like similar things in the world, but it doesn’t tell us why.
Why is simple. Remember, it takes a legion of spikes to make one more
spike. So if we want the rest of the brain to know about 30-degree, top-
right edges, then it makes sense to recruit as many spikes as we can with
the same message, to cajole the neighboring neurons into sending their
spikes to join us in the forthcoming journey across the cortex.3

There are not just simple cells around us in this fourth layer of cortex.
There are many other neurons around us that like more complex
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combinations of information coming from the eyes; cunningly, they are
called complex cells. Complex cells send spikes when they see what they
like, and what they like are combinations of patches of light and dark,
with each pair of light-dark patches at a specific angle.

Sound familiar? Indeed, the simplest idea for how vision works is that
complex cells are made by combining inputs from simple cells.4 That
each simple cell is a feature detector for exactly one type of edge, and a
complex cell combines the outputs of a few feature detectors into a
combination of edges. Our spike’s clones thus also make their way to the
complex cells around us, carrying a message about one of the simple
features in the world the complex cell will add up.

This neat picture is a useful guide, but not quite accurate; a neuron
being simple or complex lies on a continuum.5 Some neurons are plain
and simple, responding to a single edge at a single angle; some are
perfectly complex, adding up the outputs of plain and simple cells. And
many are in between, being complex-like. Regardless, everything just
said above is true for any complex-like cell too; they are more likely to
link to other neurons with similar tunings for similar positions in the
visual world.

And while neurons in the first visual cortex are more likely to connect
to nearby neurons with similar tuning, they don’t only connect there.
After all, compared to the total number of neurons immediately around
us in this fourth layer of visual cortex, the number of neurons that like
roughly the same kind of simple or complex edges in the same position
in the world are very few. So most of the nearby neurons we run into on
our cloned spikes, those on the other side of the gaps, will be not quite
like the neuron we just left. Indeed, from the perspective of one of these
neurons—including the one we just left—only a handful of its inputs are
from neurons with similar tastes. As we’ve just seen, those inputs are
vastly more numerous and stronger than expected, so the blips they
create play a key role in driving the neuron’s flickering voltage to its
tipping point for a spike.

But still there are many others. And one of the marvels of modern
neuroscience is that we can see these individual inputs in action, for we
can video the effect of a single voltage blip in a tiny stretch of dendrite
(to be precise, we attach a fluorescent molecule to calcium in the cell,
and video the change in fluorescence: a single voltage blip will cause a
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change in the amount of calcium in the same bit of dendrite, so an
increase in fluorescence means the input has just been activated—a spike
arrived, dumped molecules, and induced a voltage blip). We can even do
this videoing in a spine, a tiny little sticky-out stub of dendrite that has
just enough space for a single gap between the axon on one side and the
dendrite on the other, so we can be absolutely sure we’re looking at a
single, solitary contact between one neuron and another. And as the blip
is made by a spike in response to something in the visual world, so we
can ask what that single input cares about in the world.

When Sonja Hofer and her team at the University of Basel videoed
the single inputs to neurons in a mouse’s visual cortex, in another mouse
cinema, they saw each tree was festooned with a menagerie of inputs
from other, dissimilar neurons.6 Most strikingly, a handful of inputs came
from neurons that were not remotely looking at the same part of visual
space. If they recorded the inputs to a neuron that itself liked things in
the bottom left corner of the visual world, then a few of its inputs lit up
when something was passing through the center of the world, a few
others when something was passing through the top of world, and more
besides.

So clones of our spike jump gaps onto neurons that are looking at the
center of the box lid, at bits of the wobbly, upside-down scrawl of
“Cookies”; other clones jump gaps onto neurons looking at the dull
expanse of the fake rosewood laminate desktop stretching beneath the
box; yet others onto neurons staring intently at the exact point in space
where the biggest chunk of pear touches a wedge of solid chocolate. And
none of these inputs is enough to make the neuron on the other side
create a spike, but they can change exactly when that neuron makes a
spike. They provide context, allowing information in one bit of your
view of the world to inform another bit.

There is one more type of neuron nearby, a type of neuron that sits in
the very first bit of visual cortex but does not particularly care for the
view. Everything we’ve landed on so far is an excitatory neuron, a
stellate cell with its starburst tree or a pyramidal cell with its above-and-
below tree. But as clones of our spike travel along some branches of the
axon, they leap gaps onto rare GABA-toting neurons, neurons that get
nothing from the retina, and only branch their axons inside the region of
cortex their bodies sit in. Hence we call them interneurons. They are the



55

wellsprings of the deadly inhibition we ran into when racing down the
tree of our first neuron. They are there to sort the wheat from the chaff.

These interneurons get their inputs from the excitatory neurons all
around them and send their spikes back to that same collection of
excitatory neurons and more. Our cloned spike jumping gaps onto these
interneurons is then attempting to deliberately increase the inhibition of
other excitatory neurons. To suppress them. Indeed, very recent
evidence7 suggests that a single spike from a single excitatory neuron
can weakly but detectably lessen the probability of a spike in neurons all
around it, up to 500 micrometers away, almost certainly by harnessing
the power of the GABA-toting interneurons.8 Yet at the same time, as
we’ve seen, that single neuron will weakly but detectably enhance the
probability of a spike from those few like-minded neurons with very
similar responses to itself.

Why suppress so many other neurons and enhance just a few like-
minded ones? There’s a simple theoretical answer to that: send only what
needs to be sent. If many neurons with almost-but-not-quite the same
tuning for the visual world send spikes across the cortex, the receiving
neurons will be getting a lot of information that is both redundant and
ambiguous. With our spike meaning an edge in the top right of the world
at an angle of 30 degrees, sending spikes from other neurons saying
there’s an angle of 28 or 32 degrees in about the same location both
wastes spikes and makes it unclear what exactly is in the world (leading
to a fuzzy box lid). By harnessing the interneurons to suppress other
neurons with kind-of-similar tunings, our spike is trying to stop these
redundant and ambiguous messages, to conserve energy and create
clarity.

It’s time to leave this maelstrom of recurrence behind, of crisscrossing
axon branches linking the cortical neurons of the landing zone. Clinging
to one cloned spike speeding along a so-far-unremarkable branch of
axon, we suddenly hit a sharp upward turn and launch into the layers of
cortex above us. Here the axon branches and branches again, along each
branch cloned spikes racing to land on the pyramidal cells across layers
two and three, the neurons that start the long journey across the cortex.

FAR: HIGHWAY WHAT AND HIGHWAY DO
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We’ve followed many cloned spikes to their destinations, watching them
trip the circuit on gaps as they speed past on their branches, showering
the trees of neurons on the other side with molecules that lock into
receptors and trigger voltage blips now receding into the distance down
the trees toward the target neuron’s body. But now we’re moving onward
and upward into layers two and three, it’s time for us to make the leap
ourselves. We jump a gap onto a pyramidal cell in layer two, feel that
familiar flicker of voltage far out in its tree, and slide down with it
toward the neuron’s body, there to join a cascade of blips pushing the
neuron to its tipping point, sparking to life a new spike for us to tag
along with, tracking its clones through the hundreds of branches of this
pyramidal cell’s axon.

On our route forward we complete the circuit between the layers of
the cortex. From here, we could follow cloned spikes traversing axon
branches in layers two and three to hit the trees of pyramidal cells from
layer five, their long slender trunk diverging into a canopy around us. Or
we can follow a cloned spike plunging down the axon, back through
layer four, to hit the trees of pyramidal cells in layer six, at the bottom of
the cortical stack.

In tracing this feed-forward circuit, from layer four up to layers two
and three, and back down to layers five and six, we’ve run into all three
types of pyramidal neurons in cortex.9 All three types use glutamate as
their molecules, so all excite neurons they connect to; all connect to
neurons of the same type within their own layer, but they are separated
by where they send the long branch of their axon. In layer five we watch
some of the cloned spikes run into pyramidal tract neurons that send a
long branch of their axon all the way through the brain, down to the
brain stem, and some onward to the spinal cord. In layer six other cloned
spikes jump gaps onto cortico-thalamic neurons, their long branch
dropping down out of the cortex into the tiny nugget of midbrain called
the thalamus, whose own neurons send their axons all over the cortex,
creating complex feedback loops. And in all layers (except layer one) are
the cortico-cortical neurons, whose long branch of axon connects regions
within the cortex, carrying spikes far across the cortex on this left side of
the brain, and on to the cortex on the other side of the brain. Neurons just
like the one we’ve been dispatched from.
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For now, we ignore the clones that jump ship to the neurons
projecting beyond the cortex—we’ll catch up with them later (much later
—in chapter 8). We plunge down the long branch of the axon from the
pyramidal neuron in layer two; down past layer four; past layer five; past
layer six; and into the white matter, screeching around a neck-jolting
ninety-degree turn to join the superhighway of axons that crisscross the
cortex.

For seeing, decades of work has unraveled two of those highways in
extraordinary detail: Highway What, and Highway Do10 (figure 4.2).
Sent down one highway of axons, our spike will jump from area to area
to help create the message of “what”: spikes carrying messages of
curves, edges, browns, whites, and more are brought together to reveal
the single remaining ginger, pear, and chocolate cookie, in its tray, the lid
pointing away from you, on the edge of the desk, tantalizingly within
reach. Down another highway, the areas our spike leaps through will
create the messages of what you need to know to “do” something: spikes
carrying messages of the distance, size, and movement of the edges and
curves around you to reveal that you could, in theory, move your arm to
reach the stationary cookie and as you do so spread your fingers just
wide enough to pick it up.

FIGURE 4.2. The visual Highways of the cortex. Information from the eyes arrives in
V1, then travels onward through the two Highways of axons that join the visual areas

of the cortex. Every jump between areas is a plunge down an axon into the white
matter, to reemerge in the next area along.

Highway What
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We leave V1 behind. We exit the white matter along an axon ascending
within the second area of cortex that deals with vision, the drolly named
V2. Quick warning: the names don’t get any better. Ahead of us lie a
litany of cortical regions best known by their uniquely identifying jumble
of letters and numbers, as though prisoners of a cerebral jail: “Will area
7a report to the warden’s office immediately.”

In V2 we follow our spike across gaps to pyramidal neurons that like
conjoined edges, edges that are next to each other, touching, in a
particular bit of visual space. Neurons that will create a spike to the long
stretch of the upward-sweeping line of the side of the box lid, or other
neurons that will respond to the angle made by the edges where the lid
and the tray meet.

Again, what a neuron in V2 likes is defined by what its legion of
inputs tells it about. Our spike is part of the legion arriving from V1,
from simple and complex-like cells looking at adjacent bits of visual
space, all arriving at the same neuron in V2.11 So if you were a neuron
getting inputs that signaled the presence of edges at particular angles in
bits of the visual world that are next door to each other, what would you
like? Exactly: you would like conjoined edges. Which also means each
V2 neuron sees a bigger chunk of visual space than any neuron we
passed in V1, because it is integrating inputs from V1 neurons that look
at different bits of that space.

Seeing a bigger chunk of visual space means that many neurons in V2
know about something V1 neurons are blind to: texture. We can divide
the visual world into “things” and “stuff”: objects defined by edges, and
the stuff that fills in between those edges.12 The glistening of a field of
snow, the leather of a creaky armchair, the cold steel of a knife blade—
the crumbliness of a cookie top—we can see the stuff between the edges
of the field, of the chair, of the blade, of the cookie. Such textures are
patterns of variations in how light is reflected, patches of lighter and
darker regions, like the undulating corrugations of the cardboard lid of
the cookie box. We already know from our sojourn in V1 that where a
lighter patch and a darker patch meet is an edge. A texture is then a
particular dense combination of edges of different angles and lengths and
thicknesses occurring together. Individual neurons in V1 will see those
edges, each neuron sending spikes if the pixel they can see contains their
particular preferred angle, length, and thickness of edge. And these V1
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neurons will make up the legion of inputs to a single V2 neuron, a V2
neuron whose spikes will thus send a message that a particular dense
combination of edges of different angles, lengths, and thicknesses is out
there in the world.13 About texture; about stuff.

Around us are V2 neurons sending spikes to the ragged cardboard of
the box lid, the smooth laminate of the desktop, the grainy black plastic
of the back of the monitor opposite you. Indeed, these first neurons in V2
encapsulate a common theme of our journey through the visual parts of
cortex: that at each stop, neurons combine and transform inputs from the
area we just left, creating more complex representations of the world.

This is made abundantly clear when, having repeated our trip through
the layers of V2 and back down into the white matter, we shoot into the
next main region of the visual cortex, V4 (yes, there is a V3; no, we
don’t know what it does). The neurons we run into here like clear
contrasts between the foreground and the background: they like colors.14

We leap a gap onto a neuron crucial to your mission of finding a rapid
premeeting pick-me-up. A neuron whose input means it likes the light
oaty brown of the cookie surface contrasted against the dull brown of its
box. A neuron whose messages will be crucial to identifying that
collection of edges, curves, and contrasts as the delicious, delicate
morsel you seek.

To understand how this neuron knows about brown all of a sudden we
need to back up to the start of the visual system, to the cones in the retina
who paused their release of messenger molecules when they absorbed
the photons bouncing off the cookie or the box or the desk, and kicked
off this whole charade. For as you may know, cones come in three types
corresponding to the three wavelengths of light they prefer, which for
convenience we’ll call “red,” “green,” and “blue” (more accurately,
because “red” just happens to be the name we give that wavelength of
light in English, we should call the “red” cone the “long wavelength-
tuned cone,” but that’s as tedious to type as it is to read. So “red” it is.
Oh, and that wavelength is not the color red anyway, as you’re about to
find out).

The three types of cones each kick off their own pathway through the
retina and out to the brain via the ganglion cells. With each of the three
pathways having all that other retina-dispatched information too: “red”
ON and OFF responses, “red” dim or bright—“red” for all the channels.
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And neurons in V1 respond to combined versions of these three cone
pathways too.15 So some V1 neurons send spikes to “blue” alone, some
to the sum of “red” and “green,” some to the difference between “red”
and “green,” and many others to some mixture of those three things.

But at this point, these are not colors as we know them. They are just
responses to the wavelengths of the light reflected from an object, and
will be there whether the actual color of the object is white, red, or a
shocking pink. Yes, “blue” neurons in V1 will send spikes if Janice’s
pink-haired troll key ring falls into their bit of visual space, because
natural light contains all wavelengths—“red,” “green,” and “blue”—and
so some light of all wavelengths will be reflected into the eye. The key is
how much is reflected at each wavelength.16 The light falling on an
object contains a particular mixture of “red,” “green,” and “blue.” Colors
are the proportion of that mixture reflected into the eye: if the mixture of
light is heavy on the “blue,” as it is under the flickering lights of your
office, but the reflected light contains proportionally more “red” than in
that mixture, then we see red.

(This idea is worth repeating: color is not the wavelength of visible
light. Color is the proportion of reflected light at that wavelength
compared to the total amount of light at that wavelength. Don’t worry,
Newton thought it was wavelength too, and he was wrong. As did I, but
you don’t care what I think.)

It’s the neurons in V4 that work all this out. We’ve arrived as part of a
legion of spikes coming from neurons in V1 (and V2) that each respond
to one of those cone-pathway combinations. How many spikes they each
send signals how much of their cone-pathway combination is present:
some will be sending weak signals, a few spikes, because their cone-
pathway combination is picking up little reflected light; some will send
strong signals, many spikes, because their cone-pathway combination is
picking up a lot of reflected light. By receiving two or more of these
cone-pathways, the neurons in V4 get to contrast their signals and
determine “color”: what combinations of wavelengths are strongly
reflected and which weakly. The V4 neuron we landed on, the one that
likes the oaty-brown of the cookie, must contrast all three pathways: the
heady mix of 74 percent reflected “red,” 55 percent reflected “green,”
and 38 percent reflected “blue,” that is, approximately, oaty-brown.
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We’ve barely time to register this before we have to grab the next
spike out of this V4 neuron, shoot along yet another axon, clones flying
off in all directions at each branch, repeat the loop through the layers,
and plunge back into the white matter.

To reemerge in the midst of the temporal lobe, among the mass of
cortical tissue that cares about shapes.17 Our spike is part of the legion
descending on a pyramidal neuron that will put together the messages we
and others are bringing about parts of a long, jagged curve in the space in
front of us into the elliptical shape of a cookie top. A truncated ellipse
obscured by the straight edge of the tray of the box—another shape put
together by nearby neurons who ultimately got their information from
bits of the retina just below where we started. Millimeters away, other
neurons are putting together their legion of inputs into a rectangular box
lid. It’s all falling into place: the oaty-brown cookie, the dark brown box,
the rosewood desk. You’re also just noticing how tediously beige the
office colors are.

And just down the temporal lobe from where we’ve landed are
neurons that deal with the shapes humans ultimately care most about:
faces. And which you also care about deeply right now, to answer the
crucial question: are any faces looking at me while I contemplate this
cookie? From V2, via V1, the simple but unique conjoined edges of a
nose, a brow, a chin, the line of a mouth, the curve of the cheek bones.
Combine those with the colors from V4 of the watery pink lips within
graying stubble against pale skin, and you get: a Graham. Facing side-on,
across the far side of the office, eyes pointed ceiling-ward, idly
contemplating existence.

It would be remiss of me not to point out that our spike’s journey is
also crucial for a set of shapes that only humans care about: writing.
Writing is just edges and lines, corners and angles. The visual system
gets very excited by writing. In V4, a bunch of neurons a few millimeters
away from where we left were creating their own spikes to signal a set of
edges laid out contiguously in a curve that ends roughly in line with its
start point. That were responding to the black felt-tip smear of the
upside-down “C” of “Cookies” contrasted against the dull brown lid.
Near them, neurons loving edges in continuous curves that start and end
in the same place: the “o”s. Others salivating over hard straight edges
with two short lines kicking out up and down from it at sharp angles—
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the all-important “k.” Reading is primarily an exercise for the visual
system, in piecing together a welter of edges and curves and angles into
distinct shapes, and those shapes into combinations of shapes—words—
and spikes upon spikes while you read this sentence right now.

Highway Do
Back at V1 we missed a turnoff. As the axon of the V1 neuron branched,
we followed one cloned spike down into the white matter and off to a
neuron in V2 at the start of Highway What. But cloning ourselves along
with the spike and taking another branch would have landed us on a V1
neuron at the start of Highway Do.

Unique to Highway Do is the computation of motion. Some simple
and complex-like neurons in V1 know about local motion.18 Just like the
rest, they each have their preference for specific angle(s) of edges of a
specific fatness in a specific location of the visual world. But they send
the most spikes when that lot is combined in an edge that is moving,
moving along an axis at 90 degrees to the angle they prefer. So if such a
direction-selective V1 neuron likes edges at 45 degrees, then it will send
most spikes when that 45-degree edge is coming from top left to bottom
right of the tiny pixel of the world that V1 neuron can see. And these
direction-selective neurons send their axons onward to start Highway
Do.

Flowing out from V1, Highway Do also runs through V2 and V4,
through different neurons to the ones we visited in Highway What—
different neurons whose roles are, to be frank, not well understood. (We
can make some educated guesses: given V2 neurons like conjoined
edges, it would be logical if the V2 neurons on Highway Do liked
conjoined edges moving in a specific direction.) But the first unique stop
on Highway Do is also the one we know most about: V5—or area MT, to
its friends.

Area MT neurons put the whole picture together; they respond to
global motion, across the whole field of view. Some MT neurons
respond to a coherent collection of edges and surfaces moving from left
to right. Some to such a collection moving from bottom to top. This
sensitivity of an MT neuron to global motion in a particular direction
likely comes from their integrating the spikes about local directions
pouring into area MT from V1 (and V2) neurons.19 Imagine we sit on
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one MT neuron and look at the legion of direction-selective V1 neurons
bombarding it with spikes. That legion will contain V1 neurons that like
all possible different directions, and each V1 neuron will be looking at a
tiny pixel of world. Collectively, the legion of inputs will together cover
all directions of possible motion in a big patch of the visual world. So for
an MT neuron to like, say, left-to-right global motion, it just has to
weight heavily those inputs coming from the many V1 neurons signaling
edges approximately moving left to right in their own little patch of
space. And voilà: one neuron knows about a coherent collection of edges
and surfaces moving in the same direction.

Vitally for you, the neurons in area MT are not sending spikes in
response to the coherent collection of edges and angles that make up the
cookie. The cookie is not moving. But many other things in the office
are. Some neurons in area MT are sending spikes in response to the
coherent collection of edges and surfaces you call “Sarah” striding across
the office, hair tucked behind her right ear, as she moves across your
field of view from left to right. She’s close. Too close. You need to
know: is she heading toward you, to foil your cookie-snaffling chances,
or away from you?

The next stops on Highway Do solve that problem. We tag along with
a cloned spike from area MT as it’s fired into the variegated pastures of
the parietal cortex, to areas labeled VIP and MST. Neurons there
integrate the global motion signals along different axes to signal what is
happening to the moving object. Is it constantly shifting its axis of
motion? Then it’s rotating. Is it moving along the top-to-bottom axis but
taking up more or less of the visual world? Then it’s expanding, or it’s
contracting. You want a contracting Sarah—let’s check out a contracting
neuron. Our spike flashes past one and we jump the gap with bated
breath, then watch as the multitude of voltage blips accompanying our
blip drive a stream of spikes down its axon, meaning: Sarah is moving
away from you, heading for the conference room—armed with her
coffee-brimmed “It’s only feckin Monday again” mug, chimes in
Highway What. Your relief is palpable. Cookie, you’re nearly mine. Ah,
but if only it were so simple.

FORTH, AND BACK
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Jumping forward as we’ve done from area to area, your visual system
seems arranged in a neat hierarchy, information from the eye ascending
area upon area, each creating an ever-more-complex representation of
the visual world. There’s some truth to this idea. When researchers train
deep neural networks on huge image banks of objects, their simple
pretend neurons arranged in rigid layers feeding only forward to the next
one, they find their networks recapitulate the rough outline of Highway
What’s hierarchy.20 The first layers are like V1, responding to simple
edges, with increasingly complex responses across farther layers,
reproducing the increasingly complex responses to objects across V1 to
V2 to V4.21 With enough layers, such deep networks can even reproduce
the ability of temporal lobe neurons to send spikes about specific shapes,
and the better the deep network matches human ability to recognize a
pictured object as the correct type—as a car, or a chair, or a table—the
better the output layer of the network resembles the activity of temporal
lobe neurons.22 When traveling forward from the eye, thinking of the
Highways as an approximate hierarchy is a useful rule of thumb, a
schematic guide to making sense of the deep complexity of the visual
brain.23

There’s no doubt though that the visual system is not a strict
hierarchy, and no doubt that the two Highways are intertwined. We know
they converge in the far distant regions of the cortex from V1, like
dorsolateral prefrontal cortex, which we will visit later in chapter 7.
There is clearly cross-talk between Highways, allowing spikes from one
to influence neurons in the other.24 And most crucially, there is feedback
throughout, from V2 to V1, V4 to V2, everywhere.25 As we clung to our
spike heading forward from the eye through V1 and onward, endless
spikes zipped past us the other way, heading back to V2 or back to V1.
As though it was necessary for first visual regions to know what farther
ones along were already thinking. Which we’ll see in chapter 10 might
be true.

Even within the hierarchy, digging down reveals nuances. The broad
strokes of Highway Do and Highway What trace connections across
great swaths of cortex. But at the single neuron level there is likely a
strict logic to each neuron’s projections, as they target specific types of
neurons in specific bits of the hundreds of millions of neurons we call
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V2 or V4. We’ve just started uncovering this logic for V1.26 Using some
crazy new tech: RNA barcoding.

Take a unique strand of synthesized RNA. Inject it into a neuron in
V1. Then wait. That RNA strand will be transported along that neuron’s
axon, to everywhere that axon goes. To find out if it goes to area X, cut
out that area and sequence the tissue for that unique strand of RNA. If
it’s there: bingo, your neuron connects to area X. The brilliance of this
approach is that you can inject as many unique strands into as many
neurons as you have the time and energy to handle, and then sequence
for them all in the tissue you cut out. The result is recovery of the precise
connections of hundreds of single neurons, a scale once thought
unfeasible.

And in the V1 of a mouse, those hundreds of neurons revealed that,
indeed, there is a tight logic. Mrsic-Flogel’s team (yes, them again)
injected barcoded RNA into the neurons of V1 in mice, then sequenced
the barcoded RNA in six regions of visual cortex that were potential
target areas of V1. Half the V1 neurons targeted two or more of the six
areas, but those areas were not random combinations, each neuron did
not seemingly pull its combination of target areas out of a hat. Instead, of
the sixteen possible combinations of two, three, or four targets, just four
combinations dominated. Half the neurons in V1 thus fall into one of
four groups according to the combination of neighboring cortical regions
where they send their signals. Yet this is but a tantalizing taste of the
discoveries to come. We know much about how cortical neurons connect
nearby, less about how they connect far—and next to nothing about how
they connect to the other side of the brain.

THE OTHER SIDE

When we exited V1 and dived into the white matter, one branch shot off,
taking a cloned spike with it, to cross the brain. This branch formed one
of the billions of axons of the corpus callosum, the web of wires that link
the left and right cortex. If we could clone ourselves, we would have
followed that spike too, along that cable, an envoy now, carrying a
message to sustain a fragile peace between the left and right brain.

Problem is, I’ve no idea where we would land. As far as cortical
cartographers know, we would almost certainly land in the same region
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of the cortex on the other side. From V1 on the left to V1 on the right.
From left V2 to right V2. But to other regions that deal with vision?
Presumably. Anywhere else? We’ve no idea. For we know little about the
journey of spikes between the halves of the cortex. One reason is simply
because the technology has not existed to record single spikes from
many single neurons in different regions of cortex at the same time.
Which includes regions on two sides of the cortex. Another is that
dealing with one side of the brain alone is mind-bendingly complex, with
an infinite amount to learn, so dealing with two sides is worse.

Technology is catching up. When we zoom out our microscopes and
image activity of large regions of both sides of a mouse’s cortex at the
same time, we see activity is usually synchronized between the same
region on the two sides of the brain.27

Not just passively synchronized, but seemingly synchronizing each
other. In 2016 scientists in the labs of Shaul Druckmann and Karel
Svoboda imaged many neurons from the same small region on both sides
of the cortex at the same time.28 When the spikes were switched off in
the region on one side, the two sides desynchronized, running free;
remarkably, when the spikes were switched back on again, the silenced
side immediately caught up with exactly what was going on the other
side of the cortex. Spikes crossing between the hemispheres are thus
crucial for synchronizing the same region on both sides of the cortex.

This cross-brain traffic of spikes is perhaps more crucial in humans
than in any other species, because our brains seem to be the most
lateralized of any species; for many of the jobs carried out by our cortex,
one side does more of the heavy lifting. The classic example is
handedness. If you’re right-handed then the bits of hand-controlling
cortex on your brain’s left side are doing more of the work than those on
the right side; if you’re left-handed, it’s the hand-controlling cortex on
your right side that’s doing more work.29 At its most extreme, functions
exist in one side of your cortex that are barely detectable in the other.
Both the understanding and creation of speech are crucially dependent on
regions in your left cortex that do not exist on the right (in almost, but
not quite, everyone—strong left-handers tend to have speech regions in
the right cortex, or even on both sides30). More subtle lateralization of a
plethora of functions is evident in functional imaging of human brains.
During tasks ranging from calculations to assessing faces, one side of the
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brain is demanding far more oxygen-rich blood, its neurons yelling “feed
me!” the loudest, and thus seems to be doing the heaviest computational
lifting during that task.31

All this means that you and I (and even Graham) may well depend on
our cross-brain spikes to let one side of cortex know the result of
computations happening on the other side. Without them, things can get
a bit weird.

Quite how weird is brought home by the rare cases of split-brain
patients. These fascinating souls had such severe epilepsy that surgeons
resorted to cutting the bundle of fibers, the corpus callosum, connecting
both sides of the cortex in order to stem the tidal waves of spikes. It
worked. But it meant the two sides of the cortex could no longer talk
directly.

Working with these patients since the 1970s, Michael Gazzaniga, his
colleagues, and others have documented how cutting the communication
lines reveals separate functions of the left and right cortex.32 They do this
by simply showing things to the left and right cortex separately: show a
picture to the left cortex by putting it in the right visual field; show it to
the right cortex by putting it in the left visual field. And from the
differences in response between the left and right cortex, we can infer
what spikes traveling between them must be coordinating.

One striking difference is in problem solving. In one study, split-brain
patients were asked to predict which of two light bulbs would flash on
next by pressing a button corresponding to that bulb. One bulb flashed
80 percent of the time, the other 20 percent. People normally match these
probabilities, so after a long run of bulb flashes, they will tend to press
one button 80 percent of the time and the other 20 percent. Showing this
problem to the left cortex of split-brain patients elicited exactly this
matching. But showing it only to the right cortex produced maxing: the
patient consistently pressed the button corresponding to the most likely
bulb to flash (which, incidentally, is the better solution: always pressing
the most likely button gets you a guaranteed 80 percent correct;
matching probabilities will almost certainly do worse). The two halves of
cortex inferred different solutions to the same information. Which means
spikes between the left and right cortex are needed to inform each other
about their own solutions—and use one.
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As you might suspect from the extreme lateralization of language,
split-brain patients show us how cross-cortex spikes coordinate vision
and words. Shown a fork so that only the right side of the brain can see
it, split-brain patients cannot name it. Yet when the fork is passed to their
left hand, also controlled by the right brain, the patients can use it just
fine. Their right cortex knows what it is but can’t access the words,
because words are only accessible in the left cortex.

Perhaps the most vital job of the cross-cortex spikes is for the right
cortex to tell the left cortex what the hell just happened. Because of the
extreme lateralization of language on the left cortex, actions taken by the
right cortex in split-brain patients are not accessible to the left cortex
speech centers. But the left cortex interprets the action anyway—
wrongly. Like in Gazzaniga’s favorite story of the claw and the snow.

A patient was shown a chicken claw to the left cortex and a snow
scene to the right cortex, and each side could also see its own set of four
objects on the table. The patient was asked to point with each hand to the
most relevant object for the picture. The left hand pointed to a shovel,
fittingly for the right cortex’s view of the snow; the right hand pointed to
a chicken, a sensible match for the left cortex’s view of a chicken’s claw.
But, of course, only the left cortex has access to language. So when the
patient was asked why those two objects had been chosen, the patient
responded, “The chicken claw goes with the chicken …” (left cortex
language centers seemingly knowing about both the picture shown to its
visual parts and the object pointed to by its motor parts); the patient went
on “… and you need a shovel to clean out the chicken shed.” Left cortex
seemingly caught in the act of making stuff up, as it had no idea why
right cortex picked a shovel—the language centers in left cortex knowing
nothing of the snow scene.

So more than just matching words to objects, how we interpret the
world vitally depends on our cross-cortex spikes. For the right side of
your cortex would like to know what the left side is saying, both to itself
and to the right side of your body. And the left side of the cortex is
equally keen to hear back from the right side. It is those spikes flowing
across the corpus callosum that seem crucial to making two halves of
cortex into your one interpretable experience of your own body.

Time to move on. In much less than a second, indeed in just a few
hundred milliseconds, we’ve tracked a succession of cloned spikes
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across the visual regions of the cortex, across and between both sides of
the brain. We’ve spun through connections within layers to next door
neurons, up and down the layers within a region of cortex, plunging into
the white matter, only to be fired up again into a new region, a new local
circuit to traverse. Those few hundred milliseconds were enough to
transform spikes from the retina about elementary pixels into spikes
about fully fledged representations of a cookie, a box, a desk, the people
around you, and where they are. Time to decide what to do about that
cookie. And here we make our first bad decision.
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CHAPTER 5

Failure

WHAT IT MEANS TO FAIL

So many clones to choose from. Pick one. Flying out from the visual
regions into the central regions of the cortex, our journey comes to a
screeching, sudden halt. Our spike reached a synapse on the axon, and
nothing happened. No bags of chemicals were dumped out. Nothing
tickled the neuron on the other side. The spike’s message is lost forever
to the other neuron. It failed.

We stare at evolution in slight disbelief. It took an extraordinary effort
to make that spike, a legion of fellow spikes arriving together, at the right
place and time on the tree of one neuron, and a glut of energy to drive
the openings and closings that create the all-or-nothing pulse of
electricity. Yet for all that, it failed. Information has been irretrievably
lost.1 What kind of inept cowboy threw this bag of cells together and
called it a “brain”?

Spike failure is a bug, a flaw, a potentially inevitable consequence of
running up against the limits of making things work in biology. On such
a microscopic scale, where a neuron’s body is tenfold smaller than the
width of a human hair, noise comes from everywhere, from tiny changes
in temperature to tiny movements of the brain, all too small to be noticed
by something as big as a fly, or a mouse, or a human. So when the spike
arrived, the chain of events that leads to the dumping of the bags of
chemicals was disrupted by noise. And sometimes the bags of chemicals
have just run out, so when our spike arrived there was just nothing left to
give.

But rates of failure differ wildly between different parts of the brain,
and even between different types of neuron in the same part of the brain.2
The spikes from some neurons fail at an alarming rate: at excitatory
synapses in the hippocampus, about 70 percent of spikes never make
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anything happen; at the worst offenders, this figure is 95 percent.3
Ninety-five percent. Only 5 percent of all spikes arriving at those
synapses create a voltage blip in the neuron on the other side.

Yet other synapses in the brain have a failure rate of zero. Every spike
arriving creates a response on the other side.4 Even weirder, different
synapses between the same pair of neurons can have dramatically
different rates of failure.5 If failure was a bug, then it makes no sense that
it can differ so radically. Then perhaps failure is a feature, not a bug.

Indeed, this small but persistent annoyance is actually a powerful
computational tool.

WHY FAIL—TO COMMUNICATE BETTER

It may not surprise you to learn that theorists love spike failure too. It’s
another one of those weird paradoxes. The brain uses spikes to send
information between neurons, yet by having synaptic failure the brain
deliberately prevents itself from doing so. Why would the brain prevent
itself from sending information? Many ideas have sprung forth from the
minds of theorists as they rub their hands together with glee.

One simple idea is that spike failure is necessary to control how
strongly neurons connect to one another. You may recall that the legion
of inputs to a neuron have different strengths, some are weak and some
are strong. Having run into a failed synapse, we can now see that the
thing I called strength is made up of two parts. The first is the size of the
voltage blip; the second is the reliability of the synapse.6 An input at one
synapse may be able to make a large blip, but if it does so for only 10
percent of the arriving spikes, then that input weakly influences the
target neuron. Theorists have long pointed out that this gives two options
for changing the strength of a connection from one neuron to another: we
can either change the size of the response or change its reliability.7

Changing the size of the response is tough; it means increasing the
number of packets of molecules at the synapse, increasing the number of
receptors on the other side, or both. Changing the reliability offers a
different option; it would just require making the release side more or
less sensitive to each spike. Indeed, in experiments on connections
between neurons of the hippocampus, Charles Stevens and Yanyan Wang
showed that repeatedly stimulating a pair of connected neurons can turn
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their unreliable connection into a reliable one.8 And as you can’t make a
reliable synapse any more reliable, most synapses have to start off
unreliable to allow headroom for change. Which all means something
remarkable for learning. As many forms of learning are thought to
depend on changes to the strengths of connections between neurons, this
theory implies the brain is deliberately noisy in order to allow learning.
Learning becomes the routing of reliable spikes, the transmission of
reliable information between neurons.

William Levy and Robert Baxter took on the idea that unreliable
synapses literally lose information, to ask: what if this loss is deliberate?9

They propose that unreliable synapses are actually a very clever solution
to the fundamental problem of how to transmit as much information as
possible while keeping energy costs as low as possible. Sending each
input into a neuron takes energy. Lots of energy. Sucking back up the
released molecules for reuse, packaging them back into bags, and of
course making the voltage blip itself, with the opening and closing of
holes in the neuron’s skin. In fact, synapses and their machinery take up
about 56 percent of all the energy used by neurons in the brain.10 And as
the brain uses 20 percent of all your energy, so reducing those expensive
synapses will give you more energy for the essentials of life.

Levy and Baxter pointed out that the axon of a pyramidal neuron has
a limited capacity to transmit information, which is set by how many
spikes it sends on average per second. For a neuron to be energy efficient
it needs at least this much information in its input, so that the output is
not wasting energy sending nothing. But we already know that a
pyramidal neuron gets about 7,500 inputs. If even just 10 percent of
these inputs were transmitting every spike across their synapse, the total
information input to a pyramidal neuron would vastly exceed the
capacity of its axon to output information. The neuron would be
overwhelmed with more information than it could use, so most of those
spikes coming across synapses would be unused information, wasting
energy.

In Levy and Baxter’s “matching” theory, synaptic failure comes to the
rescue. By preventing spikes from sending information to the target
neuron, failure brings down the information rate of the neuron’s input.
With a high enough failure rate, it can bring down the input’s
information rate to match the capacity of the neuron’s output axon. And
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in doing so, it would perfectly balance the amount of energy used, to use
all of the axon’s capacity to send information, but no more. Beautifully,
it turns out that the failure rate in this theory should be around 75
percent: exactly what we see in the cortex.

Harris, Jolivet, and Attwell pointed out that the same basic idea—
conserve energy—gives us another reason for synaptic failure.11 When
one neuron connects to another it often makes multiple contacts—
multiple synapses clustered together on a bit of dendrite. If all those
contacts relayed every spike faithfully, then the target neuron would be
seeing the same spike multiple times. The information coming from the
sending neuron would be duplicated, making some of those spikes
redundant. And redundancy wastes energy: sending the same spike four
times to the same neuron costs four times the energy for no gain in
information.12

Synaptic failure comes to the rescue here too. If those multiple
contacts were each unreliable, then the brain could ensure that most of
those contacts failed to transmit the same spike. Indeed, the failure rate
could be set so that at most one of those contacts transmitted the spike
(on average), eliminating the redundant information. In which case, the
brain would again be maximizing the amount of information transmitted
for the least energy.

This “redundancy” theory makes a strange prediction: the more
contacts a neuron makes on a target neuron, the more unreliable those
synapses should be. That prediction is true. Studying pairs of neurons
from the hippocampus, Tiago Branco and colleagues at University
College London showed precisely that the more synapses one neuron
makes on another, the higher the failure rate of those synapses.13

Both the “matching” and “redundancy” theories also predict that
synaptic failure must be under the control of the target neuron. Both
theories propose that synaptic failure exists to throttle information
coming in to a neuron in order to increase the energy efficiency of
synapses. But only the target neuron knows which direction to change
the synaptic failure: it knows the capacity of its axon, and it knows how
much redundancy exists on its own tree. Branco and colleagues showed
the failure rate was indeed under the control of the target neuron. When
they stimulated a local bit of the dendritic tree, as though that tree was
getting more inputs, the failure rate of the synapses on that bit increased.
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Synaptic failure could thus be a neuron’s greatest life hack, an all-
purpose tool for optimizing the efficiency of energy and communication.

WHY FAIL—TO COMPUTE MORE

Synaptic failure could do more than control how well neurons
communicate. It could also create new ways for them to compute. For
failure allows neurons to do cool things with spikes arriving close
together in time at the same synapse. And that’s because failure can
change the apparent strength of synapses within a few milliseconds
without altering anything about the synapse at all (figure 5.1).14

Imagine two spikes arriving in short order at a synapse. If that
synapse has a low failure rate for the first spike, it is less likely to
transmit the second. Why? Because the first spike used up lots of the
bags of molecules that are ready to be dumped on other side; so with a
reliable first spike, a second spike in rapid succession may deplete the
bags too much. The synapses need time to recover. Indeed, enough
spikes in a row can completely empty the bags, needing a long time—
about 10 seconds—to recharge.15 So the brain uses failure to throttle the
rate of release to sequential spikes.16 Which means the strength of the
synapse gets progressively weaker to later spikes in a sequence. The
synapse has what we call short-term depression.

FIGURE 5.1. Short-term depression and short-term facilitation. We imagine two spikes
arriving at a single gap in quick succession; we plot the probability of each spike

causing a release of molecules across the gap. The probability decreases if the synapse
is depressing (left) and increases if the synapse is facilitating (right).

Conversely, when a synapse has a high failure rate for the first spike,
it is more likely to transmit the second. Why? Because the first spike
primed the synapse to release the bags of molecules if another spike
arrives quickly thereafter (where quickly is a hundred milliseconds or
less). Which means the strength of the synapse gets progressively
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stronger to later spikes in a sequence. The synapse has short-term
facilitation.

To us, this is great news. Our spike failed, but if we linger here a few
moments more, another spike clone will arrive and immediately trigger
the dumping and diffusion of molecules, and the evocation of the voltage
blip, for us to follow. As we wait to continue our journey, I’ll reel off our
theories for how these short-term changes in strength create new forms
of computation.

For one, equipping a synapse with short-term changes means the
receiving neuron can compute things based on sequences of spikes.
Here’s an example from Wolfgang Maass and Tony Zador.17 Consider a
neuron with the following problem: if two spikes arrive at one of its
synapses within a few milliseconds of each other, then that neuron needs
to know; anything farther apart it can ignore. For example, a neuron in a
small, furry, scared rodent, in whose world two rapid hoots in succession
indicate an imminent owl. Two rapid hoots creates two rapid spikes, and
the alarm needs sounding. Something hoot-like but farther apart also
creates two spikes, but is not an owl; it’s a false alarm, so needs ignoring.

Now have those two spikes arrive at a synapse with short-term
facilitation. If two spikes arrive farther apart than X milliseconds, then
both the first and second spikes fail, and the neuron knows nothing about
them. False alarm, no reaction. But if the two spikes arrive within X
milliseconds, then the first fails but the second is transmitted. Equipped
with short-term facilitation, the receiving neuron knows that two spikes
occurred within X milliseconds, even though the first spike never arrived.
Awogah awogah, hurry scurry our furry friend. In effect, synaptic failure
allows the brain to compute with ghosts, spikes that were never there.

Better still, short-term depression is a filter. A filter that allows
neurons to ignore oscillations in their inputs. There are many states of
the brain in which some neurons oscillate their outputs—their rate of
spikes goes up and down regularly over time. Deep sleep, for example,
has many neurons in the cortex jump together between a burst of silence
and a burst of spikes every few seconds. Any such rhythm means there
are periods when spikes occur close together. But if those spikes arrive at
a synapse equipped with short-term depression, then the rhythm will be
broken. For the synapse will likely transmit the first spike, but less likely
to respond to a second, and even less to a third, and so on. Even better,
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just having a high rate of synaptic failure will act as a filter, for it will
randomly lose spikes all through their ebb and flow of the incoming
oscillation. To the receiving neuron, the rhythm is lost, filtered out.18

Our most effective treatment for Parkinson’s disease might depend on
just this filtering effect of synaptic failure. Deep in a brain with
Parkinson’s disease lie groups of neurons that persistently oscillate when
they should not. These neurons in turn entrain their target neurons to the
same rhythm. And this entraining seems to disrupt movement signals in
both the cortex and brain stem, thus creating the characteristic
difficulties with moving seen in Parkinson’s.

Remember deep brain stimulation? This delivers a constant,
clockwork stream of electrical pulses directly into the subthalamic
nucleus, a core group of those persistently oscillating neurons. This
clocklike rhythm gives back to Parkinson’s patients control of their own
movements. But how is a mystery.19 On the face of it, deep brain
stimulation would seem to overwrite one form of unnatural neural
activity, the persistent oscillations, with another, the clockwork tick of its
electrical pulses.

A compelling theory is that deep brain stimulation’s therapeutic
success can be explained by synaptic failure. This constant stream of
pulses indeed dramatically increases the number of spikes being sent
down the axons of those core neurons targeted by the stimulation. But
this dramatic increase in spikes along the axon in turn increases the rate
of synaptic failure when those spikes arrive. And what does lots of
synaptic failure do? Filters out oscillations! Thus, the theory goes, the
receiving neurons do not see the persistent oscillations anymore and can
respond freely, normally, restoring the control of movement.20

This is one of those fantastic coming-togethers of science, a case
study in why it takes all kinds of knowledge and all types of research to
make progress. The experimental facts that synaptic failure exists and
how it works were established in slices of rat brain, for the pursuit of
pure science, to simply understand better how the brain works. Theorists
fascinated by this weirdness wanted to understand why synaptic failure
exists and how the brain can still work in the face of failure, and they
came up with the above theories for how synaptic failure creates new
ways of communicating and computing with spikes—including filters.
Yet other experimentalists established that a core group of neurons have
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persistent oscillations during Parkinson’s disease; yet others, what effect
deep brain stimulation has on its target neurons. Finally, a group of
theorists and experimentalists take all those pieces and complete the
puzzle, to show that all this work, these decades of basic and clinical
science combined, fit together into a deep explanation for how deep
brain stimulation works. In science, the answer is never where you’re
looking for it.

WHY FAIL—TO DECIDE
WHEN TO BE AFRAID

More than just theories, we’ve even caught the new computations
enabled by synaptic failure in action. Startling work from Tiago Branco’s
lab at University College London has shown us that evolution has co-
opted failure to define the threshold for being afraid enough to flee.21

How do we know when to flee? Remember last Thursday. Your report
was late. Through the crowd of bodies milling about the office you
glimpsed the boss’s glass door opening, then a flash of puce that could be
the boss’s Thursday tie, a snatch of voices saying the boss’s name, a
definite glimpse of absurdly expensive Italian leather striding toward
your desk. Time to go, exit stage left. Each new thing you notice added
more evidence of an imminent threat. And when enough evidence was
gathered, when the cumulative creeping sensation got too much, your
brain decided the threat was real—and escape was the best course of
action.

Somewhere in your brain adds up evidence of a threat, and
somewhere then sets a threshold for when enough evidence means
“Flee!” To find out where, we can’t sit people in a room and menace
them with disgruntled bosses, lions, or clowns. And even if we were
allowed to, we can’t stick electrodes inside their brains to record their
neurons while being clown-menaced. So Branco and team turned to that
workhorse of neuroscience, the mouse.

Place a mouse in a box, with a handy little dark shelter at one end to
feel safe in. Let it roam free, exploring, scouting its new home. Now
make a shadow fall over it, a shadow that rapidly grows in size. A
rapidly growing shadow that looks uncannily like a diving bird. Result:
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mouse charges back to the shelter and cowers deep in the darkness, little
heart thudding.

The clever bit is that the darkness of the shadow is the evidence of an
imminent threat: the darker the shadow, the greater the perceived threat.
If the shadow is very dark, the mouse runs as soon as it starts to get
bigger. If the shadow is very light, it can take four or five repeats of the
swooping shadow for the mouse to finally decide to run for shelter.22

With this swooping shadow controlling both evidence and escape, we
can then look in the brain and ask: what adds up the evidence of a
swooping shadow, and what drives “leg it” when that evidence hits a
threshold? Branco and team already had clues about where to start; for
we already know that it should somehow involve the superior colliculus.

The superior colliculus sits atop the brain stem and is the privileged
recipient of information directly from the retina—it gets to know what’s
going on in the world long before you do. (Before you ask: yes, there is
also an “inferior” colliculus. And as the superior colliculus does seeing,
and the inferior does hearing, that gives you some idea of the pecking
order in neuroscience.) And the output of the superior colliculus
definitely controls movement. So if we’re looking for a bit of brain that
can quickly add up information from the eyes and then make you move,
the superior colliculus is the superior candidate.

So Branco and team used the armory of modern neuroscience to find
out if this was more than mere guesswork.

They recorded the activity of the output neurons of the superior
colliculus. The neurons dramatically increased their activity right from
the start of the swooping shadow. The activity increased far more when
escape happened than when it didn’t. And the stronger the activity, the
faster the mouse started to escape. As though the activity in superior
colliculus was adding up evidence of a threat.

They switched off those output neurons. Now the mouse did not react
to the swooping shadow, just carried on exploring. As though someone
had completely removed its threat detector.

They turned on these output neurons of the superior colliculus when
there was no swooping shadow. This was the crucial test, to see if the
brain could be fooled into thinking there was an imminent threat. And it
could: turning on these neurons made the mouse run for shelter. Even
better, the more the neurons were activated, the more likely the mouse
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ran to the shelter, exactly as though the neurons were signaling the
imminence of danger.

All in all, pretty damn convincing that the superior colliculus is the
threat detector. The obvious next question was: what is the superior
colliculus talking to, saying “it’s time to run”?

Enter the periaqueductal gray. Good grief, neuroscientists are so bad
at names: it’s a bit of gray stuff around (“peri”) an aqueduct in the brain.
Let’s call it PeGy, shall we? PeGy does a lot of things. One bit of it
controls urination, for example. But it gets a massive input from the
superior colliculus, and it controls a lot of rapid reactions.

So Branco and team dusted off their neuroscience magic tricks again,
popped some new mice in the swooping-shadow box, and set to work.

They turned off PeGy’s neurons. Now the mice did see the swooping
shadow, did react to the threat, but they didn’t run away. At all. They just
froze in place (the other option: stop moving, as predator brains track
movement). PeGy, it seems, controls running away.

They recorded PeGy’s neurons. Their activity increased right as the
escape started, and not a moment before. So PeGy’s neurons don’t add
up evidence, but sure seem to mean “run.”

And the clincher: they turned on PeGy’s neurons when no shadow
was swooping, again pretending there was a threat. Beautifully, as they
activated more and more neurons, they found an all-or-nothing response.
If too few neurons were activated, the mouse never ran for shelter. But if
just enough neurons were activated, the mouse always ran for shelter.
Nothing in between—no ifs, buts, or maybes. When PeGy says go, you
go.

That all-or-nothing response raises the crucial question: what sets that
threshold between escaping or not? It’s definitely something between the
colliculus and PeGy, for when Branco and team turned off just that
connection it turned off escaping completely. It seems the superior
colliculus activity goes straight into PeGy’s neurons to turn evidence of a
threat into running away. So why doesn’t every increase in superior
colliculus activity trigger PeGy’s command to run away?

Because it turns out the connections from the superior colliculus to
PeGy are weak, and rubbish. For just like in the cortex, each spike
barreling down from one colliculus neuron into PeGy creates just a tiny
blip of voltage in the PeGy neuron. And so it would need tens or
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hundreds of these blips to make a PeGy neuron send just one spike. Each
connection is weak. And each connection fails. On average, 20 percent
of all spikes from the colliculus do nothing at all in PeGy.

A weak, rubbish connection means that the colliculus needs to send a
lot of spikes, all at the same time, to get a response out of PeGy. The
weak, rubbishness is the threshold. Those light swooping shadows, each
eliciting just a bit of activity from the colliculus, did not create enough
activity to overcome the weak rubbishness of the connection to PeGy.
But the dark, intense shadows drove a wave of intense activity out of
colliculus into PeGy, overwhelmed the weak rubbishness, and escape
was the only option.

This work has two particularly beautiful lessons for those who study
the brain. The first is that we have a complex behavior in a mammal—
escaping by running to a shelter—now drilled down to a single
connection in the brain, and the properties of that specific connection.
For that connection is the threshold; its weakness and unreliability set the
threshold—they are the limits to overcome.

The second is that evolution has co-opted the failure of spikes to
create a threshold between escaping and not escaping. Has used the
failure of spikes as a way to filter out things that are not threatening, to
make sure you don’t run away at every sudden noise, or from every
looming shadow. And you know what? If you do run away at every
sudden noise, or from every looming shadow, this might just mean your
connections between the colliculus and PeGy don’t fail enough—your
brain is just too perfect.

WHY FAIL—TO SOLVE PROBLEMS

I think evolution has co-opted spike failure for far more than just setting
a threshold between staying and fleeing. I think synaptic failure is
deliberate noise in the brain. Noise on purpose. Evolved noise. And I’m
going to propose to you that this noise is crucial to the brain’s algorithms
for learning and searching.

We know at least two good reasons why noise is good for the artifice
brains of artificial intelligence. The first reason is to generalize what
you’ve learned. The second is to search for the best solution to a
problem.
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Your brain is adept at taking what it’s learned and creating general
principles. Like your concepts of cars, buses, and gorillas. Having seen
some examples of gorillas, your brain can now recognize a gorilla from
all sorts of angles you’ve never seen a gorilla from before, and would
never want to if at all possible. Adeptness at generalizing can save you
from an ignominious end as a gorilla’s cushion.

Artificial neural networks are not adept at generalizing. An AI
researcher may train one of their neural networks on tens of thousands of
images so that it learns to classify them: “cars,” “gorillas,” “ice cream
vans on fire (irony).” But deep neural networks have many layers of
thousands of simple neuron-like units. So they have millions, tens of
millions, of connections between those units, and the strength of every
connection can be adjusted. Having far more connections to adjust than
images to learn means artificial networks are prone to horrible
overfitting;23 they learn the fine detail of each image, become fine-tuned
to the nuances. Which means they have not learned the common
principles of cars or gorillas or flaming ice cream vans. They can
struggle to generalize. Test the trained network on new images of already
learned categories—a gorilla, but from the top; an ice cream van gently
smoldering—and it fails to put them in the correct categories. Even
changing a few pixels of an already learned image can make the network
fail.

A widely used solution is DropConnect.24 Which does exactly what it
says on the box: for every new image presented during training, a bunch
of the connections in the network are dropped at random. And only the
retained connections are updated by the success or failure in categorizing
that image. Repeated for each image, this essentially means that every
image is presented to a unique version of the network, stopping the
whole network being fine-tuned to the details of each image. And when
this network is then tested on unseen images, it does a better job of
categorizing them correctly. Dropping connections at random adds noise
to the network, noise that lets the network generalize.

Your brain faces the same challenges—worse even. Your cortex has
billions of connections it could adjust every time you learn something.
So how does it not overfit? I suggest synaptic failure. Synaptic failure is
exactly the same mechanism as DropConnect: it drops connections
between neurons, at random, and temporarily. It adds deliberate noise to
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the brain exactly where you’d want it to prevent your brain from
overfitting. To let it generalize.

The second good reason to add deliberate noise to your brain is to
help it search better. Many challenges in machine learning are about
finding the optimal solution to a problem given some constraints. Like
finding the fastest route between two locations—where fastest often does
not mean shortest, and the solutions are constrained by speed limits,
traffic, your mode of transport, time of day, likelihood of rampaging
sheep escaping a field, and innumerable other factors.

A machine solving these problems will explore the space of possible
solutions. It will propose a solution, evaluate how good it is, and work
out how to adjust that solution to find a better one.25 Told you want to go
from London to Paris, it will propose one possible route, work out how
long it will take, then look at how it can be adjusted—taking a left turn
here to get on to a longer road, but one that has a higher speed limit. And
repeat this propose-and-adjust cycle until its proposed solution cannot be
bettered.

The fundamental challenge for searching is that such problems will
have many solutions that are adequate, passable, OK, but which are all
surrounded by worse solutions, so that any small adjustments from the
adequate solution gets worse results. These are little traps in the space of
possible solutions. They make these solutions look like they cannot be
bettered—but they can, and there may be vastly better solutions out
there, somewhere.

The many ways of escaping these traps boil down to the same thing:
add noise. Deliberately making big, random adjustments to a solution
lets the machine jump out of traps, to find a better solution, to carry on
looking for the best solution. Instead of fiddling with the choice of back
roads in Kent and finding no better solution for driving from London to
Paris, a big injection of noise could jump the machine’s search into the
motorway straight from London to the UK’s south coast ferry port. (In an
ideal world, an even bigger injection of noise would jump the machine’s
solution to “take the direct London-to-Paris train, you idiot.”) Finding
solutions by searching needs noise. Even better, it needs noise that can
be tuned—made large for big jumps and small to hone in on solutions.

To me, this suggests the tantalizing idea that synaptic failure is at the
heart of the brain’s search algorithm.26 Brains need to seek solutions to



83

many constrained problems. Like routes to sources of food that are the
best combination of quick, easy, and safe. Just like machines, brains need
to traverse the space of possible solutions to find the best (well, more
accurately, the least worst). And if this book has made any impression on
your brain at all, you know that traversing is done by the sending of
spikes between neurons. So to jump out of the traps of adequate
solutions the brain needs to add noise to the sending of spikes. Synaptic
failure is precisely this noise: random, always there, and tunable—it can
be made small or large.

The fact that learning and searching are vastly improved by noise
gives us reasons why the brain should be deliberately imperfect, should
be full of noise. And, to me, synaptic failure is precisely the form of
noise you would want.

Another spike has arrived at the synapse where we’ve been stranded,
a mere few tens of milliseconds after our initial failure. With the synapse
primed by that first spike, this second effortlessly triggers the molecular
release. We float happily to the other side and follow the voltage blip
down the tree. We’ve arrived at the first neuron in the prefrontal cortex,
the great swath of neurons covering the front half of your brain. Dark
here, isn’t it?
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CHAPTER 6

The Dark Neuron Problem

THE CLASSIC VIEW

Every time we’ve exited the white matter, the view has been awe-
inspiring. Like gazing at the night sky, all around us a panorama of
scintillating neurons, points of light sparking with spikes. But just like
the night sky, there is more darkness than light. Those bright points in
the firmament of cortex are but pinpricks on a massive, engulfing
darkness. A darkness of neurons that are not firing.

Wherever we follow our spike, there is darkness. Now closing in on
the final regions of the cortex that deal with vision, where color is
merged with shape (“a light brown, chocolate chip cookie!”), where
curves are formed into faces (“Angela and Ishmael are at the office door,
not looking this way”), our spike has zipped past billions of neurons in
your cortex. The overwhelming majority of them have not fired a spike
in the second we have traversed your brain so far. The overwhelming
majority do not send anything. Even neuroscientists can find this hard to
grasp, and little wonder, as our data have shown the opposite.

Neuroimaging—functional MRI—shows us Technicolor images of
the cortex, its regions lit up in a swirling riot of poorly chosen colors that
make the Pantone people cry into their tasteful coffee mugs. The swirling
colors seem to show us that the cortex is a swarm of activity. That when
we see a face the visual areas of our cortex bloom with barrages of
neural firing, from V1, V4, and down to the face areas of the temporal
lobe. That when we hear a swell of strings, the auditory areas of our
cortex bloom with barrages of spikes.

Classic studies of single neurons seem to show us that each and every
neuron has a role. That each responds to something—a line, a corner, a
movement, a color. For when experimenters lower the thin sliver of an
electrode into the cortex, they can readily record the spikes as they are
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dispatched from a neuron’s body. And can relate those spikes to
something happening in the world. Many have related those spikes to
features of the visual world, like the neurons we have already met, the
simple and complex, the edges and lines and angles, the contrasts,
shapes, objects, faces. Others we could have met had we taken a
different starting point: neurons in auditory cortex that respond to sounds
of a particular frequency; neurons in somatosensory cortex that respond
to touch on a finger, a toe, an arm.

We’ve decades of work, tens of thousands of studies, showing us that,
when we lower an electrode into a bit of cortex there they are: a swath of
neurons responding to the things they like. So surely all neurons send
spikes.

Some simple arithmetic will show why this makes no sense. Back
when we were basking in the simple cell in V1, if we’d hung out a little
longer, we would have seen it fires perhaps 5 spikes every second. And
we know it needs about 100 spikes arriving at its excitatory synapses to
make one new spike. So 5 spikes in a second means it needs a total of at
least 500 excitatory spikes arriving in that second. But we also know that
a V1 neuron has about 7,500 excitatory inputs. If each of those inputs
was sending at 5 spikes per second, there would be 50,000 input spikes
in total every single second. That’s too many by a factor of 100.1 The
simple cell in V1 should be sending 500 spikes every second.

But it isn’t, and neither are its inputs. And they can’t—sending 500
spikes every second is a neuron screaming at the top of its lungs. It’s
about the theoretical maximum rate a cortical neuron can produce spikes,
if forced to do so by an experimenter. Not least because after each spike
there is a few milliseconds in which a neuron can’t make a new spike at
all. No, even the most active neuron in the cortex can only sustain a
continuous output of about 30 spikes per second. A paradox: the neurons
in cortex are sending spikes at least an order of magnitude lower than
they should be if all their inputs were similarly active.

The only way out of this paradox seems to be that most inputs to a
neuron in the cortex are not sending spikes. Which implies that most
neurons in the cortex are not sending spikes. Is this true?

HOW TO FIND A DARK NEURON
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Up until the 1990s, neuroscientists could only record individual neurons
in an animal blindly. They inserted their tiny, sharp electrode into some
bit of cortex, and only knew they had found a neuron by the blip it made
on their oscilloscope, or the noise it made on the speakers in their lab:
tick tick tick tick.… Which meant they could only find active neurons,
because their only way of finding neurons was by their activity.

This created a fearful bias in our understanding of spikes and which
neurons sent them. If every neuron you record sends spikes, then as you
are sampling at random, blindly, this implies every neuron is sending
spikes. But if your only way of finding neurons is by finding spikes, then
by definition you could not find neurons that did not send spikes. Indeed
they would be dark matter: contributing mass to the brain, but invisible
to all your instruments of measurement.

But then neuron imaging came along. We point a digital video camera
at a bit of brain, and in that bit of brain each neuron contains a chemical
we’ve injected that lights up when the neuron is active. Most often, that
fluorescent chemical is responding to the amount of calcium in the
neuron’s body, lighting up to an influx of calcium with every spike.2 By
filming the bit of brain in sharp focus, we can see all the neurons with
our eyes, see their outlines. And we can see which ones light up. It turns
out for decades we’ve only been recording the tip of the iceberg. Most
neurons we can see in these videos are not active.

Our first clue to the scale of silence came from imaging the cortex of
anesthetized rats. Under many anesthetics the cortex operates just like it
does in deep sleep, jumping between active and quiet periods about once
a second. Imaging the first auditory and somatosensory (touch) bits of
cortex, Jason Kerr and colleagues reported that the “active” periods
actually contained only detectable spikes from just 10 percent of all
neurons.3 Ninety percent were silent in each second-or-longer “active”
period, and almost all totally silent in the “quiet period.” And this scale
of silence wasn’t because of the anesthesia. It is found in the cortex of
behaving animals too.

Christopher Harvey and colleagues in David Tank’s lab at Princeton
imaged a section of parietal cortex, which lies at the end of Highway Do,
in mice running inside a T-shaped maze.4 (A T-shaped maze in virtual
reality: the mouse ran on a ball, while the virtual world moved around
it.) They reported that just 47 percent of neurons were “active” while the
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mice ran the maze. Even that low number required stretching the
definition of active to its breaking point: a neuron was deemed “active”
if it had more than two spike-like events in a whole minute, vastly
longer, ten times longer, than it took the mouse to run the length of the
maze.

And just in case you’re thinking that putting mice in a virtual world
may muck up their neural activity, rest assured. Researchers in Karel
Svoboda’s lab have made an industry of imaging neurons in mice doing
stuff in the real world. In a study led by Simon Peron, they imaged the
specialized bit of the cortex that gets input from a whisker, while that
whisker was being used to find a pole (and which the mouse wanted to
find, as it was thirsty and the location of the pole told it which spout
would have water in it).5 Even in this special bit of whisker cortex that
only cares about that one specific whisker, they found only 67 percent of
neurons were active. And again this stretched the definition of “active”
to its breaking point, needing one spike event every 100 seconds, ten
times longer than the entire sequence of the task. Everywhere we’ve
imaged, most neurons send no spikes in over a whole minute.

Such imaging studies have repeatedly shown silent neurons in the
cortex, but left open many problems: is there some technical problem
with the fluorescent chemicals we used? Perhaps they did not respond to
isolated spikes and so made neurons look more silent then they were. Or
did the chemicals not get taken up by all neurons? In which case the
“silent” neurons could just be those that had no chemical inside them. Or
did they get damaged by the chemicals? In which case, the mere
presence of the chemical alone caused neurons to stop spiking. And most
imaging studies, including all the above, look at neurons in layers two
and three, just at the top of cortex, because it’s harder for light to
penetrate deeper and thus for us to video deeper. Which leaves open the
possibility that there’s something special about these layers of cortex,
and deeper neurons are all merrily spiking away. As in any area of
science, each technology brings great insights but just as many new
potential drawbacks. But other teams then proved silent neurons existed
using the phenomenally fiddly technique of patch clamping.

Traditionally, neuroscientists just lower a sliver of metal or glass into
the brain and pick up spikes when that sliver happens to be near a
neuron’s body. By contrast, patch clamping finds a neuron within an
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animal’s brain by attempting to physically attach to it—“patching” to it.
Because they are finding neurons by physical contact alone, the
experimenters are not relying on activity. Patch clamping has its own
biases—it is easier to patch a bigger neuron than a small one, and in a
live animal you still cannot see what you’re doing—but, crucially for us,
activity is not one of them. Once attached, they can play the animal some
sounds, or get it to touch something, and see if their attached neuron
becomes active.

Largely, it does not. Tomáš Hromádka in Tony Zador’s lab at Cold
Spring Harbor patched a collection of neurons in the first bit of auditory
cortex (A1) in awake rats and found most of them were silent most of the
time.6 And silent regardless of whether the animal was sitting quietly or
listening to an extremely dull collection of pure tones. Playing sounds to
the bit of the cortex that cares most about sounds evoked very little
response. Dan O’Connor, then in Karel Svoboda’s lab at Janelia Farm,
patched a collection of neurons in that specialized whisker bit of cortex
in mice, mice that were again using a whisker to find a vertical pole.7
Guess what? Most of those neurons were silent most of the time. Even
when the whisker was waving back and forth, hitting the pole. And both
these and other studies have consistently found silent neurons in all
layers of the cortex.8

Looking back, this epidemic of silence was there in plain sight.
Theorists long ago worked out how many neurons should be within
recording range of an electrode lowered into the cortex of a rodent.
Simple physics says that the farther the distance between the electrode
and a neuron, the weaker the spike signal will be. The strength of the
signal should drop roughly exponentially—rapidly at first, then slowly—
with increasing distance. And there will be some distance beyond which
the signal will be too weak to detect with your equipment, because it will
be indistinguishable from noise. So theorists imagined sticking an
electrode into a collection of neurons packed as tightly as they are in
cortex, worked out at what distance the spikes cannot be detected, and
counted how many neurons sit within that distance. The answer was: at
least one hundred.9

But when neuroscientists lower a single electrode into position, they
see at most a handful of spikes from different neurons (we can work out
they are from different neurons if the spikes are consistently different
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heights). They see nothing like one hundred neurons. Not even close. So
all along that meant: most neurons are silent.10

The irony is that dark neurons are essential to being able to record
neurons in the cortex at all. If many of those one hundred neurons were
spiking, then tens of thousands of experiments would have failed. For the
electrode would simply be awash with spikes, a ceaselessly fluctuating
voltage, from which individual spikes from individual neurons would be
lost. Without being able to distinguish neurons, we could not measure
them, test them, work out what they like and do not like. No Nobel Prize
for Hubel and Wiesel for their discovery of simple and complex cells in
V1. No tuning cells in auditory cortex, no place cells in the
hippocampus. Perversely, it turns out we have dark neurons to thank for
our ability to make sense of the cortex.

THE LONG TAIL

When I say silent, what exactly do I mean? We’ve been in your brain less
than a second. When we make it to a full second, less than 10 percent of
your cortical neurons will have fired a spike. In one second, there is 90
percent silence.11 If we were to hang out here for a whole minute, still
the majority of cortical neurons would send no spikes. Yet by tagging
along with the spikes from that minority of active neurons, we have
reached the farthest ends of the pathways through your visual regions of
cortex in a few hundred milliseconds.

Right at the top of this book, I told you there is an average of one
spike per second for every neuron in the cortex. But if 90 percent of
neurons are silent in one second, how can that be? If so many neurons
are silent in a second, then to get an average of one spike per neuron, that
must mean some neurons are sending loads of spikes per second. And
they are.

About 10 percent of cortical neurons produce half of all spikes. I’ll
repeat that, because it took me a while to wrap my head around it when I
first came across this fact: half of all the spikes in your cortex are sent by
just 10 percent of the neurons. In Hromádka’s collection of neurons from
the first auditory bit of cortex (A1), 16 percent of the neurons
contributed half of all recorded spikes. In O’Connor’s collection of
neurons from the specialized whisker bit of sensory cortex (S1), exactly
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10 percent of the neurons contributed half of all recorded spikes. These
few are sending the majority of messages, dominating conversation like
a myna bird in a monastery. Which means there is a continuum, with
truly dark neurons at one extreme, and these myna birds at the other.

To find out exactly what this continuum looked like, in 2012 I
surveyed data on the activity of groups of neurons across the cortex, part
of my contribution to a mammoth review of neural activity in the cortex
written with Adrien Wohrer and Christian Machens.12 And everywhere I
found the same thing. When we choose a chunk of time to watch
neurons, the number of spikes per neuron will be unevenly distributed. In
that chunk of time some neurons will be silent, most will send just a few
spikes, and a handful of neurons will send many spikes. The distribution
of activity across a group of cortical neurons is “long-tailed” (figure 6.1).

I found this same long-tailed distribution everywhere. In the first
regions of visual and auditory cortex, in motor regions, and in prefrontal
cortex; in data using different methods of recording spikes; and
regardless of what the animal was doing at the time—quietly sitting,
seeing, moving, or deciding. Always: some silent, most quiet, a few
yelling.

FIGURE 6.1. What I mean by a “long-tailed” distribution of activity. We imagine
recording from a large group of neurons and observing how many spikes each neuron
sends per second. We then work out what fraction of the neurons send, say, 1 spike per

second; or 2 spikes per second; or 0.1 spikes per second (i.e., a spike every 10
seconds). When we then plot those fractions, as here, we always see the same thing: a

peak below 1 spike per second, and a long tail way out to the right with a small fraction
of neurons sending 10 spikes or more per second.

My survey of silence has deep implications. For one thing, “average”
activity is useless as a way of understanding what a region of the cortex
is doing. That handful of loud neurons skews our averages upward, a
long way upward, suggesting to us that most neurons are sending spikes,
when they are not. For another, it showed that dark neurons, neurons
sending far less than one spike per second, are everywhere. Most clearly,
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it showed that during the brief few seconds of an animal’s sitting, seeing,
moving, or thinking, those dark neurons are not communicating
anything, to anyone. What then are these dark neurons for?

WHAT DARK NEURONS ARE FOR

Dark neurons are a real pain. Our theories for how bits of the brain work
are based on the patterns of spikes in them. But the dominance of dark
neurons means that our theories of the brain are only about a mere
handful of actual neurons.

Remember the simple cells and complex cells in V1? When we were
there, I rehearsed for you the theories of how the tuning of simple cells
can be explained by combining spikes from their inputs from the retina,
and in turn how the tuning of complex cells can be explained by
combining the spikes coming from simple cells. Dark neurons make
clear these theories are for but a handful of neurons in V1, those cells
that reliably respond when shown pictures, and not for the masses that do
not respond. Dark neurons mean that the emergence of brain-like tuning
to the visual world in AI networks is not perhaps as insightful as it
appears, as this brain-like tuning is a comparison to a relative handful of
neurons. And these issues are not restricted to V1. They play out in all
areas of cortex, everywhere we have theories of single neurons, across
the two visual Highways, across the other senses, across the rest of the
cortex.

These dark neurons must do something. Neurons are expensive to
build, expensive to maintain, and expensive to use.13 Your brain uses
about 20 percent of all your energy budget, every day. Just keeping your
brain cells alive and in good condition uses about 25 percent of the
brain’s energy budget—that’s 5 percent of your total budget, every day.
We’ve already seen that synapses are expensive: about half the moment-
to-moment energy used by neurons is in their inputs; the other half is in
their spikes.14 Dark neurons burn energy to stay alive and burn more
energy on their inputs yet produce little to no output to show for it.
Perhaps one explanation for them is to flip this argument, to think about
the energy they aren’t using. After all, one way to conserve some of the
brain’s energy budget is to not send spikes, for without them you halve
the energy cost of using a neuron.
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But if you didn’t need the dark neurons, evolution wouldn’t have
brought them into existence. And development wouldn’t have spent all
that energy growing them, dividing them, and extending their axons to
the right places. Your body has much better things to spend its energy
budget on than dead weight in your head. It would be absurd to fill our
visual cortices with neurons that do not see anything. Absurd to grow our
massive prefrontal cortex, and then fill it with neurons that sat in
darkness. So what are they for? Here are three ideas.

The simplest idea is that in the lab we’re not asking the brain to do
anything interesting. After all, in the lab we can only probe a tiny
fraction of the real-world input these neurons receive. So maybe our
experiments are just not rich enough, and we need recordings of neurons
in animals behaving naturally over very long times—days, weeks,
months—to find out what they are for. Then, if we sample enough of the
animal’s life, we can find out what the dark neurons respond to.
Technically, this is just about within our grasp. Practically, less so. Some
poor graduate student has to actually do these recordings, locked in a lab
for weeks on end, and lose their entire social life, their romantic partners,
and their self-esteem in the process.

As Bruno Olshausen has argued, this dull-world argument is plausible
for V1:15 that the stimuli we use in our experiments are too simple, too
poor a reflection of the real world, and all neurons in V1 do respond to
something in the world—it’s just that we will never find out unless we
record them for a whole lifetime. In this idea, the sparsity of activity is
also about making the most out of what energy the brain has available.
The theory is that V1 has so-called population sparseness, where each
neuron in V1 is very selective to what it responds to, so that energy isn’t
wasted by a swath of neurons responding to the same thing, sending
redundant information. And this in turn means there is lifetime
sparseness—if those selective things rarely occur, the neurons will rarely
send spikes. In this idea dark neurons are then the fault of our limited
capacity to probe the brain, not the brain itself.

A second idea is that the dark neurons are a reserve army, waiting to
represent new things. The primate life span is long, packed end to end
with things to remember, skills to acquire, faces to learn. And for
humans, our unique ability to learn new concepts, ideas, and words
places heavy demand on our ability to represent things using spikes.
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Some of that learning will be through changing the effective strength of
connections between neurons—at the most extreme, through changing
the strength from nothing to something—whether by increasing the size
of the voltage blip, increasing the reliability of the synapse, or both. And
increasing the effective strength of excitatory inputs to a dark neuron
will in turn increase its rate of sending spikes. The upshot is the same as
the first idea: the reason we do not know what dark neurons are for is
that we track neurons only over the briefest of moments in their entire
life span, even in rodents that live but a few years, and so would not see
if dark neurons are recruited over time.

This simple idea is complicated by the fact that the brain can’t just
blithely increase the number of neurons sending spikes. For one thing,
this will simply increase the energy drain, so the idea suggests that other
neurons would need down-regulating as the reserve neurons are up-
regulated. For another, those new spikes need to be balanced—an
increase in excitatory spikes needs balancing by an increase in the
counteracting inhibition, to prevent runaway explosions of activity.

A third idea is that the dark neurons are sending information just fine.
They just do so jointly. Each dark neuron makes a tiny contribution, a
single spike every now and again, but since dark neurons make up 90
percent of all neurons, that adds up to a lot of spikes. In this idea, the
dark neurons send messages not by many spikes from a few neurons, but
by many more spikes from a massive group. And as an individual neuron
needs to receive a legion of spikes to make a spike in turn, so this mass
of dark neurons could be highly effective. The next chapter will pick up
this tale.

What’s more, not only are loud shouty neurons in the tiny minority,
but also their shouting may well be tuned out by neurons on the
receiving end. Remember, synaptic failure can act as a gain control,
turning down the influence of shouty neurons, and turning up the
influence of quiet ones. Indeed, neurons whose inputs have short-term
depression respond best to jumps in which of those inputs are active, not
the total rate of inputs.16 So a group of dark neurons sending sporadic
spikes together would be exactly the type of input that such a depression-
equipped neuron was looking for. Synaptic failure could, paradoxically,
favor neurons that rarely fire.
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A nuanced version of this idea also gives us a different view of the
lifetime sparseness of neurons. Dark neurons are the vast majority in any
region of the cortex. There are likely then many more with the capacity
to communicate the same messages than are needed. So perhaps each
response evoked from that region, like a picture shown to V1 or a sound
played to auditory cortex, draws from a random subset of dark neurons
(random from our point of view, not the brain’s). That random subset
sends a spike or two, then shuts down. So, from our point of view, most
neurons are silent most of the time. Yet the message sent by the dark
neuron population is the same each time.

This random recruitment idea has a simple experimental prediction.
Record from a group of neurons while repeating the same event over and
over again—showing the same picture to V1, or making the same
movement of an arm. Then most neurons should vary whether they
respond or not on each repeat of the event, apparently at random. We see
just this random participation in groups of whisker-sensing neurons
across hits on their whisker;17 groups of arm movement neurons across
similar movements;18 and even in groups of crawling neurons across
repeated bouts of crawling in sea slugs.19 Dark neurons are then not dark,
just misunderstood.

Three ideas for what dark neurons are for, three ideas for solving the
paradox of how neurons that send no spikes somehow contribute to the
life of the brain. By contrast, those minority of neurons that reliably send
spikes, those in the long tail, they should be easier to understand, right?
No. Many of those seem to be talking without listening.

TALKING WITHOUT LISTENING

Hidden in the active neurons are many of another kind of dark neuron, a
Type 2 dark neuron. Neurons firing away just fine, spikes streaming out.
But that do not seem to respond to anything, whose output of spikes does
not meaningfully change no matter what is happening in the outside
word. Talking to other neurons, but apparently not listening. Dark to the
outside world.

These Type 2 dark neurons were hiding in plain sight in huge piles of
neuron recording papers from the 1960s through to the early 2000s. In
those papers, the first sentence out of the blocks in the Results was
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always something like: “we recorded a total of N neurons, one at a time,
while presenting stimulus X or invoking movement Y. We found M out
of the N neurons responded to the presentation and will be subject of this
paper.” Always, the number M of responsive neurons was far less than
the total number of recorded neurons N, and the rest were just thrown
away! So what were those other neurons, the N-M unresponsive neurons,
doing?

Type 2 dark neurons are especially clear in modern recordings of
many neurons at the same time. For with these recordings we can take
huge samples of neurons, numbering in the hundreds or thousands, and
examine each neuron individually for its tuning, for what elements of the
world it responds to. When Simon Peron and colleagues looked at their
recordings from that specialized bit of whisker cortex, they dubbed 67
percent of those neurons as “active”—and that included neurons firing
barely at all. Searching for what the spikes from those 67 percent were
responding to, they found 28 percent of them were sending spikes with
no detectable task information at all. No tuning to whether the whisker
was moving, or hitting a pole; no apparent difference in whether the pole
was in one position or another, or the trial was to lick left or lick right.
Twenty-eight percent of the active neurons in the very first bit of cortex
getting input from the one and only whisker being used were not
apparently listening to what that whisker was saying.

Christopher Harvey and colleagues found a similar story in their
recordings from the parietal cortex of those mice running in a virtual
reality maze. Remember, they had dubbed just 47 percent of their
neurons as “active.” And of those, 27 percent were sending spikes with
no task information at all. No tuning to where the mouse was, or what it
was doing. Active neurons in parietal cortex seemingly did not listen to
what was happening to the world around the mouse.

My lab found the same thing in the prefrontal cortex, in recordings of
neurons that came from rats running up and down a Y-shaped maze.20 In
each session of training on the maze, our collaborators had recorded
between 12 and 55 neurons. And all were active, or at least not dark, as
these were electrode recordings. Yet in each session typically just one or
two of the neurons responded differently to the things happening in the
world around the rat. Only one or two sent different amounts of spikes
whether the rat chose the left or the right arm; whether the rat got a
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reward or not at the end of the arm it chose; whether or not the light was
on at the end of the arm. It was like the active neurons in prefrontal
cortex just didn’t care about what was going on (but they very much did,
and how they did is the story of the next chapter).

You may be wondering: what do you mean exactly by “respond”?
That innocuous question opens up a deep hole. Typically, it means that a
neuron has sent a different number of spikes in one condition compared
to another. Like whether a whisker hit a pole or not. Or whether the
animal has gone left or gone right. And “different” is defined by setting a
threshold, typically by asking whether the difference in the number of
spikes between the two conditions passes some statistical test. This is
how we end up with the ubiquitous idea that there are different
functional types of neuron in the cortex. That neurons all over the cortex
are either the type that respond to thing X, or they do not. Neurons in V1
are either simple cells or they are not. Neurons in auditory cortex are
either tuned to a specific group of frequencies, or they are not. Neurons
in somatosensory cortex are either tuned to the touch of a finger on a
surface, or they are not. Neurons in motor bits of the cortex are either
tuned to the speed of arm movement, or they are not. Neurons in
prefrontal cortex either respond to the value of a reward, or they do not.

But as Adrien Wohrer, Christian Machens, and I pointed out in
2013,21 using a dividing line to label neurons as either “responding” or
“not responding” is a fallacy. It breaks into two groups the continuum of
responses from the nonexistent, through the weak, the moderate, the
middling, to the exuberant. We can always move the line and break the
continuum into two different groups. And this means there are not really
“types” of neurons we can define by their responses to the world.

We can reel off many examples where apparent neuron types do not
exist; where neurons sit on a continuum for how they change their stream
of spikes. We’ve already seen for V1 that simple and complex-like cells
sit on a continuum. In the prefrontal cortex of monkeys touching a
vibrating bit of metal, there is a continuum for how much the neurons
there respond to the vibration’s frequency.22 In the parietal cortex of rats
making left-or-right decisions based on the number of clicks or flashes,
both the neurons’ preferences for direction and their preference between
clicks and flashes lie on a continuum.23
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Which all means Type 2 darkness is one end of a continuum of
responsiveness. What we’ve been calling Type 2 neurons are those that
barely change their spiking to an event in the outside world, a change too
weak to be picked up by our analyses. But are the changes too weak to
be picked up by other neurons in the brain? After all, what if these weak
changes in the stream of spikes happened in many neurons at the same
time? To answer this properly, it’s time to turn to the deepest question in
neuroscience: the meaning of spike.
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CHAPTER 7

The Meaning of Spike

THE COUNTERS AND THE TIMERS

For nearly a century, a war over the meaning of spike has been fought
between the Counters and the Timers.1

The Counters believe a neuron sends its messages in the number of
spikes it emits. They think spikes carry meaning by their number. The
Timers believe a neuron sends its messages by when it emits a spike.
They think spikes carry meaning by when they occur, especially in
relation to each other.

The war has taxed our best minds since the first spikes were captured
by Lord Edgar Adrian, Joseph Erlanger, and others in the 1920s. The
evidence marshaled on both sides is by now formidable.

The Counters
The Counters are dominant. Endless studies have asked neurons about
their preferred thing in the world, about what makes them send the most
spikes. Because doing so is simple. Present some sensory thing—a tone,
a surface, a line. Then vary it. Change the frequency of the tone, the
roughness of the surface, the angle of the line. And simply count the
number of spikes the neuron sends as you vary the sensory thing. Voilà, a
tuning curve (figure 7.1). You now know what frequency, or roughness,
or angle makes your neuron send the most spikes. We could then claim
that spikes from this neuron mean a tone of a particular frequency, a
surface of a particular roughness, an edge at a certain angle—a simple
cell. For Counters, meaning is simple.
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FIGURE 7.1. Tuning curves—how Counters see neuron coding. These are cartoons of
two different types of tuning curves. On the left, tuning curves of a hypothetical neuron

in V1, which we have presented with lines at different angles and then plotted the
number of spikes it sends in response to each angle: this neuron prefers lines that are
horizontal or close to it, but detests vertical lines—loves the horizon, is oblivious to

skyscrapers. On the right, the tuning curve of a hypothetical neuron in the first auditory
area of cortex (A1), which we have presented with different frequencies of sound and
then plotted the number of spikes it sends in response to each frequency: this neuron
prefers sounds about 20 Hz, but does not respond above about 200 Hz—adores teeth-

rattling sub-bass, unmoved by arias.

We can do the same trick for movements. With the subtle but
important twist that now we’re not counting spikes in response to
something, after something, but counting spikes that happened just
before an event. Record a neuron while an animal is moving its arm
repeatedly at different angles. Then simply count the spikes that
happened just before the start of each arm movement. Result: a tuning
curve for what angle of movement that neuron prefers.2 The same trick
works for speeds of the same movement, or for contractions of individual
muscles, or more complex combinations.3 We can infer the counting
code by working backward from what the animal is doing to what the
neuron was doing just beforehand.

This reverse inference of tuning works for more complex properties
of the world too. A famous Nobel-prize-winning example is the coding
of place.4 Watch an animal run around a big box or maze, all the while
recording from a neuron in its hippocampus. Counting the spikes from
that neuron will reveal that it has a preferred location, that it sends the
most spikes in a particular place, fewer spikes when close to that place,
and no spikes when far from it. It is a place cell.

And if we scour the regions surrounding the hippocampus, we find a
menagerie of counting neurons.5 Poke around in there and you’ll find the
head direction cell, whose maximum count of spikes will tell you the
particular direction the animal is facing; the boundary cell, whose
maximum count of spikes will tell you the animal is at or close to a
boundary in a particular direction (e.g., to the east); and the grid cell,
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whose maximum count of spikes reoccurs periodically in space, as
though it has laid a grid over the world and then sends the most spikes
every time the animal reaches an intersection of that grid. All single
neurons whose count of spikes indicates some property of physical
locations in the world.

Neurons that send messages in their number of spikes are everywhere,
it seems. But perhaps we only see a counting code reported everywhere
because counting spikes is easy for us. Because the default reflex of the
experimenter is to count spikes and then report the number of spikes,
rather than test more complex ideas of how neurons send messages.
After all, when Timers do make more nuanced measurements, they can
marshal some extraordinary evidence too.

The Timers
We’ve already met some of it. Indeed, I already told you in chapter 2 that
one of the deep reasons for the existence of spikes is accuracy—the
sending of information at precise times. We learned there that repeating
the same movement of a rat’s whisker causes the first neuron in the
whisker system to send the same pattern of spikes with ridiculous sub-
millisecond precision. Other sensory systems show similarly accurate
timing of spikes.

The owl’s hearing system is home to the most complete circuit for
spike timing yet worked out.6 Small woodland rodents know the
remarkable capabilities of this circuit all too well. Owls can accurately
determine the location of a scurrying rodent from sound alone. Their
brain does this by using the difference in timing between a sound
arriving at the left and right ear. If the noise is straight ahead, the sound
arrives at both ears at the same time. If the noise is from the left the
sound arrives at the left ear a few milliseconds at most before the right
ear; and vice versa for sounds from the right. And the exact delay
between the sound arriving at the two ears is proportional to the angle
between the sound and the owl’s head—the farther to the left, the longer
the gap between arriving at the left and right ear. Longer, but we’re
talking differences of less than a millisecond here.
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FIGURE 7.2. Precise timing of spikes in the owl’s hearing circuit. The sound of a mouse
30 degrees to the left of the owl’s head will arrive slightly earlier at the left ear than the

right ear (here, 0.5 milliseconds earlier). Now consider the circuit of neurons on the
right; numbers indicate the speed of transmission in milliseconds. The first neurons

receiving sound from the left ear will respond half a millisecond earlier than the
neurons receiving sound from the right ear. Output from the left- and right-side neurons

converge on neurons in the nucleus laminaris. There is a particular set of right-side
neurons whose axons are just thicker enough that they transmit half a millisecond faster

than the left-side neurons. Which means this particular nucleus laminaris neuron will
receive spikes from the left- and right-side neurons at the same time—and send its own

spike, now meaning “the sound is 30 degrees to the left.”

It turns out each axon from the first group of neurons in the owl’s
hearing system has a very specific, very precise delay in sending a spike
to a sound arriving at their ear (figure 7.2). And these first sets of axons
from the left and right ear converge on a second group of neurons, the
nucleus laminaris. A neuron here will send a spike if the spikes from the
left-ear neurons and the right-ear neurons arrive at the same time. But if
there is a delay between when a sound arrives at each ear, how can the
spikes arrive at the same time? This is where those very precise delays
come in.

Let’s say a neuron in this second group is a detector for sounds at 30
degrees to the left. This means it should fire spikes if a sound arrives at
the left ear before the right with the specific delay corresponding to 30
degrees. To do this it will receive input from a specific set of axons from
the left ear and a specific set of faster axons from the right ear. Crucially,
the right ear axons are exactly faster than the left ear axons to cancel the
delay between the sound arriving earlier at the left ear and later at the
right ear. Cancels to within less than a millisecond. Owls catch mice
using a hyperprecise spike timing code for the locations of sounds.

Precisely timed spikes to sounds is not restricted to owls. In rodents,
the first bit of cortex that receives input from the ears produces what
DeWeese and colleagues called “binary spiking.”7 When played a sound,
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a neuron here either sends a single spike at the onset of the sound or does
nothing. And if a sound does elicit a single spike, repeating it will elicit
each time a spike at the same delay from the start of the sound. Hence
binary: a spike (1), or not (0), at a precise time after the sound starts.

The output neurons of the retina—the ganglion cells—show similarly
precise delays in spikes. Each time a ganglion cell is presented a pattern
of flickering pixels (a pattern in its part of visual space) the first spike it
sends is at the same delay to within a few milliseconds.8 Building on
this, Tim Gollisch and Markus Meister showed in 2008 that each
ganglion cell seems to have a spike-latency code—for each different
image it is shown, a cell sends its first spike at a different latency, but
repeat the same image, and the same latency occurs.9 The latency of the
first spike encodes far more information (literally, in bits) than counting
spikes about which image was presented. Across a big group of ganglion
cells, Gollisch and Meister could use their spike latency alone to
reconstruct the presented picture. A fuzzy, gray-scale picture, admittedly.
But still, the timing of spikes in the retina seems to be a powerful code.

Different Strokes?
You, being smart, may have noticed something that decades of
neuroscientists had not: the Counters look at one set of brain regions, and
the Timers look at another. Often they look at very different species. To
those looking deep within the cortex, or the hippocampus, or the
amygdala, or at motor neurons in the spine and brain stem, the counts of
spikes make the most sense. To those looking at the first steps of the
sensory systems, in the retina, at the first brain regions getting inputs
from the ear, or the whiskers, timing and patterns are everywhere.

So is that the answer? Brain regions at the edge, especially those
using sensory information, use timing; brain regions in the middle,
especially the cortex, use counting?

Strong evidence for this would be that cortical neurons cannot even
send precisely timed spikes. After all, we already saw in chapter 3 that
they send spikes with irregular spacing, almost perfectly capturing a
random process. How can such spikes carry timing information if they
are occurring “randomly”?

The simplest test is to give a cortical neuron an identical input many
times and see if it repeats the same pattern of spikes with the same
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precision (figure 7.3). An input direct to its body, bypassing the
unreliability of synaptic failure, and the crushing inhibition by GABA, to
remove them from the equation. We know what happens. Inject a
pyramidal neuron’s body with a constant blast of current, and it reels off
a set of spikes. Give it the same constant blast of current again, and the
set of spikes do not repeat exactly.10 If cortical neurons cannot even pass
this simple test, surely they cannot be sending messages based on the
timing of spikes.

But instead inject a noisy, random current, something mimicking the
wild fluctuations of the neuron’s voltage at its body as it’s bombarded by
the flickers of voltage cascading down its dendrites. If we repeatedly
inject the same noisy current, we get precisely the same response, the
exact same random-looking pattern of spikes, each time! Neurons in the
cortex are capable of reproducing exactly the same timing pattern of
spikes given the same noisy input. And there are hints that they do use a
timing code.

FIGURE 7.3. Precise spikes from a cortical neuron depend on its input. We imagine
injecting a current directly into the body of a cortical neuron and repeating this three

times to see how similar its response is each time. For a constant input (left), the neuron
will spike as soon as the input turns on, but thereafter the timing of the spikes starts to
differ between the three repeats; indeed, the neuron sends five spikes on the first go,

four on the second, and six on the third. Identical input, to the same neuron, but
different times of sending spikes. But if we instead inject the same noisy input each
time (right), then the neuron sends the spikes at the same time on each of the three

repeats.

A big hint comes from area MT. We left area MT a few synapses ago,
as its neurons sent volleys of spikes responding to the main directions of
motion in the world. To the coherent collection of edges and angles you
call “Sarah” striding across the office, as she moves across your field of
view from left to right. How we know that area MT sends spikes to
motion is that we asked some monkeys to watch some moving dots.

These bored monkeys watch movies of randomly moving dots, trying
to decide which direction the dots are moving in. Sometimes the dots are
coherent, mostly moving in the same direction, so the motion is easy to
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see. Sometimes the dots are really noisy, with only a few moving
together in same direction, so the motion is hard to see. Sometimes in
between; and sometimes impossible, when all the dots are moving at
random. Watching these movies evokes spikes from area MT neurons.
Ones that like leftward movement spike when dots move left; those that
like movement along 30 degrees from upright spike when dots move in
that direction. Like most cortical neurons, area MT neurons send these
spikes seemingly at random, the spacing between them highly irregular
—some clumped, some far apart. Yet Wyeth Bair and Christof Koch
revealed in 1996 that if we repeat the exact same movie of random dot
motion then we see the exact same sequence of apparently random
spikes from an area MT neuron11 (figure 7.4).

FIGURE 7.4. Precise spikes from a single neuron in the cortex. We’re looking at the
spikes sent by a single neuron in area MT, while the monkey it belongs to is watching
many repeats of the exact same movie of dots moving randomly. Each tick is a spike
from that neuron; each row of ticks the spikes it sent during one presentation of that
same two-second-long movie of dots randomly moving about. A single row looks

random—there are small and big intervals between the spikes within a row. But they
line up across the rows: if we start at time 0, when the movie kicks in, we can see the

ticks repeatedly line up top to bottom at the same times in the movie (e.g., at about 0.1
seconds, the cluster just after 0.5 seconds, and again at about 1 second). This neuron
sends its spikes at the same points in the movie each time it is shown. (Redrawn from

Bair and Koch, Neural Computation 8 [1996]: 1185–201.)

As we departed on the cloned spike from the area MT neuron, we
were part of that neuron’s volley of randomly spaced spikes, part of its
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response to all things moving in the office. The dot motion results show
that if the exact same set of movements across the office repeated exactly
the same way—Sarah striding, Graham nonchalantly fiddling with his tie
—then we’d have been on the exact same spike at the exact same time. A
timing code in cortex. But a hidden code: it would never show up in the
real world, as the world never repeats itself so exactly.

Yet we can also construct seemingly cast-iron arguments that a
cortical neuron cannot be using such timing codes. A compelling one is
that spikes can be knocked off course too easily to use a timing code.12

This is easy to demonstrate. Build a computer model of a bit of
cortex: create thousands of artificial neurons that send spikes, wire them
together, give them all some input, and watch. They will each produce a
characteristic and random-looking pattern of spikes. Repeat with the
exact same input, and the exact same patterns will result. But now repeat
it again, and this time delete a single spike sent by one neuron. As you
watch, the spikes of many of the other neurons will quickly wander off
into new patterns, some radically different from before.13 Clearly, such
neurons could not be using a timing code if a single failed spike can
change the course of so many other neurons’ spikes. And we know
spikes fail all the time.

How do we bridge these irreconcilable differences between Counters
and Timers? As we cling to our spike racing into the prefrontal cortex,
what can we say about what it means? We can look back to where we
came from.

PREDICT ME

Aiming for a fragile peace, others have sought to directly decode the
message of spikes by finding out what predicts them, or what they
predict.

At the beginning of our journey, prediction seemed simple. Coming
from the first bits of visual cortex, those just a leap or two from the eye,
we traversed spikes evoked by a particular type of edge or color or
direction of movement, in a particular pixel of the visible world. Flipping
this around, the presence of a particular edge, color, or movement in a
particular pixel thus predicts a spike from a particular set of neurons in
V1. Likewise, a spike streaming from the first bits of auditory cortex is



106

evoked by something about the basic properties of sound, its frequency
or volume or direction. The occurrence of a particular frequency at a
sufficient volume in the world will predict there should be a spike from a
particular set of neurons. And so we could say: if thing X predicts a
spike, this is what the spike means.

Yet even here, in these bits of cortex closest to the machinery for
sensing the outside world, we cannot predict every spike a neuron sends
from a simple line or a simple sound. A neuron sends many spikes that
are not obviously evoked by a particular thing at a particular time. So
what do those spikes mean? Some smart people hit on a solution: ask the
spikes themselves.

The basic idea is simple. For every spike a neuron sends, find out
what was happening in the world just before it. And the clever part is
that we don’t guess. We learn what was happening directly from the data.

The goal is to create a model that takes as input what happened in the
world in the past few hundred milliseconds or so and outputs a prediction
of how likely a spike is to occur right now. In other versions, such a
model might instead predict the likely number of spikes to occur right
about now. Such models can either be a Timer or a Counter, depending
on how long we define as “now”: if the model is predicting a few
milliseconds at a time, we’re building a timer; a few hundred
milliseconds at a time, we’re building a counter. Indeed, building models
to predict spikes drives home that the dividing line between “timers” and
“counters” is a fuzzy one.

To make a spike prediction, we give the model measurements of
things in the world—like the angles in a picture, or the frequencies of a
sound—over those few hundred milliseconds in the past. And the model
assigns a weight to each of these measurements at each moment in the
past. The higher the weight, the more influence that measurement at that
particular time in the past has on the probability of a spike right now.
The model’s prediction comes from adding up all the different
measurements, over each of those moments in (a very brief) history, and
saying: right now I predict a spike is imminent (or not).

The key is that the model learns the weights. It changes them until its
predictions match the real spikes as closely as possible. Then once it’s
done learning, we seek out the highest weights and voilà: we find out
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what aspects of the world at what times in the past the neuron sends
spikes to!14

This predictive model approach works best in the early parts of the
brain’s sensory systems, those right up close to the sensory machinery. In
the retina, these predictive models reveal precisely how the exact
location and timing of changes in the visual world predict when retinal
ganglion cells will send spikes.15 Better, the predictive models fall into
two types of cell, one predicting spikes after a sudden increase in light
level, the other after its sudden decrease. These are precisely the ON and
OFF type retinal ganglion cells we met in chapter 2, now with their
existence confirmed directly by learning from the data.

These predictive models are also highly effective in predicting spikes
from those first neurons to get input from the whiskers, those ultraprecise
timers of spikes. There, the models learned that sudden changes in the
bend of a whisker accurately predict spikes from these neurons.16 And
what causes a sudden bend of a whisker? Hitting something. So these
neurons send very precise signals about when and how a whisker strikes
an object in the world. Equally important, the models learned that the
angle of the whisker does not predict spikes at all. By predicting spikes,
these models tell us what the whiskers can and cannot tell the rest of the
rodent brain about the world.

But the deeper we have plunged into the cortex, the less we can
predict from a spike about what is going on in the outside world.17

Predictive models can tell us little about the meaning of spikes deeper in
the brain, about the spikes we’ve clung to for the past few jumps. For
they fail to predict more than a few percent of the spikes from a neuron.
They struggle even in the first whisker bit of cortex, just three jumps
across synaptic gaps from those primary whisker neurons whose spikes
are so well predicted by the bend of the whiskers.18

We already know one key reason why prediction methods may fail:
dendrites. As we learned in chapter 3, the barrage of inputs coming into a
neuron’s tree are not just weighted and summed up, but can be
dramatically transformed. And that transformation can radically change
the relationship between the outside world and the spikes sent by a
neuron. Indeed, when attempting to get meaningful predictions of spikes
in that bit of cortex dedicated to whiskers, Peron and friends had to build
a model that learned how to transform the events in the worlds, the
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whisker bends and angles, into a complex, messy form just to get
anything close to predicting the output of a single neuron. But as we get
deeper into the cortex, having jumped many gaps onto many neurons, the
biggest barrier isn’t dendrites; the biggest barrier to inferring meaning
from prediction is, simply, other neurons.

You may be wondering: where are we, exactly? And that’s a great
question. The vagueness is deliberate. We traveled along Highway What,
and by cloning ourselves traveled along Highway Do at the same time.
Highway What has disgorged us into the start of the enigmatic prefrontal
region of the cortex, the front third of your cortex, roughly everything
forward of your ears. Highway Do left us in part of the parietal regions
of cortex, a large strip above and behind your ears (figure 7.5). It
becomes harder now to know precisely what any particular small bit of
these regions of cortex do. And their roles are intertwined. Neurons in
both prefrontal and parietal regions send axons to the other, so we could
hop a spike and jump between them if we so wished.

Indeed, the prefrontal and parietal cortices are the brain’s Louvre:
vastly too much to take in on one visit, and no matter how niche your
tastes you can find something to suit. The prelimbic region, to pick one
of many, is like the ceramics gallery: if that’s your bag, great—you could
spend all day in here marveling at how its neurons send spikes after a
mistake is made, seemingly in order to ensure you take more time before
making the same decision again;19 if it’s not your bag, glance at the
serried ranks of plates as you hurry to the exit. If we looked hard enough,
I’m pretty sure we’d find a neuron in the prefrontal cortex that only fires
when a rat turns left on the second Wednesday after Pentecost while
wearing a fez. Because there are simply so damn many of them, we can
always find a neuron here that seems to correlate with something.
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FIGURE 7.5. Key regions of the cortex on our journey.

By my reckoning, we’ve only a few tens of milliseconds at best
between our arrival in these cortices and our exit to the motor cortex.
And that’s if we take a languid path. So as we leap from axon to dendrite
across microscopic gaps, follow the cascade of neurons up and down the
layers, plunge through the white matter to jump between regions, I will
point you to the main attractions, the Venus de Milos, the Mona Lisas,
the Marly Horses. As we grab a cloned spike charging deep into the
prefrontal cortex, the first of these is the loneliest neuron.

Farthest from the inputs from your senses, farthest from the outputs to
your muscles. It will never know the taste of pizza, the smell of fresh
bread, the deep red of a sunset, the touch of a baby’s hand. But it will
receive distant echoes of all these things. Our spike and millions like it
arrive bringing their messages from all over the cortex to the loneliest
neuron.

And that’s the key. If we only look at what happens in the outside
world, then we discount the influence of other neurons on that neuron—
other neurons carrying all sorts of information, information that we
cannot guess or, worse, those Type 2 dark neurons, sending spikes but
seemingly not responding to anything at all. For you, now, here, in your
cookie conundrum, this convergence of spikes could be carrying
messages that you’re: a little tired; craving a little high-sugar, calorific
pick-me-up; hearing a babble of sounds, four desks over, Idris and Kai
deep in conversation; seeing movement across your field of view, the
march of Sarah; feeling your body on your chair at your desk; sensing
your head is directed to look across the room at and beyond the cookie
box; aware your desk and its cookie-containing neighbor is in the back
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corner of the office, close to the windows, screened from the elevators
and their unpredictable interlopers in your cookie drama by the potted
palm trees. How then can we predict the spikes of the prefrontal neuron
we are sat on now, without knowing what all those incoming spikes
mean?

Counters, timers, predictors: all these are views of the output of a
single neuron. If this book has taught you anything, it is that we need far
more than the output of one neuron to make a new spike. A new spike is
a summary of the total messages from the input of hundreds of neurons
in both space (who sent a spike) and time (when they sent a spike).
Counters and Timers are asking the wrong question. Meaning is not the
spikes of one neuron, but of the legion. Ask not what a neuron sends, but
what it receives.

WHO SENDS SPIKES

Asking the legion’s meaning once seemed the realm of science fiction.20

But the current golden age of systems neuroscience has changed all that.
The recent explosive advances in recording technology mean now we
can at last record hundreds of neurons at the same time. Rather than try
to predict the world from the spikes of a single neuron, recording many
neurons gives us a different way of thinking about the meaning of spike.
Not how many or when, but who: which neurons send spikes at the same
time.

So now my lab and others ask instead, can we predict what is
happening in the outside world from the pattern of neurons who are
sending spikes? Imagine recording from three neurons in a bit of the
cortex that cares about vision, while we repeatedly show the eyes one of
two pictures—one of the sought-after pear, ginger, and chocolate cookie,
and one of a green cuddly toy dragon (named Steve). If these three
neurons together encoded something about the difference between these
two pictures, then they should send between them a markedly different
pattern of spikes to the cookie picture than to the dragon picture. But
they need not always send the exact same pattern to the same picture.
Indeed, we’ve already seen that a single neuron’s response to the same
event in the world can sometimes be highly repeatable, yet most of the
time for most neurons it is quite variable, to the point of occasionally not
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responding at all. But by looking at more than one neuron, we can find
whether the pattern of neurons sending spikes is broadly similar, even if
some individual neurons are making a mess of things.

How we find these broadly similar patterns is, again, by learning
them. We ask if we can predict the picture from the pattern of activity.
We take some of the patterns during the cookie picture and during the
dragon picture and train a model to find the consistent differences
between the patterns. Then we give the model more patterns of spikes
across those same three neurons, evoked by the same pictures, and ask if
we can predict which picture was being shown. This is population
decoding: take the activity of the recorded legion—ten, twenty, a
hundred neurons—then see if we can tell the difference between the
legion’s pattern of activity after thing X (a picture, a sound) or before
thing Y (a choice, a movement).21 All over the cortex, the answer is yes:
we can near-perfectly predict what was happening in the outside world
from the pattern of active neurons.

Back in V1, if we’d gathered spikes from the neurons around us as we
left the first simple cell, we could have perfectly decoded the angle of the
line passing through the pixels in the world our neuron and its neighbors
were looking at.22 We would have seen a unique pattern of which
neurons were sending how many spikes, all in response to that beautiful
slant of the cookie’s crumbly top. Just ten or so neurons would have been
enough to detect the pattern, as it emerged just a few tens of milliseconds
after your eye fell on the cookie.

Better still, had we known about those Type 2 dark neurons, those that
talk without listening, we could have wielded our population decoder in
V1 to show us they really do something. For example, Joel Zylberberg
took some recordings of hundreds of neurons from the visual cortices of
mice that were staring at lines moving in one of eight different
directions.23 Among those hundreds of neurons, some had clear
preferences for one of those directions of movement; many had no
preference at all—they were active but not listening, yet more awkward
Type 2 dark neurons. Zylberberg found he could decode the direction of
movement consistently better from a mixture of tuned and dark neurons
than from tuned neurons alone.

It’s a similar story for whiskers. In that special bit of rodent cortex
dedicated to whiskers, researchers in Miguel Maravall’s lab at the



112

University of Sussex found that they could not use the spikes sent by a
small group of neurons to work out whether the whiskers were rubbing a
rough or smooth texture.24 These small groups, perhaps at most four or
five neurons, were seemingly not listening to the whiskers and the
messages they were sending about their jolly time rubbing against
sandpapers of different roughness. But combine even just three such
dark-neuron groups, and the difference between rough and smooth is
readily detectable. Thus population decoding can show us the spikes of a
population of neurons carry meaning that’s seemingly invisible when we
look at members of that population.

Now we’re in the prefrontal cortex, what can we learn by wielding
our population decoder, by looking at the pattern of spikes sent by our
neuron and its neighbors? We learn that, even in simple tasks, we can
decode many complex things. We can indeed decode messages arriving
from all over brain.

Wield the decoder in the prefrontal cortex of monkeys staring at
screens, and we can decode a lot from the legion. Ask a monkey to watch
seemingly endless sequences of pairs of pictures, and from the pattern of
spikes at different points in the task, we could perfectly predict which of
four pictures was presented first; which of a different four was presented
second; even exactly what the monkey was supposed to do with that
sequence—commit it to memory, compare it to memory, or move its
eyes between them.25 Ask a monkey to look at a four-by-four grid of
LEDs and see which one lights up; lo and behold, we could decode from
the legion of neurons in prefrontal cortex which of the sixteen LEDS is
lit.26

We can even decode different features of the world from the same
legion at the same time. Ask a rat to run up a Y-shaped maze, to make a
choice about whether to go down the left or right arm of the “Y,” and
from the patterns of spikes in that rat’s prefrontal cortex, we could
decode (indeed, Silvia Maggi in my lab did decode) the choice the rat
was about to make; separately, we could decode which arm of the maze
was lit at the end.27 The same small population of neurons knew about
things in the world right now—the lights at the far end of the arms,
visible to the rat’s eyes—and about internal things—the choice of
movement that was about to happen. Quite the convergence of messages.
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At the end of Highway Do we’d have the same ability to decode
multiple features of the world from the spikes of the legion of neurons
around us. David Raposo and Matthew Kaufman in Anne Churchland’s
lab asked their rats to master a complex task of counting clicks or flashes
of light (or both), and using that count to decide whether their reward
would be in the left or right food dispenser—left for a low count, right
for a high count.28 In the back end of parietal cortex, from the legion of
neurons they could decode whether the rat was being played the clicks or
flashed the lights, and separately they could decode the upcoming choice
of going left or right. In both the work of the Churchland lab and our
own, the patterns of spikes from the legion of neurons meant different
things at the same time, depending on how we read them out.

(Before we get carried away with our apparently deep understanding
of the brain, a word about the decoding fallacy. Just because we can
decode information about thing X from spikes, does this mean the brain
actually has access to this information?29 Say we can decode from the
activity of a hundred neurons whether a light is on or off. Does this mean
the brain “knows” the light is on or off? Not necessarily. It definitely
means there is something different between these states of the world, and
we can decode from the brain that they are different. But something else
in the world could always be different at the same time as the thing we’re
interested in, something we haven’t noticed—like the light switch being
in a different position when the light is on or off—and that’s what the
brain actually knows about. But we can check if the brain seems to know
about what we decode, by showing that the thing we can decode, or how
we decode it, has consequences: that it is related to behavior, or predicts
other neural activity.)

The loneliest neuron is indeed receiving converging messages from
all over the cortex. From the legion of neurons in prefrontal and parietal
cortices, at the ends of Highway What and Highway Do, we can decode
many things about the world, indeed many different features of the world
at the same time. And those converging messages are crucial for two
things, things vital for solving your cookie conundrum. For the spikes of
the loneliest neurons do not just mean what’s happening now. They also
send messages about the past and the future. About holding the world in
memory, and making a decision.
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HOLD THAT THOUGHT

Gathering reams of information about the world—the cookie, the box,
the desk, the people, their movements—is useless if you can’t hold it in
mind. Without some form of short-term buffer, some snapshot of all the
things in the world you’ve already noticed, every moment you’d have to
re-look or re-hear or re-read everything in order to know what is going
on in the world. Like knowing that Adam is not at his desk behind you,
as he popped out a minute ago for some “fresh air” while suspiciously
pocketing a small rectangular box, so he can’t interfere with the cookie
conundrum. Or not being constantly surprised that you’re sitting in a
chair.

If you wanted such a buffer in your brain, you’d need two things.
You’d need the messages of what is happening in the moment to
converge on a single location. The sights, the sounds, the places, the
people, the faces—the messages of them all converging to create the
snapshot of the world, now. And you’d need the neurons receiving those
messages to buffer them, to not just send one or two spikes and go silent,
but send a stream of spikes for as long as you’ll need to hold that
snapshot in mind. And here in the prefrontal cortex is the perfect place
for that buffer.

We’ve long known that some regions of the prefrontal cortex must act
as a memory buffer. Damage chunks of the prefrontal cortex and this
short-term memory breaks.30 Such damage stops you from holding an
item in mind for more than a few milliseconds. Say you’d damaged your
prefrontal cortex. If I showed you two boxes, one holding a cookie,
closed and covered them for a few seconds, then uncovered them and
asked you to point to the box with the cookie, you’d have no idea which
one it was. Which means prefrontal cortex should have neurons that
sustain spiking throughout a buffered memory.

As we leap through regions of the prefrontal cortex, we jump gaps
with cloned spikes onto neurons that sure look like they’re holding
memories. As we arrive in the body of one such neuron, part of the
voltage blip entourage descending its tree, we can see from the jumbled
mass of ions inside that it sent a spike just a few tens of milliseconds
ago, one a few tens before that; we can feel our blip and its entourage
have set off the runaway cascade to create a new spike, and with a wave
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of voltage blips on the way down the tree behind us the creation of more
spikes is imminent. The spikes are sustained, but is this a memory?

We can find out by setting the brain a working-memory task. Solving
such tasks is only possible by holding a piece of information in a
memory buffer during a delay. Like remembering which food hopper had
the treat inside before it was covered up. Or a rat sitting in the center of a
cross-shaped maze, holding in mind which arm of the maze it went down
last time, because it’s not allowed to go down the same arm twice. In
these working-memory tasks single neurons in prefrontal cortex reliably
send spikes throughout the delay period, as though sustaining the
memory.31 We can even show that the memories are specific, that single
neurons are sending spikes to different aspects of the information that
needs remembering.

In a classic example from 1989, Funahashi and colleagues from
Patricia Goldman-Rakic’s lab showed that when monkeys were
remembering which of a ring of eight lightbulbs had flashed seconds
earlier, some neurons in their prefrontal cortex sent many spikes, as
though sustaining the memory of the flashed bulb.32 Each such neuron
was selective for a particular location—it sent the most spikes to a
flashed bulb at a particular point in the ring—and the farther the actual
flashed bulb was from this preferred location, the fewer spikes it sent.
Each buffering neuron was holding a specific memory of which bulb had
flashed. Similarly, a string of studies from researchers in the lab of
Ranulfo Romo have shown that neurons in prefrontal cortex send spikes
while a monkey is remembering how rapidly a metal strip had vibrated
against its fingertip.33 Here too some buffering neurons are selective,
sending spikes in proportion to the speed of the vibration. These complex
memories of where bulbs are flashed and how fast a thing is vibrating are
created using different senses yet held in the same place, the prefrontal
cortex, thanks to the convergence of spikes onto the loneliest neurons.

Again though, Type 2 dark neurons plague the prefrontal cortex. Most
neurons here, even those sending spikes, pay apparently little attention to
the need to remember things. Funahashi and colleagues recorded 288
neurons in total, yet only 87 of them, just 30 percent, showed a
consistent change in their spiking in the delay between the flashed light
and the signal to go. Yet if we look at a group of neurons in prefrontal
cortex, a sustained memory is crystal clear.34
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Their combined activity contains a perfect memory of how fast that
metal strip had vibrated against the fingertip.35 Even a memory of how
much time has elapsed since the strip had vibrated. Using population
decoding, we can see the memory of exactly which one of sixteen
different lights was briefly flashed.36 Better still, we can see that groups
of neurons in prefrontal cortex maintain a memory even when we don’t
explicitly tell it to.

My team and I went looking in the prefrontal cortex of rats trudging
back along a Y-maze, having just made their choice of arm—left or right
—and having just discovered if they had chosen correctly or not.37 If
they had, then glorious chocolate milk was their reward. We wanted to
know what the rats were mulling over as they trudged back to the start—
were they reflecting on their failure, or reveling in their triumph?
Remembering that going left had been good, or that going right was a
waste of time? Every time we looked, just a handful of single neurons, at
most 20 percent and sometimes none at all, were firing differently after a
left or right choice, or differently after getting chocolate milk or not. The
vast majority were Type 2 dark neurons, spiking but showing no memory
of what just happened.

Yet by using population decoding we could show that small groups of
neurons in the prefrontal cortex could remember everything: the choice
just made, and milk delivered or not. Beautifully, we had shown that the
legion of spikes in prefrontal cortex remembers even if each neuron
seems to remember nothing; and even if the task to be solved does not
explicitly require keeping something in mind. Because, after all,
remembering decisions and their outcomes seems like a smart thing to
do.

Which brings us neatly back to you: it’s decision time. As we jump
onto the spike leaving our neuron in prefrontal cortex, our spike and the
spikes around us are holding memories of vital stuff. That there is a
cookie, in the tatty cardboard box, on the brown desk abutting yours, lid
open. That Adam is not behind you; Sarah is crossing the office, yet
moving away, not looking in your direction. That Graham, hideous tie
and all, is staring mid-distance, perhaps lost in contemplation of
tomorrow’s inexplicably scheduled lime and brown tie. That Idris and
Kai, a few desks away, are immersed in conversation, bickering over the
microwave cleaning rotation. Our spike and its compatriots have
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buffered all the information you need. Time to combine that information
to make the crucial decision: to take the cookie, or not?

SOMETHING DOESN’T ADD UP

Many decisions require you to add up the evidence for each option. To
accumulate the information flooding in about the state of the world, to
weigh up which option to go for. If somewhere in your brain adds up
evidence, then it must be where information about the world converges.
The loneliest neurons in the prefrontal and parietal cortex seem perfectly
placed to do that, too. And they are.38

We know this thanks to those random dots (figure 7.6). Remember the
bored monkeys? Well they had to make a decision about which direction
they thought the dots were moving in, and then move their eyes in that
direction. They had just two options to decide between, that the dots
were moving left or moving right. And area MT, that region of Highway
Do filled with motion-loving neurons, is perfectly placed to provide the
necessary evidence:39 if all the dots move in the same direction, then all
its neurons liking that direction spike furiously, sending lots of evidence
for which direction the dots are moving in; if only a few dots are moving
consistently in the same direction, then only a few neurons liking that
direction will get to send spikes, sending weak evidence for which
direction the dots are moving in, and accompanied by many occasional
spikes from other neurons responding to dots randomly moving in their
preferred direction. To accumulate this evidence into a decision,
somewhere downstream of area MT should be adding up those spikes.

FIGURE 7.6. The randomly moving dots task. Left: In the task the dots move across a
circle, the movement of each dot indicated by the arrow between its current (white) and
next (black) position. The player’s job is to watch the dots and decide whether there is
more motion to the left or to the right. When lots of dots—here half of them—move in
the same direction, this is easy. Right: We can always make no dots move in the same
direction and ask for a decision anyway, even though there is no correct answer. By

doing this, we can see what neural activity corresponds to the decision.
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In the back end of parietal cortex and in bits of prefrontal cortex, both
targets of area MT neurons, that’s exactly what we see.40 Some neurons
in these regions increase the number of spikes they send while the dots
move in their preferred direction. And just as though they were adding
up evidence, the more the dots move in that direction, the faster the
increase in the number of spikes. Then, once the accumulating neurons
for one direction have increased their activity enough, once they hit some
threshold, the monkey looks in that direction. It decides: the dots are
moving that way.

How do we know it’s a decision? Because we can see errors, force a
decision, and fiddle with causality. When the monkeys make errors,
when they look in the wrong direction, activity in the accumulating
neurons for that, wrong, direction hit the threshold first.41 Sometimes we
show dots all moving randomly, with no coherent direction, but ask for a
decision anyway; whatever direction the monkey chooses, activity in the
accumulating neurons from that direction hit the threshold first. And if
we fiddle with causality by changing the number of spikes ourselves, that
changes the decision. Stimulating a group of area MT neurons that prefer
the same direction, forcing them to send lots of spikes even when they
don’t want to, consistently biases the decision in that direction. As
though the accumulating neurons were simply adding up this extra
evidence.42

This story seems like a Counter’s dream, of single neurons sending
messages to each other through the number of spikes sent, both evidence
and its accumulation contained within the tick-tick-tick of a spike
stream. But paradoxically it is in decision-making we see the full extent
of the legion. If we turn off the regions of parietal cortex most rich in
accumulating neurons, nothing happens.43 Monkeys and rats go right
ahead, making decisions just fine, with no measurable effect on how
many errors they make, or how fast they make decisions, or how hard
they find the task. Neurons in parietal cortex count evidence in their
spikes just fine. But need have no effect at all.

For tuning does not mean function. Just because a neuron sends
spikes in response to something, it does not mean that neuron plays a
causal role in operating on that something. A neuron may respond to an
edge, precede arm movement, elevate during a delay, increase to
evidence, but not be necessary for any of those things. The brain is
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degenerate; it has multiple solutions to the same problem, multiple
systems that can do the same job, but in different ways. And decision-
making is where we find clear evidence of a degenerate system, with
accumulating neurons distributed across large chunks of the brain, across
bits of prefrontal and parietal cortex and crucial regions below the
cortex,44 yet most of which we can turn off individually with little to no
effect on the decision itself.45 Making a decision is so vital that the brain
will try to find any way that it can to make one.

And when we look around us, the dominance of the legion in
decision-making is no surprise, as these decision-making bits of
prefrontal and parietal cortex are chock full of Type 2 dark neurons. Few
neurons in the back end of parietal cortex exactly match the job
description of the purely accumulating neuron, a neuron with a clear
preferred choice direction, that is consistently activated by dots, and
increments its activity to dots moving in its preferred direction.46 Yet
here the changes of spikes in many Type 2 neurons can be predicted in
part by the motion of dots;47 complex, jagged, weird changes—not
simple, reliable increases or decreases in sending spikes as dots fly
around a screen. So, perhaps unsurprisingly, by using our population
decoders in bits of prefrontal cortex we can accurately decode the
upcoming choice of the monkey, far better than from any one neuron.48

And the decoding accumulates; the ability to predict the upcoming
choice increases consistently from the start of dot movie until it’s near
perfect just before the monkey makes its decision. The legion decides.49

We grab a spike flowing out from the prefrontal cortex. Around us
and in parietal cortex streams of spikes are adding up the evidence from
your senses that there’s a cookie and you’re hungry and Adam is not at
his desk and Angela and Ishmael are looking away and Ava’s already
had one, as have Zola and Dave and Shani and Hamid, and you’re still
hungry and there’s nothing in your hand, and, and, and. All adding up to
decide: take the cookie.
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CHAPTER 8

A Moving Experience

READY, SET, GO

You decide to take the cookie. By the end of Highway What, the spike
we clung to was part of a legion identifying the objects before you as a
crumbly, oat-colored, ginger-strewn cookie in a “Cookies”-scrawled
cardboard box, identifying the people around you as Graham, Sarah,
Janice, Idris, Kai, a legion feeding all that information into your memory
buffer and your decision regions across prefrontal and parietal cortex, so
you knew what you were deciding about. By the end of Highway Do, the
spike our clones clung to was but one of a legion carrying messages of
the cookie’s exact location (the abutting desk), size (big), orientation
(away from you), and movement (none, thank the stars; well, except for
the rotation of the Earth, but you can’t see that in your reference frame,
because you aren’t actually omnipotent despite what you claim). And
messages of where your office mates, delivery people, and assorted
hangers-on were standing, moving, and looking. Also all fed into
memory and decision regions, so you knew where you were deciding
about, so you could gauge the feasibility of your surreptitious cookie-
claiming scenario.

Our spike is thrust onward to the motor regions of cortex, its arrival
part of the volley of messages meaning “move your hand and pick up the
cookie.” Here the neurons are itching to complete the spike’s journey
down to the spinal cord, to pile spike upon spike into the motor neurons,
whose own spikes in turn tell your muscles to contract just so.

Seems simple. But from the spike’s point of view, it is anything but.
“Take the cookie” isn’t a preprogrammed maneuver, a holistic action
handled by dedicated cookie-grabbing neurons. That simple reach-and-
grab is the coordinated contraction of muscles in your back, stomach,
and side, to control your trunk as you lean across the desk; in your
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shoulder, to rotate it; in your upper arm, the triceps, to extend it; in your
forearm, to open your hand and your fingers, to open them, extend them
just the right amount to land on the cookie’s crumbly edges. And then
reverse: contract your fingers to grasp the cookie, as your arm muscles
contract to pull your arm back toward you, forearm and shoulder rotating
to swing your hand up to your gaping maw, as a complex sequence of
relaxing and contracting in your back, stomach, and side returns you
from leaning into the snug comfort of the black and neon green mesh
office chair.

How do neurons in the motor bits of cortex do all that? For reaching
and grasping, those crucial steps toward the prized cookie, the paths are
well mapped out.1 To complete our journey, we will need to follow our
spike as it traverses the reach-planning regions of parietal cortex,
through the premotor cortex where the reach is prepared, and on to the
primary motor cortex, the ultimate source of most neurons that send
axons directly to spine. Launching on a spike from a neuron in the
parietal reach region, we’re part of a legion carrying messages of where
exactly the cookie is located and that it is, in fact, a flattened dome of
tastiness.2 We land on a layer three neuron in the premotor cortex, one
who is quite literally preparing to make you move. For here a surge of
spikes are sent in the few hundred milliseconds before your arm starts to
move.

As I foretold in the last chapter, Counters place movement neurons
among their favorites. Indeed, if we hung out here in premotor cortex
and counted spikes from neurons around us during this preparation to
move, some would show tuning to the imminent arm movement, to the
imminent patterns of contraction and release of single muscles; others
would seem to show tuning for more abstract parameters, to the
imminent direction or velocity or the intended end position of your arm
(respectively: forward, quickly, the cookie).3 But many, perhaps most,
neurons around us have no such tuning. More confusing is that many of
those with some tuning during the preparation to move seem to change
that tuning during the actual movement.4 Which makes no sense if the
job of those tuned neurons is to make happen the thing they were tuned
for. And on our voyage what have we learned about such a messy
mélange of individually incomprehensible single neurons? Exactly—the
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message is in the legion of spikes from many neurons. But what though
is that message when preparing to move?

Movement poses a new problem, one we’ve not yet encountered.
Moving your arm takes time. So the spikes to move your arm and hand
have to unfold in just the right way over time, contracting the right
muscles in the right sequence. And, once initiated, once the movement
has started, they need to continue unfolding, need to be self-sustaining.
You know how you reach for a pen, only for your arm to suddenly flop
down to your side halfway through? No, you don’t, because it’s never
happened. Once the spikes start to make your arm move, they carry on
until that move is done, come hell or high water. Making such self-
sustaining spikes needs many neurons, wired together—we’ll revisit this
crucial idea later in this chapter and the next. But before the legion of
neurons can emit the self-sustaining spikes in the correct sequence over
time, they first have to get themselves to the start of that sequence. And
that’s what these mysterious spikes during the preparation seem to be:
the spikes in premotor cortex moving its own neurons and the neurons in
motor cortex into the right starting point to then execute the right
sequence of spikes—and the correct set of muscle commands.5

Hang on a second. If we stimulate “arm” neurons in motor or
premotor cortex, the arm moves. Yet when we prepare to move, there are
lots of “arm” neurons in those motor bits of cortex sending lots of spikes
—and the arm doesn’t budge an inch. If these spikes always meant
“move arm,” we’d be eternally flapping wildly about like a toddler
fending a wasp off a precious ice cream. One of neuroscience’s big
mysteries is how muscles know when not to do anything. Why are we
not always flapping our arms about?

The answer lies in the newly discovered “null space.” This is exactly
as sci-fi as it sounds. If right now we followed a spike out of premotor
cortex down to the spinal cord, we’d enter an alternate dimension where
it has no effect on the world. For this dimension is a cunning
arrangement of spikes across the neurons in the motor bits of cortex in
which the spikes signaling an arm (or leg, or hand, or neck) movement
are kept in balance; increases in some neurons’ spikes are counteracted
by decreases in others, so the total number of spikes remains about the
same. And because the sum remains the same, the motor neurons in the
spine do not change their output. And because the motor neurons do not
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change their output, in turn the muscles they target do not change how
much they contract. Lots of spikes, no movement. The null space is the
space of all possible ways the neurons in the motor bits of cortex
controlling a body part can add up to the same number of total spikes.6
Yet, all the while each of those neurons is being moved into the right
starting point for the movement sequence.7

Great, you’re thinking, we’re prepped. Now let’s jump a spike
heading to motor cortex, move the arm, grab that cookie, and we’re
done. Ah, but if only it were so simple. For now we must pitch ourselves
into the undignified scrap for control of your body.

WHAT DO I DO NOW?

For your brain there’s a far grander challenge than just moving your arm:
how do you know it is safe to move your arm now? Something else more
important could already be happening, or need to happen instead. Be it
you’re in flip-flops sprinting ungainly away from an angry squirrel, or
you imminently need to hit the high F in “Let It Go” thanks to a drunken
sign-up to the X Factor auditions, the last thing you need to add to your
deep regret is to spasm your hands randomly in the air.

And that’s why our spike is at the same time sent down to the basal
ganglia, the sullen outcropping of neurons underneath the frontal cortex,
to ask: can I move my hand now? Our work and the work of many others
has shown how the basal ganglia are the brain’s stern parent.8 Endless
spikes pouring out of the basal ganglia are constantly stopping you from
doing what you want. They inhibit everything they touch. No, you can’t
do that. No. No. No. In order to move your arm, our spike must navigate
the twisted pathways of the basal ganglia to reach their output and
momentarily turn off the endless stream of spikes.

We land first in the striatum, gateway to the basal ganglia. The route
we took here is one of uncountably many possible ones: first a jump
between the pyramidal neurons of layers three and five of premotor
cortex, then, instead of taking the branch of axon through the white
matter and on to motor cortex, this time we cling to the cloned spike that
turns down the branch to the striatum. Among the other routes, next door
to us in layer five was the type of pyramidal neuron that sends its axon
all the way to the spine; it too dispatched a cloned spike to the striatum.
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Indeed, all layer five neurons that send axons within the cortex seem to
send a branch down to the striatum. And all layer five neurons that send
axons destined for the brain stem or the spine also dispatch a clone of
every spike to the striatum. Which means that as we arrive on a spike
from premotor cortex, we’re joined by millions of other spikes, coming
from all over the cortex, from all over the prefrontal and parietal cortices,
the memory buffers, the evidence accumulators, and more, from all parts
of motor cortex, from all types of sensory cortex, from touch, sound, and
many stops along Highway What and Highway Do. All sending
information about what is in the world, and what could be done about it.
Striatum knows all.9

And we have compelling evidence that the striatum uses that
knowledge as votes for different courses of action. Electrically stimulate
a small group of neurons in the striatum, and you’ll make a body part
move.10 More precisely, stimulate a group of cortical neurons sending
axons to the striatum, and you’ll bias behavior toward whatever those
neurons encode; for example, stimulate neurons of the auditory cortex
encoding high-frequency sounds, and the mouse will check for reward at
the location previously predicted by high frequencies.11 Turn off the
striatum, and you’ll deeply and permanently impair the mouse’s ability
to make the correct choice of action.12

Some of our most compelling evidence that the striatum controls the
choice of action comes from we humans. Striatum malfunction is at the
core of most of our movement disorders. The most striking outward
signs of Parkinson’s disease are its problems with moving—the rigidity
of the body, the slowness of movement, the inability to start moving. The
death of dopamine neurons prefigures these symptoms, and by their
death the striatum loses its source of dopamine. Remove dopamine from
an animal’s striatum, and Parkinson’s-like movements result. In
Huntington’s disease, the death of the striatum’s principle cells
prefigures that disease’s uncontrolled, thrashing limb movements. And
more: dystonia, with its unnatural long-lasting muscle contractions;
Tourette’s syndrome with its tics and problems of speech control; even
disorders of inappropriate actions, such as obsessive compulsive
disorder. Malfunctions of the striatum are implicated in all of them; all
are disorders of making the right choice of action.
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Not just making the right choice, but stopping actions too. Flowing
out from the striatum are two pathways of axons, from two groups of its
principal neurons (figure 8.1). One pathway sends axons directly to the
output neurons of the basal ganglia. This direct pathway selects action.
Stimulate just its neurons, and depending on what it was already doing,
an animal will start scampering, or start a sequence of moves, or insert a
new action into an ongoing sequence of moves. The other pathway
follows a more torturous, indirect route to the output neurons of the basal
ganglia, via jumps onto neurons in the internal nuclei of the basal
ganglia. This indirect pathway controls and aborts action. Stimulate just
its neurons, and depending on what the animal was already doing, it will
stop scampering, or fail to start a sequence of moves, or abort an ongoing
sequence of movements. Together, these direct and indirect paths out of
the striatum exercise tight, competing control over what you’ll do next.13

Yet for all its barrage of incoming information, its crucial role in so
many disorders, and its competing neurons, the striatum says very little.
The striatum is massive, with about one-fifth the number of neurons in
your entire cortex, but is deathly silent. Hook up the lab speakers to an
electrode as you lower it through the layers of cortex, and you’ll hear the
constant chatter of spikes, the tick-tick-tick as the electrode descends;
suddenly, as the electrode bursts through white matter and into the
striatum, the lab is becalmed, the speakers fall silent. The principal
striatum neuron can absorb a fantastic number of spikes without making
a new one. I once estimated the principal neuron needs upwards of 500
excitatory spikes in one second to make one new spike, fivefold more
than needed by a pyramidal neuron in the cortex.14 Indeed, the principal
neurons seem designed precisely to be choosy, to ignore anything but a
concerted volley of spikes from the cortex,15 perhaps to filter out the
noise, to make sure that random smatterings of spikes from the cortex
don’t invoke an unwanted, inappropriate, or downright dangerous action.
Fortunately for us, we’re on the leading edge of just such a volley
converging from premotor cortex. So we wait but briefly on the principal
neuron’s body until we grab a spike on the direct route out.
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FIGURE 8.1. Basic layout of the basal ganglia. Axons from all over the cortex send
spikes streaming into the striatum. The striatum divides these among two groups of its

neurons: the direct and indirect pathways to the output neurons of the basal ganglia.

We shoot down the axon and jump the synapse as our arrival pumps
inhibiting molecules of GABA onto an output neuron of the basal
ganglia.16 Which ignores us completely. The noise here is incredible. A
roar of spikes pouring forth from every neuron around us, sixty to
seventy spikes every second, a constant stream, spewing GABA onto
everything they target. We need to turn off the stream, to send a signal
it’s safe to move your arm now.

RELEASE ME

The neuron we sit on is one of the vanishingly few that sit at the output
of the basal ganglia. What they lack in number, they make up for in
punch. Each spewing their sixty, seventy, or more spikes every second to
all their targets, targets spread over vast swaths of the midbrain and brain
stem that are crucial for movement.17 The superior colliculus for moving
your eyes and orienting your head;18 the multitude of outcroppings
across the midbrain controlling all forms of locomotion, your walking,
running, trotting, galloping, skipping, hopping;19 other outcroppings that
control your posture, the adjustments of muscles all over your body that
hold you upright, balanced, and poised;20 and the many subdivisions of
the thalamus, the gateway back to the cortex.21

The neurons in all these regions are permanently drowning in the
GABA spewing from the basal ganglia output neurons, GABA that
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suppresses any upward blips of voltage, that suppresses the voltage of
these target neurons from reaching their tipping point and sending a
spike. GABA that suppresses movement.

Turning off this torrent of GABA, releasing the target neurons from
their suppression, allows movement. Switch off the output neurons in
rodents, and their target neurons in thalamus immediately start sending
spikes.22 If you were to permanently switch off the output neurons that
control where your eyes are looking, then you could not stop your eyes
from constantly looking at new things.23 The reverse appears to happen
in Parkinson’s disease: turning off the torrent of spikes from the output
neurons becomes ever more difficult, and movement slows or freezes
completely.24 So we need to turn off the torrent so you can move. (And
we want to turn off just those output neurons that control the specific
movements you want to make now—the adjustment of posture as you
lean forward, the eye and head orienting to the cookie, the arm reaching
to it.)

We already know the striatum’s direct pathway is the key: it selects
actions, so must be able to turn off the torrent of spikes from the output
neurons. Indeed, the striatum is an inverter of the cortex, turning
excitation from cortical neurons into inhibition. Our arrival on a spike
from striatum sent GABA to the output neuron on which we sit. But
striatum is silent, most of the time. How can neurons sending so few
spikes turn off this huge wave of spikes from the output neurons?

The brain uses the trick of scale to solve this problem, a shining
example of how dark neurons can do useful work. The striatum’s
neurons outnumber the output neurons by two orders of magnitude; in
the rat, by three million to about thirty thousand.25 Even if each striatum
neuron only contacts one hundred output neurons, and likely they contact
many more, then each output neuron will get ten thousand inputs from
the striatum. All ten thousand sending inhibition to that one output
neuron of the basal ganglia. So it just needs a small fraction, perhaps just
1 percent of those inputs, to send one or two spikes, and hundreds of
GABA receptors activate on a single output neuron, shutting down its
spike torrent.

We arrived on the leading edge of a massive volley of spikes from the
striatum, a volley that now piles into this output neuron and those around
us. The volley builds, the GABA flows freely, the inhibition accumulates
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—and the torrent of spikes from this neighborhood of output neurons
begins to dip, slowly at first, then faster, until some stop completely.26

Success! But success is bittersweet for us. It means we’re about to hit
a dead end—we’re about to quash the spikes coming out of the neuron
we’re sitting on and be left marooned here while your arm reaches out
for the confounded cookie. We leap onto the last spike out, follow it up
the axon toward the motor regions of the thalamus, while its clones
follow branches down into the midbrain and brain stem, the last hurrah
of inhibition, releasing the neurons needed to lean, twist, move the
shoulder, extend the arm. Into thalamus, and jump the gap. As the
GABA-driven downward blip of voltage our spike induced fades, this
thalamus neuron is springing into life, its voltage rocketing upward now
the torrent of GABA has dissipated. A spike is born; we hop on, and
ascend back to the motor cortex.

WITHIN YOUR GRASP

Just in time too. With the extra oomph of spikes from the thalamus now
arriving across the motor regions of cortex, the preparation is complete.
As we arrive, following the molecules across the gap onto a pyramidal
neuron in layer three of motor cortex, the neurons around us are ready to
start unfolding the sequence of spikes to reach your hand and grasp the
prize. And while we could check if each of the neurons around us was
tuned for a specific muscle contraction, or velocity, or parameter of
movement—and many people have over the years—we know by now
that most neurons will not have any tuning.

Motor cortex was perhaps the first to reveal to us the power of the
legion of spikes. In 1986, Apostolos Georgopoulos and colleagues
showed that we could combine the spikes from a small population of
neurons in motor cortex to accurately decode the direction an arm was
moving in three-dimensional space.27 But to do this, they only
considered neurons tuned for direction, combining the spikes of neurons
that each had a clear preference for a particular direction of movement.28

It took many more years to realize we could just as easily decode
movement from any old collection of neurons in motor cortex, that
tuning was not important, that the legion was key.29 Now we can even
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use the spikes from about a hundred neurons in motor cortex to decode
which of twenty different grips is being used to hold an object.30

But, remember: movement is a continuous thing that unfolds over
time, an evolution of muscle contractions at different moments, driven
by self-sustaining spikes in the right sequence. And now the preparatory
activity has moved the motor cortex neurons to the right state to start the
sequence that will move your arm. That sequence is disarmingly,
charmingly, weirdly simple.

Mark Churchland, Krishna Shenoy, and their collaborators have
reported that, during arm movements, these self-sustaining dynamics in
motor cortex have a simple, consistent behavior: they rotate.31 While
each neuron can have a complex-looking sequence of increases and
decreases in spikes while an arm is moving, collectively those complex
sequences trace out an arc, a reliable ebb and flow of spikes across all
the neurons, a relay race of whose turn it is to send their spikes now.

This simple shape of the legion’s spikes contrasts with what the
muscles are doing. Under the apparently smooth movement of a reaching
and turning arm are occasional sudden changes in the contractions of the
muscles, yet we do not see sudden changes in the spikes from most
neurons in the motor cortex, no sudden veering off course, wild jumps of
sudden bursts of spikes, or sullen silence. Rather, while your arm is
moving, the motor cortex is dominated by smooth changes in the number
of spikes being sent across its neurons. Indeed, when your arm is itself
rotating, like turning a handle, its muscles are beset by sudden changes,
rapidly contracting and releasing, yet in motor cortex the spikes are
tracing what is basically a circle for each rotation of the handle.32 This is
exactly what you’d expect to see if most of the spikes are not sending
commands to move at all, but are instead to create self-sustaining spikes.
The lack of tuning in most neurons of the motor cortex is then because
most neurons are producing the self-sustaining spikes, to keep movement
going.

The command to move the arm is still there in the spikes being sent
around us. When the arm is rotating a handle, we can directly decode the
muscle contractions from ripples in the circle traced by the legion of
spikes.33 We can predict the trajectory of a reaching arm from the shape
of the arc traced by the legion of spikes.34 We can even decode arm
movements from the changes to the legion’s spikes that are common
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across different tasks.35 Which all means that around us wafts a wave of
spikes, most driving a smooth familiar pattern, keeping the movement
going, some unique, those needed to contract a particular muscle just so,
right now.

Time to find out what this waft of spikes is talking to. Grab that spike,
quick. We descend from layer three to layer five again, this time careful
to hop onto a pyramidal neuron with a big, thick axon, one that will take
us across the epic distance from layer five of your motor cortex to the
upper part of your spinal cord, where live the motor neurons for moving
your arm. Into the pyramidal tract we launch, a dense parallel bundle of
axons, all streaming from layer five neurons down toward the spine, all
now lit up with spikes.

Many of these axons are on their way direct to the spinal cord. Those
from the arm and hand regions of the motor cortex will stream down
toward the outer edge of the spinal cord, to hit the motor neurons whose
axons snake out toward the muscles across the arm. Those from the
shoulder and trunk regions of motor cortex stream toward the spine’s
center. On the way down, many axons will send branches into different
parts of the brain stem, launching clones of spikes into small pockets of
neurons crucial for coordinating your lean across the desk, the shifts in
posture and balance; crucial for coordinating precisely how much each
muscle has to contract to hit the target and pick it up;36 and crucial for
you to hold your breath momentarily, placing your body on silent
running, minimizing the risk of drawing attention during the cookie grab.

We’ve reached the spinal cord in the blink of an eye, a few
milliseconds, that fat, myelin-wrapped axon of the layer five neuron an
epitome of why the brain uses spikes to send messages far and fast. As
we plummet through the top few segments of the spinal cord, we’re
surrounded by another complex network of interconnected neurons,
some types that excite their targets, some that inhibit them, both of which
send their spikes to the motor neurons, the ultimate conveyors of spikes
to the muscles.37 Such a circuit of inhibitory and excitatory neurons
converging on each other is strongly reminiscent of the cortex.
Researchers in Rune Berg’s lab in Copenhagen have shown this
reminiscence is deep,38 so deep that the motor neurons fire random-
looking, irregularly timed spikes; that they do so because the excitatory
and inhibitory inputs arriving at them are kept in exquisite balance; and
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that the number of spikes sent by each neuron follows that “long-tailed”
distribution, most neurons firing less than one spike every second, a few
firing tens of spikes. Even here, at the very last step of our journey,
outside the brain proper, we find the legion at work around us.

Most axons from the motor cortex land within the spine’s network of
neurons, targeting the types of neuron that ultimately connect to the right
motor neurons for the movement that is to be made.39 But we’re flying
first class, following the axon from cortex that controls the fingers. We
land directly on a motor neuron. This route from brain to spine is only
available to us higher primates, seemingly the crucial ingredient in our
extraordinary ability to manipulate the world with our hands, for the fine
precision control of our fingers.40

Gliding across the gap onto the motor neuron’s dendritic tree, for one
last time we flow with the little voltage blip down toward its body, our
blip and others driving the motor neuron to its tipping point, hold tight to
the spike as it zips through its long snaking axon, up into the shoulder,
down the arm, and into the endplate, a synapse onto the flexor digitorum
muscle, watch the molecules flow and lock into receptor, feel the muscle
contract—and your finger touches the cookie. We’re done.
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CHAPTER 9

Spontaneity

THE WORLD IS NOT ENOUGH

Everywhere we’ve been, spikes were already there. In the motor cortex
we entered the null space, traveling on a spike that simply added to
spikes already there—contracting the muscle needed a change in the
number of spikes constantly streaming from the motor cortex. In
prefrontal and parietal cortex, when we landed our spike on a neuron,
spikes were already pouring out of it and the neurons around us,
buffering memories and accumulating evidence. You may recall that at
every jump along Highway What and Highway Do, spikes were
streaming back past us, back toward V1, spikes that already existed
throughout the visual regions of cortex before you’d seen the cookie.

And in V1 itself, spikes were already there. Departing the retina, our
first landfall in your cortex was the simple cell in layer four. Yet
descending its tree to its body, we discovered we were but one of many
voltage blips arriving there, blips caused by spikes from other neurons in
layer four of your visual cortex, including those pesky interneurons
spewing GABA. Indeed, the spikes arriving from the eye were heavily
outnumbered: on a simple cell about 5 percent of its inputs come directly
from the eyes.1

Everywhere we went, spikes were already there. Yet we were in the
first wave of spikes sent by the cookie falling on your retina. How can
that be? What made those spikes?

To explain that means dismantling two deep misconceptions about the
spike. I held them, and most neuroscientists do too. But now at the end
of our spike’s journey we have seen enough to know better.

The first misconception is that all spikes are caused by events in the
world. That if we see a neuron sending a spike, then it must be linked to
something happening in the world. That, for example, a spike in motor
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cortex ultimately has its origins in a spike from the retina caused by
seeing something.

This is not true. Many spikes, possibly most spikes, have no cause in
the outside world. Collectively, we call these spontaneous activity—
spikes that arise seemingly unbidden.

One explanation for these “spontaneous” spikes is that they are the
traces, the echo, of what just happened a moment before. That perhaps
on our journey these “spontaneous” spikes were created by the initial
glimpse of that scruffy cardboard box with its half-open lid, before your
eyes fell on the cookie’s form. A tempting explanation, but incomplete.
We know they do arise unbidden. There have been spontaneous spikes in
your brain whatever you’ve been doing, throughout your entire life.

Close your eyes. No light enters your eyes, nothing needs sending to
the vision parts of your cortex. You’d think the spike would take a well-
deserved rest at this point. But no. Your visual cortex is ceaselessly
spiking, eyes closed or eyes open, whether there is anything to see or not.
Indeed, brain imaging has shown us that a whole network of cortical
regions are paradoxically at their most active when you’re quietly
resting, eyes closed; when you do something, this network reduces its
activity. The spontaneous activity in this “default” network is not only no
echo of the outside world, but is also reduced by engaging with it.2

Now sleep. Naively one might think that sleep is your brain “turning
off,” that neurons stop talking to each other. Brains can’t do this; after
all, neurons not talking to each other is a key element of many countries’
legal definition of death. Instead, neurons all over your brain are sending
spikes throughout your slumbering.3 In the deepest stage of deep sleep,
neurons all over your cortex switch about once a second between a burst
of spikes and a burst of silence. And they switch together, synchronized
across your cortex, a coordination of spiking then silence a world away
from the irregular, desynchronized firing of the alert brain. Yet cortical
neurons send just as many or more spikes in total in this slow-wave sleep
as when you’re awake. In REM sleep, the same cortical neurons send
irregular, uncoordinated spikes, looking for all the world like you are
awake. Except they have little effect on the world, because the motor
neurons in the spine are inactive, profoundly inhibited, blocking the
brain’s access to your body muscles.4 Sleep, then, is filled with
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spontaneous spikes, born of no inputs, yet filling the brain with the buzz
of activity.

That buzz of spontaneous activity has been there since your first days
on Earth.5 Everywhere in the developing brain, in the retina, in the
cortex, in the striatum, in the dark recesses of the midbrain and brain
stem, neurons send spikes spontaneously before there is anything to
cause them. Spikes in the retina and the visual cortex before the eyes
open. Spikes in the whisker bits of sensory cortex before the whiskers
move.

The spontaneous activity of the developing brain has many possible
roles. It controls how many neurons are born, and which die. It shapes
the neurons themselves and the wiring between them. The initial
connections between neurons in the cortex seem to be made at random,
synapses appearing wherever axon touches dendrite.6 How far a neuron
extends its dendrite as it develops is not fixed, but is regulated by its own
activity. The tree grows if the neuron is not active enough, seeking new
inputs, a bigger legion to drive the neuron to its tipping point more
easily. Conversely, the tree shrinks if the neuron is too active, trying to
lose inputs, shrink the legion, and make it harder to reach the tipping
point.7 Spontaneous spikes have been there since the beginning.

Spontaneous spikes no doubt have different roles to play in
development, in sleep, and in your moment-to-moment waking life. But
regardless of their role these spontaneous spikes have in common the
same two options for their creation: from the neuron itself, or from the
circuit.

WHO SAID THAT?

Here we meet the second of our misconceptions about spikes: that
neurons always need inputs from other neurons to make a spike. That if
we see a neuron sending a spike, then it must have been caused by a
cascade of voltage blips down its dendritic tree, combining at the
neuron’s body to drive it to the tipping point for a spike.

This is not true either. For the most straightforward way to get
spontaneous spikes is for a neuron to make its own spikes.8 To be
literally spontaneous.
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We ran into some of these crazy neurons down in the basal ganglia.
That wall of unending GABA from the output neurons was spontaneous.
Their ceaseless output, stopping you from dancing the polka on your
boss’s desk, comes from neurons that are so committed to making spikes
they’ll even do it sitting alone in a dish. Cut an output neuron of the
basal ganglia from the brain, and for as long as you can keep it alive it
will spit out a spike with clockwork regularity every 100 milliseconds or
so.

As we learned at the start of our journey, a spike is born from a rapid
opening-and-closing sequence of holes in the neuron’s skin. Holes of two
types: those that let sodium rush in; and those through which potassium
is pumped out. This quick-fire sequence is triggered by the neuron’s
voltage reaching its tipping point. So for a neuron to make its very own,
spontaneous spikes, without input from other neurons, its voltage must
reach the tipping point all by itself. To do this, neurons that make their
own spikes are equipped with special types of holes in the neuron’s skin,
holes that create a feedback loop; as the neuron’s voltage plummets at
the end of a spike, these special holes slowly open, letting positive ions
slowly accumulate in the neuron, driving up its voltage back toward the
tipping point. Which births a spike, and starts the whole process anew.
This is exactly the same mechanism that drives the constant pulsing of
the pacemaker cells in your heart, whose spontaneous, tick-tock spikes
keep your heart beating and you alive.

We find pacemaker neurons throughout the brain. They’re in all parts
of the basal ganglia, not just its output: the cunningly named subthalamic
nucleus (translation: bit of brain tucked under the thalamus) and globus
pallidus (translation: the pale globe bit) are entirely made of pacemaker
neurons; the striatum is peppered with a giant pacemaking interneuron.9
Vitally important are the swath of pacemaker neurons across your
midbrain that transmit neuromodulators, neurons whose unending spikes
deliver a fresh supply of serotonin, noradrenaline, and dopamine all over
your brain. You already met an example of how they are vitally
important: losing the constant supply of dopamine to the striatum we
know as Parkinson’s disease. Pacemaking neurons also appear widely
during the very early development of the brain, across the cortex, in the
retina and elsewhere, driving the spontaneous activity that guides the
growth of neurons and the creation of connections.10 While many of the
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pacemaking neurons in the cortex disappear shortly after birth, there are
even reports of rare pacemaker neurons in the developed cortex of
mice.11

Beyond these pacemaking neurons able to entirely self-generate
spikes are other types of neurons, verbose, chatty neurons, that generate
more spikes than asked for.12 Some verbose neurons create a spike after
being released from inhibition. They bounce back, rebound, from
suppression and announce to the world “I’m free!” Some verbose
neurons send a whole burst of spikes after reaching the tipping point for
the first spike, driven by special holes in the skin that are popped open
by that first spike and allow positive ions to accumulate for a while,
pushing the neuron’s voltage repeatedly back to its tipping point for a
spike. The cortex has some of these verbose neurons too, neurons that
have many ways of speaking without prompting.

But spontaneous spikes born of no input create unstructured activity,
with each neuron doing their own, independent thing. And, with the
possible exception of the very early developing brain, the pacemakers
are not enough in number to create spikes across a whole network of
neurons. The rare pacemakers and bursters in the cortex are not enough
to generate the spontaneous activity we’ve seen throughout our journey.
No: the source of most spontaneous activity is the network itself.

FEEDBACK

Take a slice of the cortex, and drop it into a dish. Now record lots of its
neurons. Despite being connected to nothing but each other and
receiving no input from the outside world, the slice will be abuzz with
spikes, dotted with groups of neurons that fire spikes together.13 Bathe
that slice in a chemical soup that mimics the salty water sitting outside
neurons’ skins in the intact brain, and neurons across the whole thing
will spontaneously fall into the slow-wave rhythm, each alternating a
burst of spikes and silence every few seconds.14 A deep-sleeping slice of
isolated cortex. Slices of the hippocampus not only spontaneously spike
in coordinated patterns but also spontaneously change those patterns
every few minutes.15 Yet bathe these slices in a chemical soup that
blocks the synapses between neurons and almost all the spikes vanish,
leaving just the rare pacemakers sputtering away. In all these isolated bits
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of brain, the vast majority of spikes are generated by the network of
connections between the neurons.

The key is feedback. Circuits of neurons wired together can sustain
their own activity, by feeding back spikes to each other, creating new
spikes in neurons solely from spikes already traveling around the circuit.
We know what the brain needs to create such feedback: it needs a legion
of spikes to make one new spike, so the feedback must be from many
neurons; and excitatory feedback by itself runs away, so we need
inhibition to balance the feedback excitation. Our journey showed us
these circuits exist all over the cortex.

We saw that a pyramidal neuron sends much of its axon nearby,
branching furiously to connect to thousands of its neighboring pyramidal
neurons. As intrepid, impatient explorers shooting the rapids, hopping
spikes from one neuron to the next, we explored but one of those
connections. If we’d been patient cartographers, dutifully charting the
possible routes from our starting point, we would have discovered each
pyramidal neuron sits at the center of myriad feedback loops.

Start on one pyramidal neuron and follow its axon to a neighbor. Then
follow that neuron’s axon to one of its neighbors. And keep on going,
tracing a chain of pyramidal neurons. There is always a chain that ends
up back at our starting neuron. It could be an axon sent directly back
from the very next neuron, giving immediate feedback; it could be three,
five, or ten neurons later. But we can always find a complete loop back
to the start. So by sending a spike, a pyramidal neuron creates the
potential to excite itself in the very near future.

The potential, because most loops will fail to feedback that spike to
the starting neuron. At many neurons in many of those loops, there won’t
be enough other upward voltage blips arriving at roughly the same time
to make a spike. And even if a spike is made, we know it is likely to fail
at a crucial synapse, so breaking the chain. Yet we can guarantee the
spike will find a way back, because the numbers of loops are
astronomical, almost uncountable.

Imagine a pyramidal neuron in a tiny neighborhood of just ten
thousand other neurons, connecting to each neuron in that neighborhood
with a probability of 10 percent. Then it will have about one hundred
immediate feedback loops, direct feedback from the neurons it directly
contacts: our starting neuron will connect to about one thousand of the
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ten thousand; of those one thousand, 10 percent will connect back to our
starting neuron, giving one hundred immediate feedback loops. But each
of those one thousand contacted neurons will each in turn contact about
one thousand further neurons, a million neurons now in total, who could
each connect back to our starting neuron. Run the math, and our starting
neuron will have about ten thousand feedback loops that are two neurons
long, and about ten million feedback loops that are three neurons long.16

So in your cortex, with vastly more than ten thousand neurons in each
neighborhood, there will be more than enough loops conveying spikes
from start to finish, feeding back to create a rapid series of voltage blips
in the original neuron, driving it to spike. Starting the whole process
again.

(And that’s just within the local neighborhood of neurons within a
single layer of the cortex. Zooming out, we see more feedback, more
ways to sustain spikes. There are loops between layers within the same
region of cortex.17 In your visual cortex, we sprinted from layer four up
to layers two and three, then down to layer five. Painstaking cartography
would have shown us that we could loop back to layer four from layers
two and three, or loop from layer five back up to layers two and three.
There are loops between regions of the cortex. Just like we saw on both
visual Highways, with spikes streaming back past us toward the regions
—V1, V2, V4, MT—we’d just left.18 And there are long loops that leave
the cortex, run through the thalamus and back to cortex again.19 Loops
near and far.)

That’s the legion for making spontaneous activity; now what about
the necessary balance? We’ve seen that too. On our journey we also saw
that a pyramidal neuron’s axon contacts some of those rarer interneurons
that transmit GABA and inhibit their targets. Rare indeed: about 90
percent of the inputs to a cortical neuron excite it; only about 10 percent
inhibit it. But we saw they were powerful. Positioned close to the
neuron’s body, these GABA synapses annihilate excitatory blips trying to
get past. And those GABA synapses have a much lower rate of failure
than excitatory ones. So spikes from these interneurons are reliable and
powerful. Some interneurons will connect directly back to the originating
pyramidal neuron. Others inhibit pyramidal neurons farther along the
loop, stopping those from spiking. Yet others will be at the end of the
loop, ultimately sending inhibition back to the starting neuron. Thus one
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spike from a pyramidal neuron fires a starting gun on millions of races
through the network, excitation and inhibition flowing through the dense
web of intertwined downstream neurons, ultimately creating a flow of
excitation and inhibition back onto that starting neuron.

From deep theoretical work, we know the fine details of such a
network of neurons will determine both the kind of spontaneous activity
and how long it lasts. The fine details of the exact mixture of excitatory
and inhibitory neurons, of what is wired to what, and how strongly.20

Some wirings can massively extend in time the network’s response
beyond an initial short, sharp input.21 Or completely self-sustain after
that input. Or even have a network self-sustain spikes without any kick-
start input at all, because the spikes already within it are sufficient to
make more spikes for as long as that network is intact. Some making
irregular patterns of spikes, some making oscillations, spikes coming in
waves, and some collapsing into chaos.

And theorists have a good handle on what kind of networks drive the
self-sustaining spikes we saw in action in your me-want-cookie brain.

Most obviously, the self-sustaining activity in your motor cortex that
drove your arm up and across the desk, fingers stretching to grasp the
cookie. There’s a well-developed theory of the type of self-sustaining
networks that make the “arc” of firing across the legion in motor
cortex.22 A theory that says the network of the motor cortex has the
feedback loops, balance, and wiring such that when prodded with an
input, it unfurls a self-sustaining sequence of neurons firing spikes. Self-
sustaining, but transient—the sequence of firing long outlasts the initial
prod, but disappears after tens of milliseconds.

Indeed, from humans to mice to sea slugs to the maggots of vinegar
flies, movements of all kinds are created by such self-sustaining
networks of neurons.23 Everywhere we find rhythmic movements—
walking, crawling, swimming—we find circuits of neurons that self-
sustain repeated activity. That once prodded into life, self-sustain
neurons firing cycles of spikes then silence. Each burst of spikes from
multiple neurons at the same time driving the contraction of a muscle;
each cycle of spikes across all the neurons creating a single repetition of
the movement, one stride, one push-pull of the crawl, one stroke of the
swim.
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Your prefrontal cortex neurons that sustained memories of the cookie,
the box, and the personnel in your office did so in their persistent spikes.
And persistent spikes need sustaining. So our best theory for this
memory buffer is that prefrontal cortex contains networks of neurons that
feedback on each other, that given a prod of input—a tatty box lid, a
fleeting glimpse of a coworker—self-sustain spikes holding that input in
mind.24

The same kinds of network are likely what support decision-making
too. The accumulated spikes in parietal and prefrontal cortex can last for
seconds. And lasting for seconds implies the spikes must be sustained by
the neurons themselves. So our best theories for how neurons send spikes
throughout long-gestating decisions is that they too are part of a network
feeding back on each other.25 One set of theories places this feedback
between neurons in the local circuits in cortex;26 another places the
feedback across the loop to and from the cortex, running through the
basal ganglia and thalamus.27

So we think feedback networks are everywhere in the cortex,
networks of neurons that create their own dynamics. In motor, prefrontal,
and parietal cortices we see the kind of long-lasting spikes that are the
signatures of self-sustaining networks. Elsewhere in cortex, even when
we haven’t explicitly looked for these kinds of self-sustaining spikes
from neurons, we can see the blueprint of these feedback networks. The
wiring between neurons in the cortex is roughly the same everywhere,
even in the first regions of visual cortex. There are myriad feedback
loops to pyramidal neurons in local neighborhoods. So even if we cannot
unambiguously see self-sustaining spikes in these bits of the cortex, it
seems likely these regions are capable of producing them.

To me, this raises an interesting idea. In your motor cortex we saw
many neurons with no apparent tuning to the movement of your arm. To
the researchers who discovered this lack of tuning this came as no
surprise, because the theory that motor cortex contains a self-sustaining
network predicts it: there should be neurons with no tuning, because
those neurons were part of feedback loops, not directly getting input or
sending output directly to the spinal cord. But on our journey through
your brain we gave a name to neurons that had no obvious response to
the outside world: Type 2 dark neurons. We saw Type 2 dark neurons
everywhere.



141

The idea then is simple: these Type 2 dark neurons are actually telling
us that all cortical regions are dominated by self-sustained dynamics.
That in fact Type 2 dark neurons, those “active but not tuned” neurons,
are all there to generate the spontaneous activity.28 In V1, V2, V4,
throughout Highway What and Highway Do, everywhere we have (and
haven’t) been. Everywhere in the cortex we think we’ve not seen spikes
from sustained dynamics, perhaps we’ve been looking at them the whole
time—they just are the spikes of Type 2 dark neurons.

We see spontaneous spikes all over the cortex. And as just recounted,
we have a good handle on how they are generated. But in the awake
behaving brain what are they for? Both pacemaking and network forms
of spontaneous activity are a neuroscientist’s nightmare; they use an
extraordinary amount of energy, yet being born of no input, they seem to
carry no message about the world, have no code. Solving the deep
mystery of their existence is the topic of the final chapter.
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CHAPTER 10

But a Moment in Time

SPEED LIMITS

The cookie is on its way toward your mouth. As it ascends, spikes have
been all over your brain: from the retina, to visual cortex, through the
prefrontal cortex, onward to motor cortex and the basal ganglia, and
down through the brain stem and on to the spine. For you, it was but a
moment in time. A mere two seconds. From looking to reaching, the
blink of an eye.

From the simplest reflex, snatching your hand back from a lava-hot
coffee, to freezing when a tiger coughs behind you, to deciding whether
the black and white blur streaking toward you is an ecstatic Dalmatian or
angry panda, to your brain filling in the next words in your favorite song
so you can belt out the chorus flatter than Denmark, the speed with
which your brain can—must—respond to the outside world puts brutally
tough limits on how spikes work. And your brain can react obscenely
fast.

Simply responding to the outside world takes it just a handful of
milliseconds. I flash you a picture and the first detectable change in the
spikes from your retinal ganglion cells happens about 20 milliseconds
later. Your V1, that first bit of your visual cortex, responds about 40 to
50 milliseconds after the picture appears. From there every step along
Highway What adds about 10 more milliseconds: a response in V2 10
milliseconds after V1; in V4 about 10 milliseconds after V2. Highway
Do is faster, area MT’s neurons changing their spikes a mere 10
milliseconds after that first detectable change in V1.1

Seems sensible, no? Highway Do is fast, a reactive route through the
cortex for working out where and how something is moving, to give you
immediate options for touching and grabbing, or ducking and diving.
Highway What is slower, a deliberative route through the cortex for
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working out what something is, to let you know if it’s edible, punchable,
or about to castigate you for being late for work. Slower, but your
fusiform face area will still light up less than 100 milliseconds after
seeing a familiar face.

Doing more than just responding to the outside world doesn’t take the
brain much longer.2 Here’s a challenge for you: I’ll flash you a picture
for a mere 30 milliseconds while you hold down a button; your job is to
let go of the button only if the picture contains an animal. From that
merest glimpse, your brain has to use the spikes pouring from the retina
about where is dark and where is light and what angle the dark and light
fall at, use those spikes to not only reconstruct the basics of what is in the
picture, but then compare that reconstruction to some stored memories of
what animals look like. And then decide whether any of those animal-
like features are in the picture. Sounds tough. Yet in all probability you
would get at least 90 percent correct. Because your brain can work this
out really fast: from the picture first appearing to when activity at the end
of Highway What (in your prefrontal cortex) differs between pictures
with and without animals is just 150 milliseconds.3 And if that sounds
implausibly fast, then consider this: Terry Stanford and friends showed
that just 30 milliseconds is enough for a new bit of visual information to
impact a decision.4

Of course, the more processing the brain has to do, the slower the
response. Once your brain has decided whether the picture contains an
animal or not, there’s more work to be done. You have to select the
correct response—release the button or not—and then execute that
response. You’ll likely average around 450 milliseconds between the
picture appearing and letting go of the button. Which as your brain
already seemed to know whether there was an animal as early as 150
milliseconds, suggests that sorting out the correct response took a long
time.

Or we can make your brain slower by making it do math. To you this
might seem blindingly obvious. Nonetheless, Stanislas Dehaene set out
to test quite how slow.5 He asked his volunteers a simple question: is this
number larger or smaller than five? They averaged about 400
milliseconds between their first exposure to the number and giving the
answer by pressing a button. Their brains took less than half a second to



144

comprehend what the number was, compare it to five, and then respond
by pressing the correct button. And could be even faster.

The clever bit of Dehaene’s experiment was that he manipulated all
three parts—comprehending, comparing, responding—to find out which
was the bottleneck. Responses were faster if the number was shown not
spoken, suggesting the brain comprehends writing faster than speaking.
Responses were faster for numbers farther from five, suggesting the
number line is literally real. And responses were faster for button presses
with the right hand than the left hand: as all volunteers were right-
handed, this suggests that the dominant control of that hand by their left
motor cortex (the lateralization of chapter 4) plays out as faster
processing speed. So the fastest response of 375 milliseconds came from
seeing a number far from five that needed the right-hand button as its
response; the slowest response of 435 milliseconds from hearing a
number close to five that needed the left-hand button. But these
differences in processing—in comprehension, in comparing, in
responding—shifted the brain’s overall responses by just a few tens of
milliseconds.

We can make the brain slower still by not giving it enough
information. Those movies of dots randomly moving about pop up again
here. Recall that the task is to decide the dominant direction that the dots
are moving in and indicate that decision by looking at a light in that
direction—to a light on the left, or a light on the right. We can control
how hard the task is by changing the fraction of dots moving in the same
direction. And the fewer the dots moving in the same direction, the
harder the task, the slower people, monkeys, and rodents are to make a
decision.6 If half of the dots are all moving in the same direction, then it
takes about 400 milliseconds to make a decision, and almost all decisions
are correct. But drop that to just 3 percent moving in the same direction
and then it takes about twice as long to make a decision, and still
subjects make many, many errors. Worse, if we play the cruel trick of
making no dots move consistently in the same direction, so there is no
right answer, people will stare at the display for a second or more, even
when instructed to make a decision as fast as possible. When gathering
sparse, difficult information the brain slows right down. Slow is still
relative—it’s a mere second, after all.
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Your decision to pilfer the cookie in your hour of need combines all
the above, and more. Spikes combining all those patches of light and
dark and angles into a crumbly cookie, within the tray of a box with lid
open, “Cookies” scrawled on it, sat atop the bland brown desk. Spikes
for recognizing that oaty-brown bobbly half-moon dotted with dark
chunks as a cookie, an item of food, an answer to the pressing problem
of rousing yourself before the imminent all-hands meeting. Spikes for
remembering where your coworkers were just a split second ago, who is
with whom, who is looking where. Spikes for accumulating those
memories and new information as evidence for whether to take that
cookie or not. Spikes for reaching, reaching to touch your fingertip to its
crumbly edge. Even given a generous allowance for the lethargy of your
postlunch addled brain, that’s about 300 milliseconds to assemble the
what and where of the cookie, another 1.5 seconds to recall everything
and make a decision, and another 300 milliseconds to lean and reach for
joy. All that in just 2.1 seconds.

On these timescales, spikes are ponderous. The physical process of
making and sending a spike places hard lower bounds on how many
spikes can be transmitted, received, and made anew within a second or
two. Evoking a voltage blip is fast, but not infinitely so: molecules
diffuse, ions flow, the voltage rises and falls. Collating blips to reach a
tipping point can be fast, but not infinitely so. Making the spike at the
tipping point is fast, but not infinitely so. Sending a spike along an axon
is fast, but not infinitely so. Each step of making and sending a spike
adds more time, more delay to the processing of what is happening in the
world. Even if each spike arriving at a neuron evoked a voltage blip big
enough to push the neuron to its tipping point, there’d still be a delay of
at least 10 milliseconds from the spike arriving at the gap to the new
spike arriving at its destination—and longer still if the axon is slow or
long or both. How then can you know what and where a cookie is in less
than 300 milliseconds? How then can your brain overcome the speed
limits of spikes?

There are two solutions. The first solution is well known: the brain
computes in parallel.

ROADS NOT TAKEN
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This first solution to the speed limit problem lies in the roads not taken.
Our journey was a single path, a single, serial chain of neurons,
stretching from the retina, through much of the cortex, and down to the
spine. And even then we had to clone ourselves, one of us down
Highway What, the other down Highway Do, to keep track of the
division of labor needed to solve the seemingly simple task of picking up
a cookie. But there were so many roads we could have gone down,
journeys that were happening in parallel to ours.

We could see this parallelism all around us. Every time we clung to a
cloned spike zipping along its axon to a gap, we jumped across it to
descend a neuron that was about to send a spike. We could have taken
the leap at any of the gaps that axon made. How many roads could we
have walked down?

As we now know, we got lucky. A single axon makes many gaps. But
failure rates are high, rendering the spike ineffective at most gaps. And
even if effective, the neuron on the other side is most likely dark, not
receiving enough input to make a spike anytime soon. A spike’s journey
is a perilous one, prone to disaster.

Let’s run the numbers to see quite how perilous.7 We discovered a
pyramidal neuron makes about 7,500 excitatory contacts with other
pyramidal neurons. And that these contacts have a failure rate of about
75 percent. Given how many jumps we made between neurons in those
2.1 seconds, we had to be on our way again in 10 milliseconds or less for
the new spike to have any impact on you taking the cookie. The
probability that each of those 7,500 neurons will send a spike in the next
10 milliseconds is (very roughly) 1 percent. So when we started
following a spike from a pyramidal neuron somewhere in the cortex,
there were just 19 other neurons we could have reached to continue our
journey in good time. Nineteen neurons at which the arriving spike
would not have failed, and would then send their own spike quickly
enough. Or to put it another way, we had to bulls-eye one of just 19
options out of 7,500 to carry on our journey at each leap between
neurons. Threading our way through the whole brain in just 2.1 seconds,
we got lucky indeed.

Ah, but even with this tiny number, the number of possible paths we
could have taken explodes with just a few jumps. For those 19 neurons in
turn will also be able to reach that same number. So in two jumps, there
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were 3,516 paths we could have gone down. In three jumps, 659,180
paths. Even starting from a single neuron, and even with the gambler’s
luck needed to find the scant few options onward, within just a few leaps
the number of potential paths not taken, of parallel routes fanning out
from our starting point, explodes exponentially. And each of these paths
is potentially computing something different in parallel.

There are so many more roads than this parochial parallelism. Each
region of the brain sends spikes in parallel. Indeed, even just departing
from the retina, the retinal ganglion cells tile the visual world—nearby
neurons responding to nearby things; neurons at the bottom of retina
responding to things at the top of world, and vice versa. The pixels of the
cookie scene were dealt with in parallel within each channel: some
ganglion cells handling the rest of the detritus strewn across the edge of
your desk and spilling onto the abutting one; some a glimpse of a wall
twixt Graham, Graham’s tie, and the (broken) photocopier; yet others the
motivational poster on the room divider ahead of you proclaiming
“Customer Service is not a department, it’s a state of mind.” We
followed the spikes from but one location in space, from a pixel of
crumbly cookie edge, while all around us the spikes of other ganglion
cells were conveying the rest of the world in parallel.

And then each of those pixels is handled by at least thirty different
types of ganglion cell crammed together. That each convey different
information, about the onset or offset of light, of how fast light is
changing, or its direction, or combinations thereof. Each pixel in space
computed in parallel, and within each pixel more than thirty separate
streams of information in parallel, all carried by spikes. And we followed
just one.

We saw this parallelism at the end of our journey too. Neurons in the
motor cortex have to send information in parallel. Some sent spikes to
change your posture; some sent spikes to move your shoulder; some sent
spikes to extend your arm.

Beyond this areal parallelism, the whole brain is one vast parallel
computing monster. There was so much of the brain we could not visit
on our journey. Spikes from the retina sent directly to the brain stem, to
make your eyes move rapidly to look at any new, important, and
potentially hungry thing that just popped into view. Spikes sent to and
around the hippocampus, recalling memories of similar incidents of
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premeeting emergency blood sugar boosting, creating memories of this
cookie incident, and keeping track of where you are in the office. Spikes
sent to and around the amygdala, ready to learn from any bad outcome of
the cookie-nabbing escapade. Spikes to the thalamus, the cerebellum, the
substantia innominata, the hypothalamus—to everywhere. Spikes sent all
over the brain to compute different things, offer different solutions, all in
parallel.

The brain is parallel at all scales, from the paths emanating out from a
single neuron to the simultaneous routes through swaths of the brain.
Such parallel processing solves one part of the speed limit problem, of
how to do everything at once, by dividing up the world and computing
each bit of it at the same time. But it doesn’t solve the main speed limit
problem: that each individual thing being computed—the pixels of light
and dark turned into cookies into decision into movement—is still
happening in sequence.

In less than a second, most neurons do not have time to make a spike.
And the few that do can send at most a handful. And even then, the last
few of that handful will arrive at their target neurons after those neurons
have already sent their own spikes. How then do we get spikes from the
eye to the front of the cortex in under 150 milliseconds? We need another
solution.

SPONTANEITY FOR SURVIVAL

Imagine if the body had to wait for spikes from the retina to make the
legion of spikes in the first vision area of cortex, to in turn make the
legion of spikes in the second vision area of cortex, and on and on all the
way to the spine. This would take tens of seconds, minutes even.

Bodies don’t have time to hang around waiting for legions of spikes
to be created from scratch at each step. Hanging around gets you eaten.
How then are spikes turning sensation into verbs—lifting, reaching,
moving, deciding—fast enough for us to survive?

The solution, I argue, is the spontaneous spikes. They are the brain’s
solution to the deep problem of survival. The body doesn’t have to wait
for them to be created, as are they are already there. And as they are
already there, they can be put to work.
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Spontaneous spikes can be put to work to make neurons respond
faster to the outside world. Left to its own devices, unperturbed by input,
a pyramidal neuron’s voltage will default to a value way below its
tipping point. Starting from this state of repose is why it takes a few
hundred input spikes to make one output spike from that one neuron
(chapter 3). And that’s not even including the vampiric effects of GABA,
quashing attempts to drive the neuron to the tipping point. Like you, a
reposed neuron is sluggish when roused and prone to falling back asleep
without the constant blaring of an alarm.

But what if the neuron’s voltage was already close to its tipping
point? Then the neuron needs to receive just a handful of extra spikes to
make a new one. Can send a spike almost instantly. If those handfuls of
extra spikes are evoked by something in the world, the neuron can
respond to the world almost instantly. And how can a neuron be near its
tipping point when spikes evoked by the world arrive? Exactly:
spontaneous spikes, causing voltage blips in many neurons, driving up
their voltage.

The swirl of spontaneous spikes around a big circuit of neurons can
ensure that there are always some neurons close to their tipping point. So
whenever new spikes carrying messages about the outside world arrive at
that circuit, those neurons can react to them almost instantly, sending
their own spikes in response, carrying the message onward. While a
single neuron can be sluggish, a group of neurons is always ready to
respond—the legion in action again.8 And with these primed neurons in
each region of cortex, in V1, V2, V4, MT, prefrontal cortex, the lot, each
step of our journey could be taken within a few milliseconds.

In this view, spontaneous spikes are there to assist spikes evoked by
the outside world. It clearly works but raises a host of niggling issues.
For one, the whole thing is happening by chance: at the precise moment
that new information arrives from world, which neurons are being
moved to their tipping point by spontaneous spikes is likely random.
Perhaps it doesn’t matter which neurons are randomly moving to their
tipping point, if all the brain cares about is the information carried by
legions of spikes (chapter 7). But even so, how can the brain tell the
difference between spikes that are for making fast reactions in other
neurons and spikes that mean something about the outside world?
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The most profound issue is that putting spontaneous spikes to work as
mere helpers for evoked spikes is a strange use of the huge amounts of
energy needed to sustain the spontaneous activity. Indeed, so huge an
amount of energy that spikes evoked by the world or by doing something
in the world barely draw any more energy than the ongoing spontaneous
activity of the brain.9 That they use so much energy suggests the brain
has a much better way of putting spontaneous spikes to work.

We think we know what that is: spontaneous spikes are already
carrying most of the information the brain needs to act. They are
prediction.

SPONTANEITY FOR PREDICTION

Prediction is crucial to much of what we do. Our built-up knowledge
from prior experience guides our future behavior. That guidance is
prediction: based on what happened before, this is what’s most likely to
happen next. Our brain turns experience into prediction. And this plays
out over every timescale of behavior, and from the simple to the
complex.

Predicting the Visible World
There’s something you learned from experience that took so long you
didn’t even realize you learned it: seeing. The development of your
visual system takes a long time. Your eyes opened in the womb, but there
was nothing to see. When born, your brain didn’t know what the world
looked like. It didn’t know the statistics of the world. Of how many
edges, corners, and curves there are. Of where they tend to be—the
consistent edges of horizons and tree trunks and houses, the consistent
corners of paper and dice and windows, the constant curves of the moon
and footballs and pies. Of how those edges, corners, and curves tend to
relate to each other, to form trees and houses and footballs. And of how
they tend to move, in graceful arcs and smooth trajectories, no sudden
vanishing, reversing, or plummeting.

These statistics of the visible world are all learned by experience.
Raise someone in a world with no vertical lines, and they will not be able
to see a vertical object placed before them.10 Raise someone with one
eye closed, and when reopened that eye will see nothing.11 In both cases,
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the neurons in visual cortex have not been able to learn the statistics of
the world—deprived of the experience of vertical lines, there are no
neurons tuned to vertical lines; deprived of the experience of one eye,
there are no neurons tuned to the view from that eye. Neurons learn
about edges, corners, and curves through experience. The set of neurons
you have in your visual cortex exactly reflects the statistics of the visible
world you grew up in.

Which means your brain can turn this lifetime of experience into
prediction. If the visible world tends to have a consistent set of statistics,
then we don’t need to analyze each scene anew, for most of what is in the
world right now your brain can predict, because your neurons have
experienced it before. Predictions made by those experienced neurons
firing spontaneous spikes. Those spontaneous spikes are predicting a
specific collection of edges, corners, and curves in the world right now.
Predicting their imminent movements; like the fact that Sarah moving
away from you right now will in a moment be slightly farther away in
the direction she’s already traveling, as teleportation isn’t a thing.
Predicting more complex, nuanced features, the colors, textures, and
objects in the world.

These predictive spontaneous spikes solve the speed limit problem.
We don’t need to get spikes from the retina to alone create the first wave
of spikes in V1, to in turn recruit those in V2, then V4 and on and on.
Because the spontaneous spikes are already there in each of those
regions, are already predicting most of visible world.

How, exactly, does this prediction occur? One clever theory is that
visual cortices partly solve the speed limit problem by predicting what
information should be coming from the eye. As we ascended Highways
What and Do, the neurons at each jump along the way sent spikes in
response to increasingly complex aspects of the visible world. In this
prediction theory, the spikes we traced on the way up Highway What are
signaling what is most likely to be out there in the world, the best
guesses at the moment: spikes from V1 signaling the most probable set
of simple features; spikes from V2 the most probable conjunction of
features, like long edges and corners; spikes from V4 the most probable
collection of those conjunctions and colors; those from the temporal lobe
the most probable objects. But the key to this theory is what happens
going the other way. Remember those spikes that whizzed back past us at
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every step, spikes that were already there, racing back down Highway
What to whence we’d came? They are doing the predicting.

Working backward from temporal cortex, those descending spikes are
predicting the features that should be in the world if each guess is true.
And at each step back down the Highway, they predict by
deconstruction: if this object is out there (temporal lobe), then it should
have this set of complex features (in V4); if these complex features (V4),
then this set of corners and curves and long lines (in V2); if this set of
corner and curves and long lines (V2), then this set of simple edges
arranged just so in space (in V1). So the spikes descending Highway
What ultimately predict what information (edges, where they are, their
angles, and their location) should be arriving in V1 from the eye.

And the input from the eye simply adjusts what is wrong with the
predictions. As most of the predictions will be correct, because our
visual system spent many years learning what is there in the world, there
won’t be much to adjust. So most of the spontaneous spikes in your
visual cortices will be telling the rest of your brain an accurate version of
what is there in the world, before your eye has even “seen” it.

That’s the theory, anyway.12 Bayesian hierarchical inference, to the
cognoscenti; bootstrapping, if you prefer; educated guessing to the rest
of us. Whatever we call it, it means seeing can be so fast you don’t
notice it happening; the information is already there and adjusted by the
input.

Predicting What Will Be Useful
I’d argue the brain putting spontaneous spikes to work for prediction is
way beyond just seeing, or indeed any of our senses. Prediction is
everywhere.

Brains predict the outcome of decisions. To illustrate, let’s play a
simple game. You have to choose one of two cards I present. One card
has a high probability of winning you a reward, the other low. (The
reward is some chocolate milk.) Naturally, you’ll want to figure out
which of the two cards has a high probability, as who doesn’t like
chocolate milk? If I repeatedly present the pair of cards, you’ll quickly
figure out which card is best. You’ll come to expect that card to give the
highest payout, to predict the likely outcome of choosing that card.
You’ll then use that prediction to guide your behavior; when presented



153

with that card, you’ll predict goodness from choosing it, and so will
choose it. Your brain can create predictions quickly from a few examples
of simple events.

So we should be able to find neurons whose spontaneous activity
predicts good things are about to happen. Michael Platt and Paul
Glimcher reported just such a set of neurons in the back end of the
parietal cortex.13 They asked their monkeys to do a simple task: stare at a
central spot then, when signaled, choose to look at the light above or at
the light below. It took just a few trials for the monkeys to learn which of
the two lights was paying out the most juice. And for their neurons to
predict which light was the most valuable. For in the back end of parietal
cortex are a collection of neurons that fire just before the eyes move. One
group fired a lot of spikes just before the eyes moved up, another group
fired a lot just before the eyes moved down. The spontaneous spikes of
these eye-movement neurons changed to predict the value of the light. If
moving the eyes up brought more juice, so the upward-movement
neurons fired more spontaneous spikes before the signal to choose. If
moving the eyes down brought more juice, so the downward-movement
neurons fired more spontaneous spikes before the signal to choose. And
the greater the value of the best light—the more juice was gained over
the other choice—the more spontaneous spikes were fired by the neurons
that would move the eyes to that light. The spontaneous spikes were
predicting the value of the action taken by that neuron.

We see spontaneous activity predicting decisions all over the brain.
During that pesky randomly moving dots task, before the dots even
appear, eye-movement neurons in that same region of parietal cortex are
spitting out spontaneous spikes. And the more they send, the more likely
the monkey will decide the dots are moving in those neurons’ preferred
direction.14 In a monkey’s V1, the greater and more correlated the
spontaneous activity, the more likely that monkey will detect that a bit of
a picture has been rotated to look weird.15 And in people trying to decide
whether the picture they’re looking at is two faces or a vase, the more
spontaneous activity in their fusiform face area before seeing the picture,
the more likely they are to decide it’s a face.16

Theories of how the brain does decision-making propose all these
effects of spontaneous activity on future decisions are because that
activity encodes prior information. That a particular neuron’s
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spontaneous spikes before a decision mean: given this body’s previous
experience, this is my current prediction of how likely my option is to be
correct or valuable. (Whether “my option” be which light to choose,
which direction the dots were moving in, that we’re looking at a face etc.
etc.) And all such neurons send their predictions before any information
comes from the outside world, so those predictions can be used as the
starting point to make the upcoming decision as fast and as accurate as
possible.17

Holding things in your memory buffer is also prediction. There is a
strictly limited capacity for what we can keep in that working memory.
So for something happening in the world to gain entry to this buffer
means it must be likely worth remembering. Placing an event in that
buffer is then a prediction that it will be useful to know in the immediate
future.

We can see this prediction in the two ways of gaining entry to the
memory buffer. Of its own accord, your brain tends to lodge things there
that are new or odd or surprising. It disregards routine things. Like the
action of locking the door when you leave home for the day; within
seconds of locking the door, you likely have no memory of having done
so. For routine, mundane things are highly predictable, habitual, with a
low likelihood of something about to happen that will need a memory of
that routine, mundane thing. But the appearance of new, odd, or
surprising events are predictive that you may need to take some action
about that event in the future.

The second way is that our memory buffer also retains memories of
events that have proved useful through experience. In the excruciatingly
dull tasks we set ourselves and other animals to probe the brain’s
memory buffer, we establish that an event needs to be stored in that
buffer by repeating it over and over again. We might flash a light in a
particular location, or vibrate a strip of metal at a particular frequency.
Such events predict future reward, but only if we use that remembered
information to guide action—like looking at where the light was, or
reporting whether a second vibration was higher or lower than the first.
So we and other animals learn to pay attention to these things, to
deliberately lodge them in our memory buffers, as they predict the future
action we ought to take.
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In everyday life, we can use the same idea of deliberate concentration
to lodge an apparently routine event in our memory buffer. By
concentrating on it, giving it our attention, we are signaling that it will be
useful in the future. From long experience I know after leaving the house
the first thing my wife says to me as I get in the car will be “did you lock
the door?” And if I can’t look her in the eye and say “yes” with absolute
certainty, I know I’m inevitably heading back to the front door to check
it. So from such long experience I have learned to now concentrate my
attention on locking the front door before I get in the car, lodging that
action in my memory buffer, predicting that I will need that memory in
but a few seconds’ time. By my calculations, over many years of
marriage that simple act has gained me a few hours of my life back not
spent reluctantly trudging to and from the front door.

However those memories are lodged, we already know from our
journey through your brain that they are all maintained by the
spontaneous activity of neurons in the prefrontal cortex. Long after the
evoking event, these neurons are sending spikes to each other,
maintaining each other’s activity, predicting that this event will be useful
imminently. To guide imminent decisions, to guide future actions.

Actions like moving your body. And on our journey we’ve already
seen the prediction of movement. In the motor regions of cortex we ran
into a barrage of spontaneous activity, neurons firing long before
movement started. Spontaneous activity that prepared movement, that
predicted movement, readying the legion of neurons that directly control
the movement to respond. In humans, the level of spontaneous activity
across the motor regions of cortex (as measured by fMRI) seems to
dictate how strongly we press a button.18 In monkeys about to move their
arm, the spiking of neurons in premotor cortex is proportional to the
probability that the monkey will shortly move the arm in those neurons’
preferred direction.19 Spontaneous spikes before movement are also
seemingly predicting what that movement will be.

Spontaneous activity as prediction can solve the speed limit problem
everywhere. You don’t have to wait for making a decision from scratch
each time, as spikes are already preempting the likely decision. You
don’t have to regather sensory information anew, as spikes are already
maintaining what could be imminently useful. You don’t have to create
each movement from scratch, as spontaneous spikes are preempting the



156

likely next move. Your spontaneous spikes let you respond faster, better,
more—no hanging around, no being eaten.

The Domination of Spontaneous Spikes
We have clever theories about how the visual bits of cortex could use
spontaneous spikes to make predictions about the visible world. And I’ve
proposed ideas for where prediction resides outside the sensory realm.
These theories and ideas may or may not turn out to be true. But if the
spontaneous spikes of neurons in your cortex really are predicting the
world, then, no matter how they are doing it, a simple fact should hold
true: the spontaneous activity from neurons will consistently look like
activity evoked by something happening in the outside world.20 Because
if the evoked activity is often unique, and looks nothing like the
spontaneous activity, then spontaneous activity cannot be making
predictions.

It’s easiest to test this idea in V1. We have a really good idea of how
neurons there respond to the visible world—see, for example, most of
chapter 3—so we know what the spontaneous activity in V1 should look
like too. And we have a wealth of evidence that spontaneous spikes in an
adult’s V1 look just like evoked spikes.21 Grinvald and his colleagues
provided much of this evidence in a sequence of three crucial papers.22

In 1996, they showed we can predict the activity evoked in V1 by a
picture using the spontaneous activity just before the picture appeared.
Better yet, the evoked and spontaneous activity are exactly as similar as
the spontaneous activity is to itself a little while before the picture
appeared: there is nothing special or unique about the evoked activity. In
1999, they showed that what makes a single neuron in V1 fire is the
same pattern of activity appearing in the surrounding neurons, regardless
of whether that pattern is evoked or appeared spontaneously. The legion
in full effect there. And in 2003, they showed that groups of neurons that
preferred the same angles of edges in space are spontaneously active
together, just like they are when presented with the world to look at. And
there’s more. Fiser and colleagues showed us that the correlations
between spikes in V1 are the same whether the spikes are the
spontaneous activity of eyes in darkness or evoked by watching a
movie.23
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We’ve seen this matchup between spontaneous and evoked activity
elsewhere in the cortex too. In the first bits of a rat’s cortex dedicated to
sound or touch, the sequence in which a group of neurons fire is the
same whether the rat is listening to sounds, is asleep, or is anesthetized.24

And my lab has shown that in the prefrontal cortex of those rats running
around in a maze, the pattern of spikes across the legion of neurons while
they explored the maze reappeared in sleep.25 So often in fact, that
almost every millisecond of running in the maze was accompanied by
the patterns of spikes that recurred in the spontaneous activity of sleep.
Truly, there is nothing unique about the spikes evoked by events in the
outside world.

We’ve even seen the spontaneous activity in the visual cortices
changing during development, as the brain experiences and internalizes
the statistics of the visible world. In a beautiful experiment, József Fiser
and friends, led by Pietro Berkes, traced the development of V1 in ferrets
by recording at different stages of maturity the patterns of neurons firing
in response to a movie of the natural world and in total darkness.26 Infant
ferrets had vastly different patterns of spikes between movies and
darkness. But these converged over development, so that in fully grown
adult ferrets, similar neurons fired at the same time whether they were
looking at movies of the natural world or sat in pitch darkness. (The
“natural” movie was the trailer for The Matrix. By “natural” they clearly
don’t mean trees and flowers and bees. In fact, it’s hard to think of many
films more unnatural. What they mean is a series of images that contain
the usual statistics of the world: lots of edges and curves and corners, in
the usual relationships, moving in the usual way. Some of which happen
to be Keanu Reeves in a trench coat.)

And how do we know this convergence is from learning the statistics
of the visible world, as I claimed above? Because this convergence was
specific to natural images. When viewing unnatural images made up of
just lots of straight, parallel lines, the evoked patterns of spikes remained
distinctly different from the spontaneous patterns happening in darkness.
Which all together suggests the development of predictions in the visual
cortex. That the predictions of spontaneous activity make large errors in
infants with just-opened eyes because the statistics of the visible world
are unknown. That the predictions get better as the world is experienced
over time, the errors get smaller, and so the difference between the
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spontaneous and evoked activity gets smaller. And so by the time we
reach the mature visual cortex, there is very little difference between the
spontaneous and naturally evoked activity, as most of the natural world
can be predicted. But the errors in predicting unnatural images never go
away, as they are not part of the ferret’s experience of the world.

THE ETERNAL CYCLE

I’m proffering here a simple but rather radical model of how your brain
works. Spikes coming in from the outside world adjust the spontaneous
activity, and these adjustments are the messages they carry. Like molding
Play-Doh into a snowman, then a cookie, then a tree—all the same stuff,
but adjusted into different meanings by the prods coming from your
fingers. The adjustments are errors in the predictions: of what was
sensed, of what was enacted, of what was the consequence.

This is why in mature brains the distribution of how many spikes each
neuron sends barely changes between spontaneous and evoked activity,27

nor as we’ve just seen does the distribution of the patterns of spikes in
V1 and prefrontal cortex. Most spikes are born of ongoing, internal,
spontaneous activity, and are merely prodded into new forms by input.
Which means that information is not coded in the pattern or timing or
number of spikes evoked by the outside world; it is coded by changes in
the ongoing, spontaneous spikes.

If so crucial, where did they come from? I’d argue spontaneous spikes
are an inevitable consequence of evolution wiring up a big bag of
neurons into a brain. Neurons are essentially the same in everything with
neurons: humans and leopards, snakes and frogs, ants and worms,
zebrafish and squid. Which is one reason why I could write this book and
be able to describe how your brain works despite us not being able to
record spikes from human brains. And which means neurons must be
evolutionarily ancient, originating in a common ancestor to every living
thing with a nervous system. Our best guess is they appeared somewhere
between 635 and 540 million years ago.28 Either they evolved to
coordinate rapid responses to things happening in the outside world, like
to avoid being eaten,29 or, as evolution moved from single-celled
organisms to multicellular life,30 they evolved to solve the problem of
coordinating between those newfangled cells to make sure the cells
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doing moving and cells doing feeding were doing the right thing at the
right time in the right order.

Neurons clearly proved their worth for survival. They are everywhere,
after all. So more were added. And as soon as we couple multiple
neurons into a network, we get multiple feedback loops; we get the
potential for spontaneous spikes from the network alone. This is
especially true once the number of neurons is so large that each neuron
and its connections cannot be individually specified by genes. Then
genes can specify types of neuron, where they appear in the nervous
system, and which types of neuron to wire to. But the details of the
wiring is left to chance. A feedback network of neurons is then
inevitable. With that, spontaneous spikes appeared as a by-product of
simply making a network of neurons.

I’m suggesting evolution co-opted them to do useful work, to solve
the speed limit problem of brains. A problem created by adding more
neurons. For as soon as there appear many more neurons between those
taking sensory inputs and those directly making movement happen, there
is much more processing to do, more delays to overcome, more possible
ways of mapping input to movement. Evolution could then co-opt
spontaneous spikes to prime responses, or anticipate needs. And from
this evolve the complexity of the endlessly predicting human brain.

Our journey showed the deep complexity of the apparently mundane.
An act over the briefest of moments invoked a staggeringly complex
cascade of spikes. Billions of spikes from across billions of neurons
along billions of axons, leaping billions of gaps. Each spike cloned at
each branch in the axon, multiplying endlessly, each clone racing along
the cable, trying to trigger the cascade of molecules across the gaps to
the tree of the next neuron. If it succeeded, and we know now it often
does not, the blip of voltage evoked in the tree joins thousands of others
in that moment, each blip sliding down the torturous tree, some exciting
the neuron to its tipping point, some inhibiting those blips, crushing
them. Most of those thousands of others were spontaneous spikes,
dominating all. The constant back-and-forth of spikes across the brain,
swirling around the layers of cortex, between the regions, up and down
through the rest. They are always there, and they vastly outnumber the
spikes evoked by the outside world.
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Brains work on many slower timescales than spikes.31

Neuromodulators like dopamine and serotonin change over minutes.
Changes to synaptic strengths to create immediate learning takes hours.
Long-lasting changes to master complex skills takes days and weeks.
Developing a brain takes years; in humans well into our early twenties.
All alter how the moment-to-moment messages of spikes are sent. But
none of them directly make things happen right now. Their effect is only
felt through how they change spikes.

Moment to moment, the spontaneous spikes are crucial for us to
operate in this world. In the sensory parts of the cortex, the spontaneous
activity predicts what the next sensory input will be, ensuring that the
brain can track the world quickly. Spontaneous activity in motor cortex
and other regions prime the body to move, in the null space, ensuring the
command for the next movement is just a few spikes away from
happening. In the deep recess of the prefrontal cortex, spontaneous
spikes hold memories of information needed to act, and hold predictions
of the consequences of those actions, so decisions can be made quickly.
But for humans at least, we know spontaneous spikes are far more.

Moment to moment, the spontaneous spikes are You. They are your
daydreams and idle thoughts, contemplation and planning, memories and
musings. Wondering what you’d look like with a vibrant purple streak in
your hair. That sudden inspiration to sack off cooking and get fish and
chips on the way home tonight. Conjuring that image of mastering guitar
in a few years’ time. A reverie of squidging toes into the wet sand as the
sea gently laps your ankles like a slow dog. Your rich internal life is the
sending and receiving of spontaneous spikes across your brain.

The most important journey for the spike, then, is not from input to
output—it is the eternal cycle, looping forever within the brain.
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CODA

The Future of Spikes

ALL THE SPIKES

Our spike’s journey through your brain will soon be different. I could
only interpret what we saw through things we already know, knowledge
painstakingly gained over the past hundred years or so. After more time
has passed, more data gathered, more knowledge mined, we will know
more of the journey, understand better the things we saw. What might we
know?

Such fortune telling ranges widely in difficulty. Easiest is to predict
the kinds of data about spikes we will get in the future, for we can take
current trends in technology, survey current proofs of concept, and
extrapolate out. Harder is to predict what insights those data will contain.
Hardest is to predict what they will mean. But what we can predict are
the new directions we want to explore. And what we want to explore is
everything that is missing entirely from this book because we know
nothing about them: spikes that underlie disorders of the brain, and
spikes that underlie human thought processes. In order to be able to get
at these spikes, we may first need that extrapolation of technology.

Driving this Golden Age of systems neuroscience is the white heat of
a technological arms race, a race to record as many spikes from as many
neurons at the same time as possible. Indeed, neuroscience has its own
equivalent of Moore’s law, with the number of simultaneously recorded
neurons doubling every few years. In 2011, the number of recorded
neurons was predicted to double every 7.4 years; now, in early 2020, the
predicted doubling of neurons is every 6.4 years.1 There’s no sign of a
slowdown in our ability to grab more neurons.

The “Neuropixels” probe beautifully illustrates the kind of leaps that
make up this doubling. It arrived in 2017, a slender silicon thread for
inserting deep into an animal’s brain, its 10 millimeter length packed so
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densely with contact sites that each probe can record the individual
spikes emanating from up to two hundred neurons.2 Implant a few of
them at the same time, and one quickly gets many hundreds—closing in
on a thousand.3 These neurons are widely dispersed throughout the brain.
For these probes are long: a mouse’s cortex is less than a millimeter
thick,4 so a 10 millimeter shaft passes deep into its brain, collecting
neurons from many regions, regions hitherto never recorded together at
the same time.

Which makes for a simple yet deep prediction about our
understanding of spikes in the near future: it will be upended again. By
happening to record from many brain regions at the same time, we will
upend many nice theories about how a bit of brain X is responsible for
doing thing Y. When we look at spikes in many brain regions at the same
time, we will find many regions seem to be involved in the same thing—
in deciding, moving, remembering, perceiving—and many of those
regions will, crucially, not be in the cortex. Indeed, we may be on the
cusp of a new, less cortex-centric view of the brain.

More concretely, we can make two pretty firm predictions about the
types of data we will get in the near future. The first is simply more
spikes, from more neurons, than we could possibly imagine just ten years
ago. The present capacity for imaging calcium in neurons hints at how
many more spikes we can get. Its upper limits are the imaging of about
ten thousand simultaneous neurons in mammals, and tens of thousands in
baby zebrafish.5 (Why baby zebrafish? Because they have translucent
heads! The glowing chemical in their brain can just be videoed from the
outside.) Calcium imaging does not directly record spikes; it records the
slower changes in calcium inside the neuron’s body that are caused by
spikes, which is a useful proxy, but there is no clean one-to-one
correspondence between spikes and changes in calcium.6 Nonetheless,
the development of calcium imaging means we have already developed
all the kit we need—the microscopes, the rigs, the analysis software—to
image many thousands of individual neurons. So all we’d need do is
replace the chemical that glows in proportion to calcium with a chemical
that glows in proportion to the neuron’s voltage, and we have in principle
the capacity to image the spikes from thousands of neurons.

And we (almost) can.
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It’s called voltage imaging. Directly videoing the glow of chemicals
that responds to changes in voltage. In truth, it’s been around for a few
decades.7 But up until now, we could only use it to look at the spikes of
single neurons in simple invertebrates, in leeches and sea slugs, because
they have giant neurons with few spikes.8 Simply because imaging
voltage is doubly handicapped compared to calcium imaging; voltage-
imaging is trying to record much faster things—spikes—with far, far less
of the chemical available to glow in response. Instead of filling the
neuron’s body, like the chemicals for calcium imaging, the voltage-
sensitive chemicals can only live in the neuron’s skin because that’s
where the voltage is changing, as we learned right at the start of chapter
2. Roughly, the amount of the calcium-sensitive chemical is proportional
to the volume of the neuron’s body, but the voltage-sensitive chemical is
only proportional to its surface area, giving a hell of a lot less voltage-
sensitive chemical to detect. So only really giant neurons—with a vast
surface area—could contain enough of the voltage-sensitive chemical to
have their changes in voltage detected. And only in invertebrates do we
find these giant neurons, with bodies tens of micrometers across. Only in
these creatures could we use this magic of videoing voltage directly.

That’s all about to change. Multiple breakthroughs in new types of
voltage-sensitive chemicals happened in 2019, making them glow much
brighter and change much faster and last much longer. Imaging the
voltage of many single neurons at the same time is at last working
robustly in mammals.9 Now all we need is scale, to move from handfuls
as now, to tens, to hundreds, to thousands of neurons.

The best use of voltage imaging is yet to come, and this use is the
second prediction about the type of data we will get in the future.
Because we are imaging the neuron’s voltage, we can in theory see more
than just the spikes. We can see all the flickers of voltage in between
each spike a neuron spits out. See all those blips created by its inputs.
This needs ultrabright, ultrafast, ultrastable chemicals, and they’re
coming too. And with all those flickers at hand, we can see what caused
the spike itself. We can trace the journey in detail from spike to blip to
spike to blip to spike to blip and on and on …

If the exponential explosion in recording neurons runs its course, one
day we will be able to record every single spike sent by every single
neuron in the entire cortex of a mouse. Oh happy day! What marvels we
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will see, what things we shall learn! Except: imagining such a future
brings into sharp relief the “so what?” question. So what do we do with
these data?

For if we keep digging up more spikes, do we advance our
understanding of the brain? Or do we instead simply fragment our
understanding, driving deeper and deeper into the details, piling more
observations and facts on each other, drowning in Big Data.10

We must be wary of the latter. For what we’ve perhaps learned most
from this recent Golden Age is the yawning chasm between what we
thought we knew about how brains work, and what we actually know.
On our spike’s journey, we’ve seen how digging deeper into spikes has
taught us much that is new about how the brain works. About how a
single neuron’s dendrites, its tree, combines its input spikes in clever
ways. About how synapses seem to fail on purpose. About the ubiquity
of the dark neurons, and the mystery of their role in life. About the level
at which the brain encodes information—groups of neurons, the legion—
rather than the single neuron. About spontaneous activity being not
noise, but having purpose, of overcoming the speed limits of the brain’s
machinery.

The most obvious chasm in our understanding is in all the things we
did not meet on our journey from your eye to your hand. All the things of
the mind I’ve not been able to tell you about, because we know so little
of what spikes do to make them.

SPIKING ERRORS

If the passing of spikes between neurons is the basis of thought, word,
and deed, then errors in the passing of spikes are what drive errors of
thought, word, and deed. Some of these are fleeting, like the slurred
speech of the inebriated, or the irritating clumsiness of the sleep-
deprived new parent, valiantly struggling to close the nappy before
another torrent of wee in the face.

Some of these errors are permanent. We call them brain disorders.
Some brain disorders are clearly errors in passing spikes. Epilepsy is a

prime example. The seizures epileptics suffer can be either convulsive,
where sudden muscle contractions shake the body uncontrollably, or
nonconvulsive, as in absence seizures where the sufferer abruptly loses
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then regains consciousness. The capacity for epileptic seizures can be
acquired via many routes—some are linked to specific genetic mutations,
some from the playing out of genetic influences on development, and
some from direct damage to the brain through strokes or tumors. But
whatever the type and however it is acquired, the immediate cause of a
seizure is an uncontrolled explosion of coordinated spikes across the
brain, waves of neurons sending spikes in synchrony, especially those of
the cortex and hippocampus. An explosion so violent in its synchrony,
we can see it from electrodes placed only on the scalp. The waves of
spikes drive the random muscle spasms in convulsive seizures and drive
the loss of consciousness in absence seizures.

Many brain disorders are less obviously about errors in sending or
receiving spikes. These are broadly divided into three classes: disorders
of movement, of memory, and of thought. Study of these disorders
concentrates on changes to aspects of brains that are not the sending of
spikes. But the symptoms of the disorders all must ultimately be
expressed by the way those changes in the brain in turn change spiking.

For disorders of movement, this is perhaps not so controversial an
idea. Take Huntington’s disease. The classic symptoms of Huntington’s
are the “chorea,” the jerky, involuntary movements of the limbs.
Huntington’s disease is a rare case in that we know the specific single
genetic mutation that causes it—a vanishingly small number of diseases,
brain or otherwise, can be so linked to a single mutation. In
Huntington’s, this mutation is too many repeats of three letters of DNA
—CAG—in a single gene, which in turn creates a mutated form of the
protein encoded by that gene (the protein being called “huntingtin”—see
what they did there?). That gene is mostly expressed in a group of
neurons in the big, silent striatum, tucked just underneath the cortex. So
those neurons get filled with a crap version of the protein, malfunction,
and start to die off (why this only starts to happen when the mutation
carriers reach their mid-thirties or later is not clear). As you now know,
the striatum happens to be intimately involved in the control of
movement, especially in making sure appropriate movements are
happening. The death of many of its neurons means it can no longer send
spikes that control appropriate movements. And this error creates the
inappropriate, often violent, limb movements.
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Disorders of memory are also errors in spiking. Alzheimer’s disease
causes profound loss of memory, alongside problems with cognition and
changes in personality. Much work on Alzheimer’s focuses on the
accumulation around neurons of bits of proteins that shouldn’t be there
(beta amyloids), and errors in the folding of a protein inside neurons (tau
tangles). These problems with proteins lead to malfunctioning neurons
and malfunctioning connections between them, particularly in the cortex
and hippocampus, neurons that ultimately die in droves, driving away
memory in the process. For the recall of memories is the passing of
spikes between neurons. As the errors in passing spikes accumulate with
the increasing loss of neurons and of the connections between them,
memory fades.

Disorders of thought are, too, disorders of spiking errors.
Schizophrenia is a mélange of symptoms—taking in hypersensitive
senses, distorted cognition, delusions, and hallucinations—whose root
causes are unclear, and for which there are many theories. Hallucinations
of sound, especially where the sufferer hears voices that do not exist, are
common. Yet hearing is the passing of spikes between neurons, from
those in the cochlear nucleus of the brain stem up through a chain of
neurons to those in the bits of cortex specializing in sound. Hearing
things that aren’t there are then errors in the passing of these spikes,
including the passing of spikes that shouldn’t exist, that have occurred as
though there was sound coming from the outside when none actually
exists. And indeed when we scan the brains of patients suffering from
sound hallucinations, their sound-specialized cortex is lit up just the
same during hallucinations as during hearing real speech.11

Spikes give us a common language to talk about what in the brain
goes wrong. Brain disorders have many root causes, whether they be
mutations in a specific gene, a breakdown in the clearing of garbage
proteins, a malfunctioning receptor for a particular chemical, a defect in
fixing worn-out parts of cells, or prions—misfolded proteins—invading
the nervous system and wreaking havoc. What they all have in common
is their ultimate expression: all have a characteristic change to the
passing of spikes between particular groups of neurons. And this change
in the passing of spikes is what ultimately causes the symptoms of the
disorder.
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The problem is we rarely get to see what those changes are. Because
we can’t record spikes from humans. All the above is knowledge built
from our understanding of the brains of animals. And mostly of spikes in
normal movement, memory, and hearing, spikes from the brains of
healthy animals. We know a little about changes to spikes in animal
models of these disorders, animals with alterations to their brains that
mimic some of the root causes of human disorders. But strangely little.
Rarely are the current crop of Golden Age tools for recording many
neurons at the same time used in these models.

A clear future for spikes is then to understand how they change in
movement, memory, and thought disorders. In the near future, we will
see a sharp uptick in neuroscientists using the newest recording
technology in animal models to start mapping the changes to spikes
across hundreds or thousands of neurons, across multiple brain areas at
once. Hints of this uptick are appearing in recent studies recording tens
or hundreds of neurons in animal models for Parkinson’s disease and
Fragile X syndrome (a rare form of autism).12 And we would like to
record these spikes in better animal models of these disorders, ones more
closely matched to both the causes and the symptoms, for which we feel
more confident in extrapolating to humans. A tall order indeed for many
disorders of memory and thought, as it is hard to replicate things like
dementia, depression, obsessive-compulsive disorder, and schizophrenia
in an animal. Not least because the best models for us humans are those
animals most closely related to us, the primates, and developing primate
models of most memory and thought disorders would stringently test
society’s ethical tolerance for animal testing.

Weirdly, studying disorders by recording spikes in humans could end
up being ethically more acceptable than developing new animal models.
Routinely recording spikes in humans is an ethical nonstarter with
current devices, because of the deeply invasive surgical procedures and
sheer size of the devices. Such recordings are largely limited to the
special cases of epilepsy (to find where the seizure-triggering activity
starts) and Parkinson’s disease (to locate the deep brain stimulation
electrode in the right place). But a new wave of well-funded neural
technology companies aims to change all that; they want to interface
your brain’s activity directly with a computer so are aiming to build



168

implantable devices for the constant recording of spikes in healthy
human brains.

Neuralink, for example, is creating neural lace, flexible electrodes that
would flow through the brain, and with luck not trigger an immune
response, allowing them to remain implanted for years.13 Then there’s
“neural dust,” the concept of nano-sized passive recording electrodes that
can be read out using ultrasound.14 At the time of writing in February
2020, these research programs are at best testing preliminary proof-of-
concept devices in animals. But to reach their stated goals, at some point
they will have to deal with the ethical hurdles of undergoing surgery to
implant these things in a healthy human brain. Right now this too would
seem a nonstarter; voluntary surgery on a healthy brain seems absurd
given the risks involved, both those inherent in any major surgery from
hemorrhage, infection, or accidents, and the additional non-negligible
risk of permanent brain damage or stroke from fiddling about in the
brain. But we know to never say never. After all, plastic surgery on
perfectly healthy people is now routine. And there seems a better use of
these devices, one perhaps more ethically acceptable: for understanding
spikes and their changes in the array of movement, memory, and thought
disorders unique to humans.

But if we ever could record the spikes in whatever human brain we’d
like—your brain, my brain, the Dalai Lama’s brain—then we know what
else we’d go after: the spikes of subjective experience.

SUBJECTIVE SPIKES

Our journey through your brain traced the spikes of a single act, in but a
brief moment of time, a handful of seconds at most. But there is a whole
class of mental activity well known to you that I could not describe in
spikes. Your plans and aspirations, your imagination, the mental imagery
of situations mundane and absurd, your social interactions, your
emotions, your attention and its control, your awareness, your inner
monologue—your consciousness.

Why could I not describe these in spikes? Because—all together now
—we can’t record spikes from humans. When we do get the rare
opportunity to record spikes in humans, we ask them to do simple tasks,
like any other animal: choose between these two pictures for a reward;
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follow the moving dot with your eyes. All really dull stuff compared to
the richness of our mental world. But for good reason. If we want to
compare and contrast the coding and computation in human brains with
those of other animals, so we must use the same tasks.15 And it’s also just
good science, keeping things simple, changing only what you want to
measure. But no help for our understanding of spikes underlying thought,
emotion, and the experience of being ourselves. Which creates a rather
large explanatory gap: the passing of spikes between neurons is thought,
word, and deed, yet of the above list of subjective experiences we know
nothing about the underpinning spikes.

And into this explanatory gap can fall deep misunderstandings. We
are left with at best vague generalities about the links between the brain’s
machinery, its neurons, and the aspects of mind with which we are
intimately familiar. This allows a lot of weird things to manifest, like the
rash of dubious concepts prefixed with “neuro-” to make them sound all
science-y and smart—neuromarketing, neurolaw, neurocriticism.16 When
we know literally nothing, absolutely nothing at all, not even a teeny-
weeny iota of a quantum, about what signals neurons send to each other
when you evince a deep loyalty to a brand of brown sugary soft drink,
commit the crime of pilfering the last bit of Jamelia’s milk from the work
fridge, or offer a recondite interpretation of Winnie the Pooh as a deep
metaphor on capitalism’s destruction of childhood—for isn’t the pursuit
of honey merely an allegory for the lure of money? Sure, we can stick
people in an fMRI scanner, and then report how changes in blood flow
over a few seconds to an area that contains somewhere between millions
and hundreds of millions of neurons correspond to the taste of two
different popular, sticky brown drinks. But that tells us nothing about the
spikes sent by the neurons. The things that do the work.

Of emotion we know a little. You may be familiar with the idea that
the chunk of brain called the amygdala is the seat of “fear.”17 This is
wrong. Evidence for the amygdala’s role in fear is twofold. Rare people
who lack a functioning amygdala seem to be fearless. And if we stop an
animal’s amygdala from functioning, it cannot learn that a sound or
flashing light predicts a pinprick electric shock. The amygdala is the site
of that learning, that some event in the world predicts an imminent
unpleasant thing happening. Not the seat of fear itself, but of a
prediction.18 We know something of the spikes in an animal’s amygdala,
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and of how they change during the learning of such a prediction.19 But
we know nothing of the spikes that give the subjective experience of
“fear.” Nor happiness. Nor ambivalence. Indeed, Lisa Feldman Barrett
could write an intriguing 411-page book about emotion and the brain
without mentioning spikes once.

The explanatory gap between spikes and subjective experience also
manifests in the vestiges of Cartesian dualism, the idea that mind and
brain are somehow separate. Especially in the ultimate subjective
experience of consciousness. The ephemeral sensation of being aware of
one’s self, the inner monologue, the experience of things—of redness,
crunchiness, stickiness, of taste, texture, and smell. Nothing is known of
how spikes passed between neurons relate to consciousness. This lack of
grounding in the actual mechanics of the brain sets consciousness
research adrift.

Scientists studying consciousness have to get around the problem that
we know nothing of what signals the neurons are sending. Some look to
fMRI, to at least catch a glimpse of which giant groups of neurons may
be increasing or decreasing their activity during subjective experience.20

Some look to the wiring between the regions of the human brain and
argue for its unparalleled complexity.21 Some have taken the giant leap
of skipping over spikes entirely, not to mention the complex
computations a single neuron can carry out both through its dendrites
and through its mind-bogglingly complex chemical signaling pathways,
and diving straight down to the quantum level22—which seems odd,
given that perhaps we ought to first test a theory of consciousness at the
level that we know information is passed in the brain.

Some philosophers studying consciousness fall headlong into this
explanatory gap. For some defend dualism, reasoning that because we
can’t find a physical explanation for consciousness, nor can we think of
one, the mind thus has no physical essence.23 There’s a simple reason for
why we can’t find or think of one. These vestiges of dualism live on
because we cannot yet link the actions of individual neurons to these
subjective mental states. Not because there is no link, but because we
don’t have, and as yet cannot get, the necessary data. We’ve literally
never tried to link the activity of your neurons, the legion of spikes, all
two billion of them a second, to your conscious experience.
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The future of spikes is to ground idle speculation in knowledge. More
spikes is a given, and from those we will learn much more about all the
phenomena we met on our journey through your brain, about the legion
and the meaning of spike, about the dark neurons and the spontaneous
spikes. The more spikes we can gather, the more we will learn by
omission about the elements of the brain that are not controlled by
spikes, about the things that we cannot explain no matter how many
spikes we greedily snap up—like mood, and perhaps memories of the
distant past. And we will almost certainly get different spikes, spikes
from disorders we know nothing about, from human thought processes
we have yet to touch on, from subjective experiences we have yet to
record a single spike during—spikes that will enrich our understanding
of what it means to be human. That’s where we ought to journey next.
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